
P2P Social Networks With Broadcast
Encryption Protected Privacy

Oleksandr Bodriagov, Sonja Buchegger

School of Computer Science and Communication
KTH - The Royal Institute of Technology

Stockholm, Sweden
obo@kth.se buc@csc.kth.se

Abstract. Users of centralized online social networks (OSN) do not
have full control over their data. The OSN provider can collect and mine
user data and intentionally or accidentally leak it to third parties. Peer-
to-peer (P2P) social networks address this problem by getting rid of
the central provider and giving control to the users. However, existing
proposals of P2P social networks have many drawbacks: reliance on trust,
expensive anonymization or encryption techniques, etc.
We propose to use broadcast encryption for data protection because of its
efficiency and ability to not disclose information about who can decrypt
what. We present an architecture of a P2P social network that uses a
composition of public-key cryptography, broadcast encryption, and sym-
metric cryptography. The architecture provides confidentiality and lim-
ited integrity protection. It defines privacy-preserving profiles that allow
users to quickly find data encrypted for them while preventing attackers
from learning who can access which data.

Keywords: P2P Social Network, Provider-independent, Encryption-based
access control, Broadcast Encryption

1 Introduction

Existing centralized, provider-dependent networks do not provide users with
mechanisms to fully protect their data. The provider has complete control of the
service, and users have to rely on security mechanisms provided by the service.
There is no guarantee that the trusted provider will enforce the privacy prefer-
ences of the users. Besides, there can be data mining, targeted advertisements,
and even disclosure of users data to third parties.

Our aim is to give full control of the data to the users in order to prevent any
misuse by third parties. While laws provide an important deterrent, relying on
legal protection (or, alternatively on trust relationships) is not enough to prevent
a determined misbehaving third party or social networking service provider from
getting access to the data and using it in some way. Laws and regulations give
incentives for appropriate treatment of personal data in terms of a potential post
factum punishment to follow the rules. Cryptographic mechanisms, on the other

hand, can prevent unwanted access to data in the first place by technical means.
Therefore, the PeerSoN project1 was started to design a peer-to-peer (P2P)
provider-independent architecture with cryptographically protected privacy.

One of the main problems of P2P social network architectures is to achieve
secure, efficient, 24/7 access control enforcement and data storage. None of the
current P2P architectures for social networks manages to fully cope with this
problem. For example, Safebook [1] relies on trusted peers for data storage and
profile data retrieval, and uses an expensive anonymization technique based on
asymmetric cryptography; Diaspora [2] has quite high expectations on the users’
willingness to run their own servers or have their data served and stored on
servers of other users (a fully P2P variant of Diaspora requires users to run and
manage their own servers); Persona [3] relies on a ciphertext-policy attribute-
based encryption (CP-ABE), and current ABE schemes are very computationally
intensive and produce ciphertexts that are linear in the number of attributes (too
expensive for the P2P storage). Besides, CP-ABE schemes by definition support
only open access structures, which can be considered as a security flaw since it
is easy to infer who can decrypt what using that information.

In complex systems such as social networks, with many subjects and ob-
jects, with fine-grained access control (with objects encrypted differently and
separately), the efficiency of encryption/decryption schemes is very important
as usability depends on it. To achieve an efficient encryption-based access con-
trol with high performance encryption and decryption regardless of the number
of identities/groups we use broadcast encryption (BE) schemes. The storage is
assumed to be a P2P untrusted storage with multiple replicas, so that data is
stored on a profile owner’s computer/mobile phone (primary copy) and on cho-
sen peers (replicas). The data is encrypted and everyone can download it, i.e.
access control is encryption based. Even if the content is encrypted, there are
consequent privacy implications of inferences from traffic analysis such as access
patterns or properties of the stored files. Therefore, the architecture includes
mechanisms to mitigate this threat.

Both the encrypted data and the broadcast encryption private keys for de-
crypting the data are stored at the profile owner’s storage. These private keys
are encrypted under public keys of intended recipients. Besides encrypted data
and the BE keys, there is also public information (unencrypted) that allows oth-
ers to find a user’s profile. Broadcast encryption is used for data dissemination
to groups and public key cryptography is used for user-to-user messaging. A
multicast messaging (one message for several users) is realized via BE.

The rest of the paper is organized as follows. At first we explain the broadcast
encryption, then we describe which changes we made to the chosen BE scheme
and how it works. We continue by describing the architecture of the system in
more detail. Then we discuss the security issues and define an attacker model.
We finish by drawing the conclusions.

1 http://www.peerson.net/

2 Broadcast encryption

Broadcast encryption (BE) schemes are used to distribute encrypted data to
a dynamic set of users in a cost-effective way. In general, BE scheme consists
of a sender and a group of recipients. Each recipient has his/her own private
decryption key to decrypt encrypted data sent by the sender.

BE schemes can either be symmetric or public key based. In the first case,
only a trusted source/broadcaster of the system that generated all the private
keys can broadcast data to receivers. If the system is public key based, then
anyone who knows a public key of the system can broadcast.

The efficiency of BE schemes is measured in terms of transmission cost, user
storage cost, and computational cost. Besides efficiency, one of the main require-
ments for BE schemes is that it should be easy to revoke a key/group of keys.
Other important security concepts are collusion resistance and statelessness. A
fully collusion-resistant scheme is robust against collusion of any number of re-
voked users. A BE scheme is said to be stateless if after revocation of some
subset of users the remaining users do not have to update their initial private
keys. A BE is called dynamic [4] if new users can join without a need to modify
existing users’ decryption keys, if the ciphertext size and the system’s initial key
setup do not depend on the number of users, if the group public key should be
incrementally updated with complexity at most O(1).

Suitable candidates for application to a social network scenario are BE schemes
with the following properties: stateless, fully collision resistant, with hidden set
of receivers, dynamic, with constant size ciphertexts and keys, with computa-
tionally efficient decryption.

We use a dynamic identity-based broadcast encryption (DIBBE) scheme that
meets all these requirements [5]. Although identity-based schemes involve a third-
party authority - a Private Key Generator (PKG), this role is given to the profile
owner when adjusting this IBBE scheme for the social network scenario. Thus,
the profile owner is responsible for creating a group of receivers and assigning
private BE keys to receivers. The IBBE scheme is formaly defined as a tuple of
algorithms IBBE = (Setup, Extract, Encrypt, Decrypt) [6]. Although the DIBBE
scheme defined in [5] has the same structure, there are some differences in the
algorithms’ input parameters that reflect a dynamic nature of the scheme. The
algorithms of the used DIBBE scheme have the following form:

Setup(λ)→ (MK, GPK): This algorithm takes as input a security parameter
λ and constructs a secret master key MK, a group public key GPK.

Extract(MK, Id)→ SkId: A user’s private key SkId is generated by this al-
gorithm that takes as input a user Id and a secret master key MK known only
to the profile owner.

Encrypt(S, MK, GPK)→ (Header,K): The used scheme is constructed as a
Key Encapsulation Mechanism (KEM) which means that the encryption algo-
rithm Encrypt takes as input the set of receivers S, the master key MK, and the
group public key GPK and outputs a pair (Header,K), where K is a symmetric
secret key to encrypt data and Header is an encryption of this symmetric key for
the set of receivers S. Data is stored in the form (Header, encrypted data), and

Header reveals no information about the set of receivers or any other parameters.
Only a user whose ID is in the set can decrypt the Header using his/her private
key. Users that are not members of the group cannot encrypt to the group even
if they know GPK, because the master key MK is required for the encryption
process.

Decrypt(Id, GPK, SkId, Header)→ K: The Decrypt algorithm takes GPK,
Header, the private key, and the user Id as input and outputs a symmetric key
K.

Revocation of users from a group is a simple though computationally inten-
sive operation. Revocation of the group membership for stateless BE schemes
does not require re-keying for other group members, only re-encryption of the
data with a new symmetric key and consequent regeneration of Headers for the
new set of receivers. Addition of a user to a group in dynamic schemes requires
re-encryption of Headers for the new set of receivers in addition to creating a
private key for a new user.

3 Architecture: privacy preserving profiles

All objects in the profile that are not public are encrypted using a symmet-
ric cipher and stored without any kind of header. The links that lead to these
objects are encrypted using the broadcast encryption and stored in the form
(Header, encrypted link). To access the data the user has to decrypt the Header
and get the symmetric key, use this key to decrypt the link, follow the link, and
decrypt the data using the same key. The Header contains an implicit access
control list (ACL) with identities of those who can decrypt it, and a user cannot
know whether he/she can decrypt the object without trying. Therefore, for per-
formance reasons users should be able to determine whether they can decrypt
particular object without actually trying to decrypt it. At the same time, one
of the aspects of privacy is to prevent other users from learning who can access
which objects. Therefore, in the proposed architecture explicit ACLs are not
stored alongside encrypted objects. Instead the privacy preserving profile con-
tains for each of the contacts a folder with values that represent the BE groups
in which that contact is a member and, possibly, links to encrypted objects that
can be decrypted by that contact.

The links folder is encrypted under a shared symmetric key known only to
the user and the profile owner. The links folders have random identifiers in order
to prevent anyone from seeing all profile owner’s connections. Any two users
that want to form a connection should explicitly state to each other an identifier
for the proper links folder during connection establishment. Identifiers of the
links folders should be changed on the regular basis. The new identifier can be
securely communicated to the contact in multiple ways. To hide the total number
of contacts from other users, a profile contains a set of dummy links folders that
are also updated from time to time. A padding should be used to make dummy
folders indistinguishable from the real. To hide a real number of objects in the

profile dummy objects are created and updated on the regular basis. Thus, no
user can calculate which percentage of objects he/she can access.

Figure 1 depicts the described user profile. The records that have the same
colour of the key are encrypted under the same encryption key. The storage
stores all profile data.

Fig. 1. System architecture: user profile

The privacy preserving profile consists of special purpose folders Incoming,
Notifications and general purpose folders for posting (e.g. wall) to which other
users can only add messages, comments folder, links folders for the contacts,
and other folders that cannot be modified by other users. The comments folder
contains subfolders with comments for each of the objects with allowed com-
menting.

The general purpose folder contains a list of BE encrypted links. These links
are encrypted for different sets of receivers and their Headers contain values
that represent the BE groups (the set of receivers) that can decrypt these links.

Users that can decrypt the links can get access to the data. Along with a link to
the object itself, there can be another link that leads to a comments folder for
this object. So, if the user decrypts the links file and finds also the comments
link, then he/she can create comments in that comments folder using the same
symmetric key obtained after decrypting the Header.

4 Architecture: operations

The properties of the encryption function of the used BE scheme make it more
efficient to encrypt a message for one big group of users than for several small.
Therefore, all contacts should be put into one BE group. Since there is only
one broadcast group per profile, each contact receives one private BE key. The
profile owner creates also one public-private key pair for the group and gives
each user the private key for authenticating to replica holders. Replica holders
are assumed to know the public key of the public-private key pair for the group
and also the public key of the profile owner.

The division of users into security groups is abstract: each abstract security
group corresponds to some set of receivers S that can be easily modified dur-
ing encryption. This flexibility allows us to create as many groups as required
without affecting efficiency or manageability. Besides, only one parameter in the
Header depends on the set of receivers, and it is always the same for the same
set of receivers. Thus it can be cached to increase encryption speed. This param-
eter is put into links folders of the security group members. It is used to search
general purpose folders for decryptable items.

The profile owner is the only entity that determines the access rights to the
encrypted links and, consequently, objects. The other users when they want to
post something in some general purpose folder should decrypt the symmetric key
used for making posts in that folder. Access rights are defined when the profile
owner BE encrypts this key for a particular set of receivers.

The profile owner’s computer/mobile phone has an overlay security system
for the local profile that reduces complexity of rights management using abstract
groups instead of a list of identities. This local profile can store ACLs with
abstract groups and separate IDs alongside with objects. The overlay security
system is responsible for authentication and authorization of users in case of
direct end-to-end communication.

The architecture contains the following operations:
Establish connection: A user creates a new links folder and runs a Extract

algorithm to generate a BE private key for the new connection. The BE key, as
well as the private key for the group, is encrypted under the public key of the
new connection and is put in the newly created links folder. Then the two users
exchange links folder identifiers and symmetric keys to decrypt these folders. All
communication in this phase goes through the encrypted channel.

Add to a group: A user adds the ID of the new connection to a list of
identities of some abstract security group and recalculates a value that depends
on the set of identities in the Header. Then the profile owner adds this value to

the links folder of the new member and updates this value for all other members
of the group.

Publish data(by the profile owner): The owner defines a set of contacts
who will have access to the published data. Then he/she runs the broadcast en-
cryption algorithm Encrypt that outputs a symmetric key to encrypt the link to
the data and the data, and the Header (encryption of this key for the defined set
of contacts). The profile owner encrypts the data with the generated symmetric
key and stores it in the folder for encrypted objects, the link is also encrypted
and stored along with the Header in some general purpose folder (e.g. Wall).
Before going off-line the profile owner should synchronize all the changes with
replicas.

Publish data(by a contact): If the profile owner’s computer/mobile phone
is online, then a contact communicates directly with the overlay security system
of the profile owner via protected channel. If the security system determines
that the contact has rights to publish data, it accepts the data, stores it on
the local storage, and starts information update mechanism with peers. In case
the profile owner is off-line, the steps are as follows. General purpose folders
like Wall contain BE encrypted links and BE encrypted symmetric keys for
posting in those folders. The encryption of the links in the general purpose folder
determines who can read/comment on data. When the user who has rights to
access the general purpose folder wants to add some message, he/she creates a
new message and encrypts it with the symmetric key that is used for this folder,
uploads this message to the Incoming folder of the profile, encrypts a link to the
newly created message with the folder’s symmetric key, signs it using the group
private key, and adds this encrypted link to the general purpose folder. Then
he adds an encrypted notification which informs the profile owner about the
new message to the Notifications folder. The replicas are supposed to keep the
integrity of the special purpose folders Incoming and Notifications, and general
purpose folders by allowing only additions. Any message sent to replicas by
any user except the owner should be signed by the group private key and the
signature should be checked by the replica.

Comment(by a contact): If the profile owner’s computer/mobile phone
is online, then a contact communicates directly with the overlay security system
of the profile owner via protected channel. If the security system determines
that the contact has rights to comment on a particular object, it accepts the
comment, stores it on the local storage, and starts information update mecha-
nism with peers. In case the profile owner is off-line, the steps are as follows.
General purpose folders like wall contain BE encrypted links and BE encrypted
symmetric keys for posting in those folders. The encryption of the links in the
general purpose folder determines who can read/comment on data. When the
user who has rights to comment to some object wants to add a comment, he/she
creates a new comment and encrypts it with the symmetric key that is used to
encrypt the object and the link to the object, follows the link to the folder where
the comments for this object are stored, signs the comment using the group pri-
vate key, and uploads this comment to the comments folder of this object. Then

he/she adds an encrypted notification which informs the profile owner about the
new comment to the Notifications folder. The replicas are supposed to keep the
integrity of the comments folders by allowing only additions. Any message sent
to replicas by any user except the owner should be signed by the group private
key and the signature should be checked by the replica.

Send notification: Notifications are sent for messages published by the
sender on the receivers profile and for the information published on the sender’s
profile. Notifications are encrypted under the public key of the receiver and
signed with the group private key and uploaded to the Notifications folder of
the receiver’s profile if the receiver is off-line. When the receiver is on-line, the
notification is sent directly to the receiver.

A contact can send the profile owner a notification asking to delete that
user’s post/comment. Only the profile owner should be able to do it, replicas are
supposed to protect integrity of the profile from everyone else by allowing only
additions.

5 Security considerations

The owner’s local computer stores the primary copy of the profile and replica
holders store only copies with limited modification possibility. Replica holders
are assumed to enforce an “only addition” policy for the special purpose folders
Incoming and Notifications and the general purpose folders, and the “no mod-
ification” policy for the rest of the folders for any user other than the owner.
A user (other than the owner) can upload encrypted links to the general pur-
pose folders (comments to the comments folder) and add messages to the special
purpose folder only if they contain correct group signatures. The group signa-
ture check does not reveal any identities and protects from resource exhaustion
attacks from external entities. Even if the general purpose folder is modified in
some way by a malicious user, it can be easily recovered via notifications.

The profile owner keeps the primary copy of the profile and synchronizes it
with replicas. We assume that any peer that takes part in the social network
can be a replica. Communication between the profile owner and replicas goes
through a protected channel. The channel is encrypted and authenticated using
public-key authentication schemes.

We define a capability-based model of an attacker for the system as following.
The attacker is an active entity, external to the system (does not receive any
keys from the profile owner), that can direct attacks against the replica stor-
age, the local computer/mobile phone of the profile owner and the computers
of profile owner’s friends. The attacker cannot perform computationally infea-
sible calculations in the reasonable time. The attacker can sniff and tamper all
communication channels and send arbitrary messages to all participants.

If the attacker can compromise the primary copy of the profile (e.g. by break-
ing the security of the operating system or the overlay security system), then
the attacker has full control of this profile. It is plausible that in case of such
an attack the attacker learns private keys given by other profile owners to the

compromised owner. Then the attacker would be able to completely imperson-
ate the user, read data intended for this profile owner from the profiles of other
users, and would be able to exhaust replica’s resources. If replicas keep integrity
of the folders, the attacker will not be able to delete or modify old messages.

Secret keys used in encryption are prone to ageing. Re-encryption of data
with a new underlying symmetric key is a relatively straightforward operation,
but may be time consuming for big amounts of data. If each new encrypted file is
encrypted with a separate symmetric key, then symmetric keys do not age. When
a user publishes data on someone’s else wall, he has to decrypt the symmetric
key used for making posts in that folder first, and then use it to encrypt the
data. This symmetric key should be changed regularly to prevent key ageing.
However, if symmetric keys are changed very often, then the secret master key
MK, which is used by the profile owner for encryption (to generate a symmetric
key, see Section 2), will age very fast and will require frequent refreshments.
Thus there is a trade-off between ageing of symmetric keys and the master key.
The key refreshment issue is very important, but we do not address it in this
work.

6 Conclusions

A P2P provider-independent architecture with cryptographically protected pri-
vacy is a straightforward solution to give full control over their data to the
end-users and guarantee its protection.

Although broadcast encryption schemes were intended for a multi-recipient
broadcasting, their properties make them suitable candidates for application to a
social network scenario. We evaluated existing schemes for the suitability looking
at the several criteria (efficiency, recipient privacy, etc.) and defined properties
that are crucial for the BE schemes to be used in the social network scenario.
We found one BE scheme that meets all the requirements, transformed it from
the Identity-based BE scheme to the ordinary BE scheme, and adapted to the
social network scenario.

With efficiency in mind, we proposed a P2P social network architecture that
uses a composition of public-key cryptography, broadcast encryption schemes,
and symmetric cryptography. The architecture provides confidentiality and lim-
ited integrity protection from an external attacker. The architecture defines a
privacy preserving profile that allows users to quickly find data encrypted for
them while preventing both the external attackers and malicious insiders from
learning who can access which data.

Acknowledgments

This research has been funded by the Swedish Foundation for Strategic Research
grant SSF FFL09-0086 and the Swedish Research Council grant VR 2009-3793.

References

1. Cutillo, L., Molva, R., Strufe, T.: Safebook: A privacy-preserving online social net-
work leveraging on real-life trust. Communications Magazine, IEEE 47(12) (2009)
94 –101

2. Grippi, D., Sofaer, R., Salzberg, M., Zhitomirsky, I.: Diaspora. a little more about
the project (April 2010)

3. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an online
social network with user-defined privacy. SIGCOMM Comput. Commun. Rev. 39
(August 2009) 135–146

4. Delerablee, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broadcast
encryption with constant-size ciphertexts or decryption keys. In: Pairing-Based
Cryptography Pairing 2007. Volume 4575 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg (2007) 39–59

5. Jiang, H., Xu, Q., Shang, J.: An efficient dynamic identity-based broadcast encryp-
tion scheme. In: Data, Privacy and E-Commerce (ISDPE), 2010 Second Interna-
tional Symposium on. (2010) 27 –32

6. Delerablee, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Advances in Cryptology ASIACRYPT 2007. Volume 4833 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2007) 200–215

