
A smart card based solution for user-centric
identity management

Jan Vossaert1, Pieter Verhaeghe2, Bart De Decker2, and Vincent Naessens1

1 Katholieke Hogeschool Sint-Lieven, Department of Industrial Engineering
Gebroeders Desmetstraat 1, 9000 Ghent, Belgium

firstname.lastname@kahosl.be
2 K.U.Leuven, Department of Computer Science, DistriNet,

Celestijnenlaan 200A, 3001 Heverlee, Belgium
firstname.lastname@cs.kuleuven.be

Abstract. This paper presents a prototype of a previously proposed
user-centric identity management system using trusted modules. The
trusted module, implemented using a smart card, can retrieve user at-
tributes from identity providers and offer them to service providers, after
authentication. This paper allows an evaluation of the practical feasibility
of the identity management architecture and provides insight in several
design decisions made during the prototype implementation. Also, the
cryptographic protocols implemented in the prototype are discussed.

Key words: user-centric identity management, privacy, security

1 Introduction

Many service providers want to control access to their services and critical
resources. To address accountability and support personalized services, many
services require the user to disclose personal information during a registration
phase. Existing federated identity management systems (FIMs) offer a straight-
forward solution, in which a trusted party manages and releases attributes of an
individual. Unfortunately, the privacy of a user is often neglected or not dealt
with appropriately. Growing concerns about the privacy of individuals require
new solutions that give an answer to these requirements. On the other hand,
electronic identity solutions are rolled out in many countries. Many approaches
are based on smart cards. An electronic identity card typically stores a set of
immutable attributes that can be released during authentication. However, elec-
tronic identity cards are combined with FIMs if mutable attributes are requested.
Moreover, the user has no or limited control over the attributes that are released.

This paper presents an implementation of a user-centric identity manage-
ment system based on trusted modules, presented in [15]. The prototype is im-
plemented using a TOP IM GX4 smart card as trusted module. The contribution
of this paper is threefold. First the paper allows for a evaluation of the practi-
cal feasibility of the proposed architecture. Second, this paper presents concrete
protocols that realize the security and privacy requirements stated in [15]. Third,

this paper provides insight in the important design decisions made during the
prototype implementation.

The rest of this paper is structured as follows. Section 2 discusses related
work. Section 3 recapitulates the general approach presented in [15]. Section 4
presents the roles, key infrastructure, requirements and notations. The major
protocols are discussed in section 5. Section 6 focuses on implementation de-
tails. A prototype evaluation is done in section 7. This paper ends with general
conclusions and points to future research.

2 Related Work

In the federated identity management model [6, 1], of which Shibboleth [9],
CardSpace [4] and OpenID [13] are common examples, a user is known to at
least one organization (i.e., the identity provider) in the federation (i.e., a group
of organizations with mutual trust agreements). If a user contacts a service
provider, authentication is delegated to the identity provider of the user. The
identity provider releases the personal data that are requested by the service
provider. Therefore, user impersonization by identity providers is inherent to
the FIM model. Moreover, attribute aggregation [7] is often not supported. Fur-
ther, many identity providers still use password based authentication since often
no infrastructure for strong authentication is available.

Several European countries are issuing governmental eID cards [10] to tackle
these shortcomings. However, many designs are not flexible as service providers
can only request attributes that are stored in the card itself. Attributes are
typically stored in the card during the whole card’s lifetime. This implies that
only immutable attributes can be stored in the card. Our approach aims at
eliminating the drawbacks of existing federated identity management systems
and current eID initiatives

Strong authentication is also realized by Jøsang and Pope [8] who present
a user-centric identity management model using a personal authentication de-
vice (PAD). Each service provider can store an authentication token on the
PAD of the user. Our work generalizes the PAD concept to a personal identi-
fication device with extended functionality (e.g., support for multiple identity
providers, deanonymization) and a concrete implementation is presented. A sim-
ilar approach is taken in PorKI [12] where users can delegate temporary proxy
credentials to workstations using their mobile devices.

Suriadi et al. [14] propose a user-centric federated single sign-on system based
on the private credential system proposed in Bangerter et al [2]. However, the
computationally expensive nature of the credential scheme limits the feasibility
in mobile solutions. Similar concerns apply to the identity management system
[5] proposed in the PRIME project. Moreover, this system is less flexible since
attributes are embedded in immutable credentials. Multiple credentials need to
be used if not all the requested attributes are contained in a single credential.

3 General Approach

This paper proposes an implementation of a privacy friendly user-centric feder-
ated identity management approach based on a trusted smart card. The smart
card is the mediator between identity providers and service providers. More
precisely, an identity provider can store some of the user’s personal attributes
(or properties thereof) in her smart card. Information that is endorsed by the
identity provider can then be disclosed to service providers. The latter use the
information to provide fine-grained access control and offer personalized services.

The smart card controls access to identity information. Before the user is
authenticated, the service provider first has to authenticate to the smart card
and prove that it is authorized to access certain personal attributes. The smart
card verifies the acceptability of the service provider’s information request. This
verification ensures that only information from identity providers is queried, for
which the identity providers (or their representative) gave their consent. The
authorization info is included in the certificate (or credential) of the service
provider. Additionally, the user may further restrict access to personal infor-
mation through a policy or an explicit consent. If the query is acceptable, the
smart card forwards this request to the identity provider(s) that can provide the
information.

4 Roles, Key Infrastructure, Requirements and Notation

Roles Nine different roles are distinguished in our solution. The user (U) is the
owner of a smart card (SC). The card is considered a trusted computing platform
by the different actors in the system. It means – amongst others – that the user
trusts that the card will never release more than the requested attributes (for
which the service provider has been authorized) and that the service provider
trusts the card to release genuine attributes. Further, the card also provides
a safe environment for storing private information such as keys (i.e., no data
can be directly extracted from the cards memory). A service provider (SP) can
implement attributed-based access control and/or offer customized services by
requiring user authentication with a valid smart card. An identity provider (IP)
manages user attributes that can be retrieved by identity cards during authenti-
cation with service providers. Deanonymization providers (DP) are responsible
for deanonymizing users in case of abuse. A provider (P) can either be an identity,
service or deanonymization provider. Certification authorities (CA) issue card
and server certificates. These certificates are used during mutual authentication
between card and provider. The card issuer (CI) issues identity cards to users.
The revalidation center (R)(re)validates or blocks cards at regular times. The
middleware (M) is a software layer that enables communication between card
and provider(s). The middleware also allows the user to monitor and influence
the authentication process (e.g., view the service provider authentication certifi-
cate, view and modify the attribute query, enter PIN). The card also stores an
internal private variable lastValTime which represents the time R last verified

the revocation status of the card (see section 5). This variable serves two goals.
First, it is used by the card during authentication with a provider for verifying
that the revocation status of the card was verified by R at a time after the last
accepted validation time posed by the provider. Second, since smart cards do
not have an embedded real-time clock, the lastValTime is used to verify the
validity period of certificates.

Key Infrastructure Each card holds a unique master secret, KU , that is used
to generate service specific pseudonyms. KU can either be user-specific or card-
specific. The former strategy allows individuals to reuse KU in multiple smart
cards (e.g., when the previous card is defect or lost). If KU is card-specific, it
would be useful to have a mechanism that allows proving a link between (old
and new) pseudonyms generated by two different cards of the same user. A
revalidation key pair (SKR, PKR) is used to set up a secure authenticated com-
munication channel between a smart card and the card revalidation authority.
PKR is stored in each smart card during initialization, the corresponding private
key is only known by the revalidation center. A common key pair (SKCo, PKCo)
is used by a large set of smart cards. PKCo is embedded in a certificate CertCo.
SKCo and CertCo are stored on the card during initialization. This allows the
identity, service and revalidation providers to verify that a genuine smart card is
used (without revealing unique identifiers). Each service provider, identity and
deanonymization provider has an asymmetric key pair (SKP, PKP). SKP and
CertP are used to authenticate to smart cards. SKP is certified by a CA, re-
sulting in CertP. Section 6 elaborates on additional data that is kept in CertP.
The public keys of (root) certification authorities in the system are placed on
the card during initialization. This allows smart cards to verify the validity of
certificates. A newly generated session key Ks is used to securely transmit data
between a card and providers.

Requirements The requirements to which the prototype system must satisfy
are listed below:

– Functional requirements:
• F1: Service providers can retrieve personal attributes either stored in the

identity card and/or managed by an identity provider.
• F2: Cards can be personalized (e.g., through privacy policies and prefer-

ences).
• F3: Adding new providers is straightforward.
• F4: Cards can be used online and offline.

– Security and privacy requirements:
• S1: Strong mutual authentication and secure communication between

users and providers (including revalidation authorities).
• S2: Controlled access to user attributes (i.e., based on rights/privileges

and personal preferences).
• P1: Service specific pseudonyms of a user are unlinkable (even by the card

issuer). These pseudonyms also encompass pseudonyms of users towards

deanonymization and identity providers. One service provider can offer
multiple services for which different pseudonyms are generated.

• P2: Support for conditional anonymity during authentication.
• P3: Support for anonymous subscriptions.

– Performance and scalability:
• O1: The prototype system should have straightforward and easy man-

agement functions.
• O2: Economic use of computationally expensive operations should result

in acceptable performance of the prototype system.

Notation During the protocol listings, authenticated encryption is assumed.
Authenticated encryption can be realized using several block cipher modes [11] or
by explicitly adding a MAC to the message [3] (requiring an extra integrity key).
If message integrity verification fails, an exception is thrown and retransmission
of the previous message is requested. Arrows (→ or←) represent the direction
of communication. We assume that during a protocol run, the same connection is
used. Dashed arrows (99K or L99) represent communication over an anonymous
channel. Variables of the card are shown in teletype font; if the variable is
underlined, it is stored in temporary memory.

5 Card Operations

This section discusses the most important operations performed by the card and
gives the cryptographic protocols implemented in the prototype to achieve the
security and privacy requirements.

Card Validation During card validation (Table 1), the lastValTime is up-
dated with the current time. Prior to updating, the revocation status of the card
is checked. This requires unique identification of the card. This is realized by
setting up an secure authenticated channel between the card revalidation cen-
ter and the card using CertR and CertCo. Over this channel, the card releases
its (unique) serial number which allows the revalidation authority to block the
card (if it has been reported lost or stolen) or update its lastValTime. The
lastValTime will be used during authentication with providers allowing them
to trust the card’s current revocation status without the card releasing any
uniquely identifying information. A location hiding communication channel can
be setup between the middleware and R in order to hide the whereabouts of the
card holder.
Mutual Authentication between Card and Providers During mutual
authentication (Table 2), the provider first authenticates to the card. This is
done using CertP and the public key of the CA stored on the card. Next, the
card authenticates to the provider using the common certificate CertCo and the
lastValTime. CertCo enables the verification of genuine smart cards (i.e., no
uniquely identifying information is released) and the card checks its revocation
status using lastValTime and a reference time from the service provider. Dur-
ing authentication, a session key is generated. This phase results in a secure

revalidateCard():

(1) M 99K R : "RevalidationRequest"

(2) SC← M L99 R : c := genRandom()
(3) SC : sig := sign(c , SKCo)
(4) SC : Ks := genRandom()
(5) SC : Ekey := asymEncrypt(Ks, PKR)
(6) SC : Emsg := symEncrypt([CertCo, sig, chip number], Ks)
(7) SC→ M 99K R : Emsg, Ekey

(8) R : Ks := asymDecrypt(Ekey, SKR)
(9) R : [CertCo, sig, chip number] := symDecrypt(Emsg, Ks)

(10) R : if (verifyCert(CertCo) == false) abort()
(11) R : if (verifySig(sig, c, PKCo) == false) abort()
(12) R : time := getCurrentTime()
(13) R : if (isValid(chip number) == false) time := -1
(14) SC← M L99 R : Etime := symEncrypt(time, Ks)
(15) SC : lastValTime := symDecrypt(Etime, Ks)

Table 1. The card is periodically revalidated by the revalidation center.

anonymous mutually authenticated communication channel3. Authentication of
the provider is realized by generating and encrypting a session key with PKP

on the card and sending it to the provider. All communication between card
and provider is now encrypted with the session key. Hereby, a cryptographic link
between the authentication of the provider and card is established. The authen-
tication of the card is then executed by signing a challenge from the provider on
the card using SKCo.
Release of User Attributes After mutual authentication, the card can disclose
the user’s attributes over the previously established secure channel. Attributes
that are not stored on the card can be retrieved by the card from identity
providers. This also requires authentication between card and identity provider.
The certificates of the service and identity provider restrict the attributes that
can be queried and provided respectively (see section 6). These restrictions are
enforced by the card. Attributes can also be a service specific pseudonym or
a deanonymization item (i.e., an encryption of an identifier of the user). The
first allows users to have persistent identifiers with a service without revealing
identifiers that can be linked to other services. This identifier is generated by
taking a cryptographic hash of KU with the identifier of the service provider
(obtained from the certificate). The deanonymization entry is realized by proba-
bilistically encrypting the concatenation of the service specific pseudonym of the
user towards the selected deanonymization provider, the lastValTime and the
conditions required for deanonymization with the key of the deanonymization au-
thority (i.e., {hash(KU || IDDP) || lastValTime || CertSP.deanonCond}PKDP).
A list of trusted deanonymization providers is contained in the service providers’
certificate.

Before users can use the services of a deanonymization provider, registration
is required. During registration the deanonymization authority requires users

3 We assume that several other requirements are met e.g., the identity set is sufficiently
large, an anonymous communication channel is used.

authenticate():

(1) SC ← M L99 P : CertP
(2) SC : if (verifyCert(CertP)==false) abort()
(3) SC : if (CertP.validEndTime < lastValTime) abort()
(4) SC : sesId := startNewSession();
(5) SC : session[sesId].maxRights := CertP.maxRights
(6) SC : session[sesId].Subject := CertP.Subject
(7) SC : Ks := genRandom()
(8) SC : session[sesId].Ks := Ks

(9) SC : c1 := genRandom()
(10) SC : session[sesId].chal := c1
(11) SC : Ekey := asymEncrypt(Ks, CertP.PK)
(12) SC : Emsg := symEncrypt(c1, Ks)
(13) SC → M 99K P : EKey, Emsg, sesId
(14) P : Ks := asymDecrypt(Ekey, SKP)
(15) P : c1 := symDecrypt(Emsg, Ks)
(16) P : c2 := genRandom()
(17) P : Eresp := symEncrypt([c1+1, accValTime, c2], Ks)
(18) SC ← M L99 P : sesId, Eresp

(19) SC : [resp, accValTime, c2] := symDecrypt(Eresp, session[sesId].Ks)
(20) SC : if (resp != session[sesId].chal+1) abort()
(21) SC : if (lastValTime < accValTime) abort()
(22) SC : session[sesId].auth = true
(23) SC : sig := sign(c2, SKCo)
(24) SC → M 99K P : Emsg := symEncrypt([CertCo, sig], session[sesId].Ks)
(25) P : [CertCo, sig] := symDecrypt(Emsg, Ks)
(26) P : if (verifyCert(CertCo) == false) abort()
(27) P : if (verifySig(sig, c2, CertCo.PK) == false) abort()

Table 2. Mutual authentication between provider and card.

to release some attributes and stores these in a database linked to the service
specific pseudonym of the user. The card stores the public key of the author-
ity together with the name and identifier. Once the deanonymization authority
receives a deanonymization item, it can decrypt it and, consequently, link it to
the unique identifiers stored in the database. Before revealing the identity of the
user, the conditions contained in the deanonymization item are verified.

Although the card itself does not foresee a secure interaction mechanism with
its holder, the query from the service provider can be displayed to the card holder
using the middleware. The attributes are only released after the user’s consent
(e.g., after entering a PIN code). The user can also choose not to release some
attributes requested by the service provider by removing them from the query.

6 Implementation Details

This section zooms in on several design decisions. The prototype is developed
using the Java Card 2.2.1 framework and is deployed on a TOP IM GX4 smart
card.

Certificates A hybrid certificate solution is used in the prototype. The card
uses standard X.509 certificates to authenticate towards providers; a provider
uses card verifiable certificates (CVCs) to authenticate towards a smart card.
This strategy ensures interoperability (i.e., providers do not need to install a
custom certificate verification module) while avoiding parsing complex certifi-
cate structures on the card. Each CVC contains standard information (issuer,
subject, role, validity interval etc.). Moreover, each CVC that is issued to an
identity provider contains an attributeList that lists the identifiers of attributes
it may supply, together with a level of assurance (LOA). Authoritative identity
providers typically guarantee a high level of assurance for many attributes. The
CVC used by the deanonymization and service providers also contains an at-
tributeList, which indicates the attributes that can be requested, together with
the minimal level of assurance. Moreover, a trustedIDPList restricts the set of
acceptable identity providers (or IDP groups) for the service. The card will only
release attribute values to that particular service provider that were fetched from
identity providers of the list (with an appropriate LOA). Note further that CVCs
have a short lifetime. This is necessary to ensure a short window of vulnerability
as revocation checks are not performed on the card. Each provider also has a
X.509 certificate with a long lifetime. The latter is used to authenticate towards
CAs that issue the CVCs.

Discovery of Identity Providers Each attribute in the system is represented
by an Attribute object. Each of them has a unique identifier. Some attribute
values are cached on the card. Other attribute values need to be fetched from
identity providers. Therefore, each card keeps a list of IdentityProvider objects.
They define the set of identity providers in which the owner has enrolled. Each
IdentityProvider object maintains references to a set of attribute objects. They
refer to the Attribute objects that can be retrieved from the respective provider.

When an attribute query is received, the query handler first looks for the
attribute value in the cache. The cached attributes that meet the prerequisites
(e.g., LOA, trusted identity provider) are selected. The remaining attributes are
fetched from identity providers. The handler selects a minimal set of acceptable
identity providers that can supply the remaining attributes, hence, ensuring that
only a minimal set of connections to identity providers is required.

Memory Management Smart cards have limited memory. The card used for
the prototype has around 70K bytes of available EEPROM. Moreover, the Java
Card virtual machine does not implement a garbage collector, nor is it possible
in Java to explicitly release memory. Therefore, all required memory should be
allocated at the beginning of the program and continously reused.

Caching attributes. A fixed set of byte arrays of variable length is allocated to
cache attribute values. These arrays are embedded in AttributeValue objects that
also keep context information such as retention time, LOA, time of last usage,
etc. For an optimal implementation, the distribution of the average length of
each type of attribute should be calculated. This caching strategy is straightfor-

ward while limiting fragmentation. When an attribute value is fetched from an
identity provider, it might be necessary to remove another attribute from the
cache. The following selection strategy is applied. First, a predefined number
of AttributeValue objects with the smallest memory footprint still large enough
to keep the new attribute value are selected. Consequently, the least recently
used attribute value is replaced. Persistent attributes (see section 6) are not
considered by the cache update policy.

Static memory configuration. Since all memory allocations occur when the applet
is deployed on the card, the attribute query length, the maximum number of sup-
ported identity providers and cached attributes . . . are fixed. Dynamically assign-
ing memory increases flexibility. However, replacement strategies become more
complex. Therefore, in the prototype, memory is configured statically. Hereby,
the initializer can define the amount of memory assigned to the different parts
of the program when installing the applet. For instance, the initializer can opt
for allocating only a limited amount of memory for identity providers while in-
creasing the attribute cache.

Personalized Policies The policy engine on the card enforces the policies of
the service and identity providers. The policies are specified in the CVCs (cfr.
...List). The user can further restrict the access policy (i.e., he can update his
policy using his PIN code). First, the user can select the attributes that will
be cached on the card until their retention time has expired. Those attributes
are marked as persistent. Moreover, the user can assign a trust level to service
providers: untrusted, default and trusted. Requests from untrusted service
providers are blocked. In the default policy, user confirmation is required before
the attributes are released. If a service provider is trusted, the user is no longer
involved in the attribute(s) disclosure. The query, however, is still verified using
the privileges listed in the CVC. Moreover, the user can also mark an Attribute as
sensitive. If so, user consent (i.e., PIN code) is always required if that attribute
needs to be released. The card issuer determines a set of trusted CAs of which
the public key is stored in the card during initialization. However, users can
further restrict the list of trusted CAs by deactivating keys of untrusted CAs.
Although the user cannot further expand this list of trusted CAs, previously
deactivated keys can be reactivated. Analogously, keys from deanonymization
providers can be deactivated (or even removed which allows registration with a
new deanonymization organization if no empty slots were available) and reacti-
vated.

Anonymous Subscriptions For some applications, e.g., news sites, entrance
control in buildings,. . . , it is not necessary for a user to disclose a persistent
identifier. For instance, news sites only need to verify whether the user has a
subscription that allows him to view the requested content. To support this, a
Subscription object is initialized during enrollment of the user with the service
provider. The Subscription object contains the id of the service provider, a valid-
ity period and a type. The type allows the service provider to verify whether the

requested service (or content) is included in the subscription of the user. The
validity period allows the service provider to specify subscriptions that expire
after a specified time. Note that the actual validity period does not have to be
released but can be verified by the card using a time provided by the service
provider. The type field constraint can also be verified by the card but is less
critical if released since typically only a limited number of subscription types
are available. A pseudonym that allows the user to retain his subscription when
re-enrolling with a new card (e.g., when the previous card was lost or expired)
could be released during enrollment.

Cryptographic Parameters To realize the cryptographic functions defined
in section 4 the cryptographic capabilities of the smart card are used. Since
RSA is the only asymmetric cryptosystem available on the card, RSA keys are
used for all the asymmetric keys in the system. Key lengths of 1024 bit were
chosen to achieve good performance, section 7 discusses the performance im-
pact of other key lengths and the potential use of other ciphers. For signing,
a SHA-1 digest is encrypted using PKCS #1 padding. Asymmetric encryption
uses OAEP padding and can, hence, also be used to realize the probabilistic
encryption required for deanonymization.

For authenticated encryption, 128 bit AES keys are used to achieve confi-
dentiality and a MAC is generated by encryption a SHA-1 digest with a 128 bit
AES integrity key. The 256 bit session key Ks is divided in two parts to obtain
the integrity and confidentiality key.

Random number generation is realized using the on-board random number
generator of the chip.

7 Evaluation

Functionality Analysis The proposed solution combines the benefits of smart
cards and federated identity management systems. The card is a trusted mod-
ule to all players in the system. Common secrets allow providers to establish
authenticated sessions with the card. Over these channels, service providers can
send attribute queries which are fulfilled by the card. Possibly, the requested
attributes are retrieved from identity providers that are trusted by the service
providers (cfr. F1).

Although certificates of service providers already restrict the type of at-
tributes that can be queried, the user can be even more restrictive by restricting
the attribute query. Further, users can mark attributes as sensitive, assign trust
levels to providers, influence caching policy, etc. Hence, extensive personalization
functions are available (cfr. F2).

Adding new providers only requires them to retrieve an authentication certifi-
cate from a CA. This requires them to have an audit done that determines what
attributes they can request or supply. Service providers also require permissions
from identity providers (or groups of) for requesting attributes they provide.
Hence, adding new providers introduces some overhead for the respective in-

stance and the certification authority. However, it is a clearly defined procedure
transparent for the users and the majority of providers (cfr. F3).

The caching policy maintains a set of attributes stored on the card. These
cached attributes can also be used in offline settings. Hence, apart from au-
thentication and identification also attributes queries are supported in offline
environments if the required attributes are cached on the card (cfr. F4).

Security and Privacy Analysis Reference protocols for realizing secure au-
thenticated sessions between card and providers using the proposed key infras-
tructure are given in the section above. Providers are assured that the card was
not revoked before a certain date/time (i.e., accValTime< lastValTime). If re-
quired, the card will execute the card revalidation protocol before proceeding
with the authentication. Revocation of the CVCs of providers is not supported,
however, as they are short-lived potential abuse is limited. Hence, S1 is satisfied.

When a common key is compromised, the set of cards on which the keys are
stored should be revoked. This can be done using certificate revocation lists or
OCSP responders. The CRL will typically contain little entries since smart cards
are designed with countermeasures against attempts to extract secret informa-
tion. When a card is lost or stolen, this should be reported with the revalidation
center, who will block the respective card. Hence, these cards should not be added
to the CRL. However, stolen cards can be misused during a service specific time
interval (i.e., accValTime< lastValTime) if the PIN is compromised.

A potential misuse of the revocation strategy is that providers require real-
time revocation checks of the card (i.e., accValTime= currentTime) while this
might not be necessary for the requested service. This decreases performance of
the card as revalidation is required for each authentication. The CRLs, currently
used for revocation checks, are also typically only periodically updated. This may
also lead to timing attacks (i.e., linking a profile of a provider to the card number
released to the revalidation center) if revalidation center and provider collude.

The public key of the revalidation center stored on the card can be updated
by the revalidation center itself. After establishing a secure session with the card,
the new certificate can be sent to the card. It will verify that the certificate was
issued to the revalidation authority, that the old validity interval precedes the
new and the validity of the signature (using the CA public key stored on the
card). The revalidation authority can also deactivate keys of CAs that are no
longer trusted over the secure channel. Other keys stored on the card cannot be
updated or deactivated by the revalidation center.

Access to user attributes is controlled on three levels. First, an audit orga-
nization determines the set of user attributes relevant for the offered services.
Second, identity providers control the set of service providers that can acquire
attributes they provide. These restrictions are embedded in the service provider
certificate and, hence, can be verified by the card. Third, users can implement
policies or determine at runtime which attributes are released. Hence, extensive
control over the release of attributes is enforced (cfr. S2). The card is the policy
enforcement point and should, hence, be trusted by both the user and providers.

After authentication, users can release service specific pseudonyms which are
unique pseudonyms which providers nor card issuer can link (cfr. P1).

Certain services may allow users to remain anonymous but require support
for deanonymisation when abuse is detected. As mentioned in section 5, providers
can request a probabilistic encryption of an identifier of the user using the at-
tribute query. Hence, these providers can cooperate with the deanonymization
service to identify users in case of abuse (cfr. P2). The user can select supported
(and hence trusted) deanonymization authorities by registering with the respec-
tive authorities. Further, the certification authorities should employ rigorous
security requirements for the deanonymization authorities. This provides suit-
able security for the users and limits the number of deanonymization authorities.
Further, different authorities could provide different levels of deanonymization,
depending on the attributes that were released during registration.

During authentication, no unique identifiers are released. Hence, users can
use the subscription functionality of the card to request access to content which
does not necessarily requires identification (cfr. P3).

Although a user can theoretically remain anonymous, note that the anonymity
set for a user largely depends on the size of the set of identity cards with an
identical private key and the frequency with which these cards are used. For in-
stance in the case of subscriptions, if the anonymity set is too small and only one
user with common certificate x has a certain subscription he is linkable. Hence,
when determining the size of the set of identity cards with identical keys one
has to consider both the impact of key revocation and potential linkable profiles.

Performance and Scalability Analysis Each party in the system has one
or more clearly defined responsibilities. Further, the revocation strategy allows
offline services without requiring manual updates of CRL on these devices. Card
validation can be triggered by users, but if required, can be executed transpar-
ently. Hence O1 is satisfied.

The rest of this section focuses on performance results. For the prototype
implementation mutual authentication between card and provider takes, on av-
erage, 1040 ms. The influence of the communication delays between card, work-
station and server are minimized by running the test applications locally. Pro-
cessing the attribute queries takes around 180 ms for attribute sets of around
100 bytes. Hence, when all necessary attributes are cached on the card, the total
required authentication time is around 1220 ms. For each identity provider that
needs to be contacted, another 1220 ms is added to the required time. The card
revalidation operation requires around 900 ms.

Table 3 lists the number of cryptographic operations required during each
step. In Table 4 reference performance numbers for cryptographic operations
on the prototype smart card are given. These tables illustrate that the asym-
metric cryptographic operations are the major performance bottleneck. During
authentication, the card performs one private and two public key operations.
These operations alone, require around 615 ms, which is more than half of the
total authentication time. However, the caching policy and the identity provider

selector minimize the number of identity providers required for satisfying the
query (cfr. O2). Further, replacing RSA with a more efficient algorithm pro-
vides an opportunity for significantly improving the performance of the entire
system. For instance, elliptic curve cryptography (ECC) could be used to re-
place the private key operation on the card which could significantly increase
performance, especially for increasing key lengths. The smart card used for the
prototype, however, does not yet support ECC, hence, no concrete results can be
given. Moreover, during a normal authentication procedure the card and service
provider first mutually authenticate. Then user interaction is required (entering
PIN, modifying – if necessary – the attribute query), after which the card re-
trieves the attributes from the identity providers and sends them to the service
provider. The user interaction divides the waiting time in two smaller pieces and,
hence, improves the perceived experience.

The instantiated applet on the card requires around 17000 bytes of memory.
This includes temporary memory to store session data but excludes memory
required for storing setting dependant information (e.g., cached attributes, reg-
istered identity providers, deanonymization authorities). However, as around 70k
bytes of memory are available on the prototype smart card, sufficient memory
is left to support large numbers of identity providers, cached attributes. . .

Card revalidation Mutual authentication Attribute exchange
Card Reval. Serv. Card Provider Card Provider

Verify/asymEnc 1 2 2 2 0 0
Sign/asymDec 1 1 1 1 0 0
Sym. Enc/Dec 2 2 4 4 2 2

Table 3. Number of cryptographic operations during the different stages of identifica-
tion.

RSA AES
Key length in bits 1024 2048 128 192 256

µ σ µ σ µ σ µ σ µ σ

Verification 32,00 2,85 72,10 1,02 - - - - - -
Signing 555,33 2,62 2318 1,64 - - - - - -
Encryption 31,00 3,00 70,10 0,99 31,20 0,40 31,20 0,40 31,21 0,41
Decryption 554,48 3,52 2316 1,42 36,93 1,85 41,9 4,57 44,78 4,03

Table 4. Average (µ) timing results and standard deviation (σ) of 1000 runs of cryp-
tographic operations on the TOP IM GX4 smart card. Tests are done with 128 byte
input data, results in ms.

8 Conclusion

This paper presents an implementation and evaluation of a smart card based so-
lution for user-centric identity management [15]. Several implementation details
are given and an evaluation is performed, illustrating the practical feasibility
of the system. Further research is currently being conducted in two directions.
First, the security of the system could be improved by using group signature for

authenticating cards to providers. If the secret keys in one smart card are stolen,
it suffices to revoke only that card. Also, support for signed attributes could give
a stronger level of assurance which might be required for some services. Second,
the usability could be improved by replacing RSA with a more efficient algorithm.
The architecture is also being ported to mobile phones with secure elements. To
validate the choices made during implementation (e.g., caching policy, selection
of identity providers) several realistic use-cases are being implemented.

References

1. Gail-Joon Ahn and Moonam Ko. User-centric privacy management for federated
identity management. In COLCOM ’07: Proceedings of the 2007 International
Conference on Collaborative Computing: Networking, Applications and Workshar-
ing, pages 187–195, Washington, DC, USA, 2007. IEEE Computer Society.

2. Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A cryptographic frame-
work for the controlled release of certified data. In Security Protocols Workshop,
pages 20–42, 2004.

3. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions andanalysis of the generic composition paradigm. Journal of Cryp-
tology, 21:469–491, 2008.

4. Vittorio Bertocci, Garrett Serack, and Caleb Baker. Understanding windows
cardspace: an introduction to the concepts and challenges of digital identities.
Addison-Wesley Professional, 2007.

5. Jan Camenisch, abhi shelat, Dieter Sommer, Simone Fischer-Hübner, Marit
Hansen, Henry Krasemann, Gérard Lacoste, Ronald Leenes, and Jimmy Tseng.
Privacy and identity management for everyone. In DIM ’05: Proceedings of the
2005 workshop on Digital identity management, pages 20–27. ACM, 2005.

6. David W. Chadwick. Federated identity management. In FOSAD, 2008.
7. David W. Chadwick, George Inman, and Nate Klingenstein. A conceptual model

for attribute aggregation. Future Generation Computer Systems, 26(7), 2010.
8. Audun Jøsang and Simon Pope. User centric identity management. In Asia Pacific

Information Technology Security Conference, AusCERT2005, Australia, 2005.
9. R. L. Morgan, Scott Cantor, Steven Carmody, Walter Hoehn, and Ken Klingen-

stein. Federated security : The shibboleth approach. EDUCAUSE Quarterly, 2004.
10. Ingo Naumann and Giles Hogben. Privacy features of european eid card specifica-

tions. Technical report, ENISA, 2009.
11. NIST. Block cipher modes. http://csrc.nist.gov/groups/ST/toolkit/BCM/

current_modes.html.
12. Massimiliano Pala, Sara Sinclair, and Sean Smith. Portable credentials via proxy

certificates in web environments. In Public Key Infrastructures, Services and Ap-
plications, Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2011.

13. David Recordon and Drummond Reed. OpenID 2.0: a platform for user-centric
identity management. In DIM ’06: Proceedings of the second ACM workshop on
Digital identity management, pages 11–16, New York, NY, USA, 2006. ACM.

14. Suriadi Suriadi, Ernest Foo, and Audun Jøsang. A user-centric federated single
sign-on system. Journal of Network and Computer Applications, 32, 2009.

15. Jan Vossaert, Jorn Lapon, Bart De Decker, and Vincent Naessens. User-centric
identity management using trusted modules. In Public Key Infrastructures, Ser-
vices and Applications, Lecture Notes in Computer Science. Springer Berlin / Hei-
delberg, 2011.

