Binoculars: Comprehending Open Source
Projects through graphs

M.M. Mahbubul Syeed

Tampere University of Technology, Finland
mm.syeed@Qtut.fi

Abstract. Comprehending Open Source Software (OSS) projects re-
quires dealing with huge historical information stored in heterogeneous
repositories, such as source code versioning systems, bug tracking sys-
tem, mailing lists, and revision history logs. In this paper, we present
Binoculars, a prototype tool which aims to provide a platform for graph
based visualization and exploration of OSS projects. We describe the is-
sues need to be addressed for the design and implementation of a graph
based tool and distill lessons learned for future guideline.

1 Introduction

Open Source Software (OSS) has gained interest in both commercial and aca-
demic world over the past decade due to its high quality. Successful OSS projects
produce a rich set of software repositories, coming with a large number of ver-
sions reflecting their development and evolution history. These repositories con-
sist of the source code, change logs, bug reports and mailing lists.

To know the facts related to such OSS project development, composition,
and the possible risks associated with its use, one has to explore the huge
information stored in the repositories. But often such repository contains het-
erogeneous information with different data representation, which also varies
significantly from project to project. Thus a tool support for uniform data rep-
resentation and customizable visualization mechanism is required to ease the
comprehension of OSS projects.

In this paper, we present the tool Binoculars as the first step towards a graph
based platform to comprehend and visualize OSS projects. Video demonstration
of the tool Binoculars can be seen from [11].

2 Tool support for comprehending OSS projects: A review

This section presents a review on tool supports that offer different visualization
approaches for comprehending OSS projects.

The tool, CodeSaw [10] provides a time series representation of social in-
teraction data in juxtaposed displays. This tool explores links between one’s
contributions to that of social interactions. In this context, the tool Tesseract

2 M.M. Mahbubul Syeed

[10] explores the multi-perspective relationships in a project for a user-selected
time period (i.e., the evoluiton), and represents them via four juxtaposed dis-
plays.

In [10], FASTDash was proposed as an interactive conflict management tool
which provides a spatial representation of the shared code base by highlight-
ing team members current activity. The tool CollabVS [10] addresses this issue
at editing time, and provides a visual representation of conflicting code and
a communication mechanism. The tool Palantir [10] performs similar task by
graphically displaying the shared workspace to the developers with the infor-
mation of what others are doing, and calculating the severity of such activities.
Also the tool Augur [10] provides a line oriented view of the source code with
colors for each pixel line indicating the location of the modification work and
how recently it was conducted. This visualization allows to see how much ac-
tivity has taken place recently and where that activity has been located.

In [10], the tool Ariadne utilizes call-graph approach to visualize social de-
pendency of the developers due to code sharing. Similarly, the tool Expertise
Browser [10] determines developers expertise from historical contributions.

Though the tools discussed above provide useful insight of OSS projects
through different visualization approaches, yet none effectively explores graph
based visualization of OSS projects. We thus add another dimension towards
the comprehension of OSS projects by providing a graph based data representa-
tion and visualization. The principal argument here is that graph structures are
most suitable for analyzing data that exhibits inherent relationships. In this con-
text, the repository data produced by OSS projects exhibit strong relationships
among them due to common work space sharing and exchange of information.
For example, community members often share many technical competencies,
values, and beliefs over online discussion forums. Similarly, code artifacts have
interrelationships due to architectural dependency as well as due to contribu-
tions from multiple community members. Thus, OSS projects can be effectively
comprehended through graph based representation and visualization.

3 Graph Based Visualization

In this section we concentrate on the available methods and techniques exploited
in literature for graph based data representation and visualization. We also put
a discussion on pros and cons of such techniques.

Graph based data representation and visualization can be effectively utilized
when there exists inherent relations among data elements [3]. In such visualiza-
tion, one can generate any number of links (i.e., edges) between two data points
(i.e., nodes), and can easily traverse a given path through the data. This visual
experience can be enhanced further by using layout algorithms, navigation and
interaction methods, and incremental exploration mechanisms [3].

A significant amount of libraries, frameworks and toolkits are developed to
support such visualization. To mention a few, GraphEd [4],the Tom Sawyer

Binoculars: Comprehending Open Source Projects through graphs 3

Software Graph Editor Toolkit [5], Graphlet [6], JUNG [1] provide APIs with
different layout algorithms, customization, generic graphics and interprocess
communication to create task-specific tools. Libraries and frameworks like GTL,
LINK, GFC, GDT, and GVF provide support for both general and specific
purpose graph visualization [3]. Within open source domain, Graphviz [10] and
Zest [10] provides comprehensive set of APIs to support such visualization.
Although there is no widely used standard for graph description formats, GML
[7] and GraphXML [8] are available.

Despite of such benefits and supports for graph visualization, there are in-
herent shortcomings to such techniques. This includes, (a) difficulties in visual-
izing and comprehending large graphs. For example, a graph with thousands of
nodes would cause performance bottleneck of the platform used and decrease
the viewability (or usability) of such visualization significantly. In general, com-
prehension and detail analysis of data in graph structures is easiest when the
size of the displayed graph is small [3]; (b) efficiency of a graph layout algorithm
may be scale upto several hundred nodes, not beyond that; (c¢) time complex-
ity for visualization, interaction and update of a graph is relatively high and
increases with increase in graph size.

So far no single toolkit or framework mentioned above has proved to be suf-
ficient to cope with these problems. Thus design decision for implementing an
efficient graph visualization tool should ruminate the followings, (a) provide ap-
propriate level of data abstraction. This keeps the graph structure small enough
for effective comprehension and increase the efficiency of layout algorithms. To
explore the graph, incremental exploration mechanism should be implemented,
(b) time complexity of an algorithm should be measured accurately.

4 Binoculars: A graph based platform

This section describes the requirements to design and implement a graph based
visualization tool and presents Binoculars as a representative example. These
requirements are derived considering the characteristics of OSS projects and
the shortcomings of graph visualization techniques. The usability features of
Binoculars are also presented. Fig. 1 shows the main interface of Binoculars.

First requirement is to provide an architectural model supporting well de-
fined extension points for extending functionalities. As OSS analysis tools of
this kind operate on project data, thus a good starting point is to model a gen-
eralized and standard data representation. This forms the system kernel and
provides interfaces to build functionalities over it. The conceptual architecture
of Binoculars is shown in Fig.2. In Binoculars, we defined a data repository
structure to store both project and graph data (Fig.2), and use XML data
format for representation (Fig.3(a)). XML is chosen over others due to (a) its
inherent power of extensibility with new tags, (b) standard formating, and (c)
graph generation and manipulation seems flexible with XML.

4

M.M. Mahbubul Syeed

File

KA+ wm

e

{6] Graph rendering options

i - S . [4] Node list and. = _
|5 Peettiecien] = f = = | T devtodevcodesFpeg 22| [1] Tabular view of graph data connections for each node a7
FPMpeg:- dev to dev_bug Graph Edge List = - Node List Node Detail
@ Project 00000 [3] Sorted graph i‘ges with weight detail Edge Count: 157 Node Count: 119 A
g“”'yp‘“’ Source Destnstin dge Weight * || Weight Detsi | | Node Conngs) * |
FEM B [i L
8 L — fabrice bellard michael niedermayer 65 | aacadtsdecc || benjamin arsson 10 =
= ¥ | bbe anuradha suraparaju 10 ascadtsdech eter ross 8
@) devtodev bug s A [
B dev to user bug michael niedermayer alex beregezaczi 10 3ac_ac3_parser.c konstantin chishkov | & -
B devtofie fabrice belard alex beregszaszi 10 aac_ac3 parserh vitorsessak 6
B devtobug maxim poliakovski benjamin lasson 8 = || aac parserc alex converse 6 b
i e | i] v e v <0 i] « " '
fileto file inclusion f S S =T e =
E B e |5l sevtederceseiivess 2 [2] Graphical view of graph data (@7 E—(i
B usertobug - - Node Name. *
e i]
8] fileto e Intersecti - Single layer nearest neighbour [roine gustafsson |
a S S i polakorsi for the deveoloper node mikemelanson |
evto dev Intersection “konstantin” michae niedermayer | =
i ol |
konstantin shishkov |
onstantin shishkov] gl agi
fabrice bellerd
Project view, fabicebelerd bevjaminzores <
. <[
showing graphs
created for OSS [maaestmw |
project FFMpeg [e
Summary information of the displayed graph -
| <L \
Graph Options o —Graph Edge List J_
v
Search Node Source Node Destination Node Edge Weight [weight DaaT>
|
Node Count; 9 roine gustafsson konstantin shishkov 1 E
S touci |3 mike melanson konstantin shishkov 2 08 | e—— D
|

Fig. 1. User interface of Binoculars

Having modeled such a repository, the next step is to decide what data to
represent and how. For current implementation of Binoculars, we explored CVS
or SVN checkouts, bug reporting system and mailing list. To represent data we
adopt the following approach- first identified each entity within an OSS project
which plays a role (either active or passive). For example, a community member
(e.g., developer, user as active entities), and a code file, a single thread of mail
and bug report (as passive entities). Then we identified unique set of attributes
to describe each entity and provide values with the data mined from the sources
presented above. In XML each such attribute is presented as a tag. Fig.3(a)
shows an example of a code file representation.

package Datal [Broculars Archiecture |

’

v
Repository QueryGraph |
k--- |
Graph Repository | "project Repository |
| S |
|
™ Vses
N
)/ ! ~ wuse/ !
1 N / |
| |
|
|

72
’ 1 GraphView
= StatisticalView
(o l -

TabularView ‘Grﬂphlcalvlaw

Fig. 2. Conceptual architecture of Binoculars

Binoculars: Comprehending Open Source Projects through graphs 5

Third, a set of methods should be derived to transform repository data into
graphs. These methods and the graph data should be reusable in a sense that
one or more graph data can be reused by a method to generate new graphs.
In Binoculars, graph data are stored using XML representation (example, Fig.
3(b)). As the methods operates on XML tags, thus one interface works for all
repository data. As shown in Fig 2, CreateGraph module implements these
graph generation methods, which are discussed in [9)].

Fourth, provide a GUI support to visualize, render and manipulate graph
data. This GUI design for graph visualization is often constrained by the lim-
iting factors of the available visualization techniques discussed in section 3. To
cope with these issues we took the following measures. We provided a two-way
visualization of a graph, e.g., tabular and graphical (Fig.1 items 1,2). Tabular
view provides complete graph information consisting of (a) Graph with nodes
and (weighted) edges; (b) Node list with degree count for each node; (c¢) de-
scription of each node; (d) Summary data on graph; and (e) Options to render a
graph (Fig.1, item 3,4,5,6, respectively). Thus user can get complete graph data
with detail information in real time for large graphs with thousands of nodes.
Then, depending on the option selected for rendering a graph, a modified (or
abstracted) version of the graph (in tabular view) can be viewed in graphical
form. As shown in Fig.1 item 2, a single level nearest neighbor graph showing
the developers to whom developer “Konstantin” has direct communication in
FFMpeg project [10]. Hence the graphical view (Fig.1 item 2) always shows a
tailored version of the complete graph provided in tabular view (Fig.1 item 1),
thus minimizing the performance bottleneck of layout algorithms.

<codefile> A Code file entity
<f_name>aacadtsdec.c</f_name> Attributes and thier value for the
<extension>.c</extension> code file, presented as XML tags

<path>libavcodec/aacadtsdec.c</path>
<svn_path>C:\fimpeg-checkout-2010-09-28\libavcodec\aacadtsdec.c</svn_path>

<copyright>copyright (c) 2003 fabrice bellard</copyright>
<copyright_owner>copyright (c) 2003 fabrice bellard</copyright_owner>

<copyright>copyright (c) 2003 michael niedermayer</copyright> <edge> €———— graph edge
<copyright_owner>copyright (c) 2003 michael niedermayer</copyright_owner>

<source>michael niedermayer</source>
<contributor>fabrice bellard</contributor> <destination>fabrice bellard</destinatign>
<contributor>michael niedermayer</contributor> i

<weight>1</weight>~ Graph attributes
<includes>aac_ac3_parser.h</includes>
<includes>aacadtsdec.h</includes> <file>aacadtsdec.c</file>

</codefile> </edge>

(a) (b)

Fig. 3. (a) XML representation of a code file repository in FFMpeg project. (b) XML
presentation of a developers relationship graph generated from (a)

Other options for rendering a graph includes (Fig.1, item 6), customization
based on (a) given range of edge weights, (b) selected set of nodes or edges from
the original graph, (c) a given attribute value (e.g., gio-location= “america”).

6 M.M. Mahbubul Syeed

None-the-less, searching, sorting, zooming, and saving graph data in XML
format can also be performed. As in Fig. 2, rendering mechanisms are imple-
mented in QueryGraph and CustomizeGraph module, and the visualization are
handled by ProjectView, GraphView and StatisticalView modules.

Fifth, selection of platform and packages for implementation should be
steered by it’s easy extension and distribution. Our choice in this issue is to
release Binoculars as an OSS. Thus we utilized well established and maintained
OSS platforms and packages, e.g., Eclipse, Eclipse RCP, ZEST, DOM, and
JFreeChart. Reference to these platforms can be found here [10].

5 Discussion and Future work

In this paper we put a discussion on the requirements to model and implement
a graph based platform for comprehending OSS projects, and present the tool
Binoculars as a first step towards establishing such a platform. Our starting
point is the design of a repository to capture the essence of OSS projects and
then built tool functionalities over it to operate on repository data. We also
discuss the inadequacy of graph visualization techniques and distill possible
solution.

Future extension of this tool includes, (a) visualization on the evolution of
socio-technical aspects of OSS projects, (b) Incremental exploration mechanism
on the displayed graph, and (c¢) a formal language query support.

References

1. Souza C.R.B., Quirk S, Trainer E., Redmiles D.F. (2007) Supporting collabora-
tive software development through the visualization of socio-technical dependen-
cies. In: ACM SIGGROUP Conference on Supporting Group Work, pp.147-156.

2. Mockus A, Herbsleb J (2002) Expertise browser: A quantitative approach to
identifying expertise. In: ICSE, pp.503-512.

3. Herman I, Melancon G, Marshall MS (2000) Graph visualization and navigation
in information visualization: A survey. In: TVCG, IEEE, 6(1):24-43.

4. Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall.

5. Becker RA, Eick SG, Wilks AR (1995) Visualizing Network Data. In: TVCG,
IEEE 1(1):16-28.

6. Argawal PK, Aronov B, Pach J, Pollack R, Sharir M (1995) QuasiPlanar Graphs
Have a Linear Number of Edges. GD, SpringerVerlag, pp.1-7.

7. Himsolt M (1997) GML Graph Modelling Language. University of Passau.

8. Herman I, Marshall MS (1999) GraphXML. Reports of the Centre for Mathe-
matics and Computer Sciences.

9. Syeed M. M., Aaltonen T., Hammouda I., Syst T. (2011). Tool Assisted Analysis
of Open Source Projects: A Multi-Faceted Challenge. IJOSSP, 3(2): 43-78.

10. References (2012) http://rajit-cit.wix.com/syeed#!refrences
11. Binoculars Demo (2012) http://www.youtube.com/watch?v=cMoYq6J0pQE

