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Schmid3, Peer Smuda3, Elena Vorobev1, and Cornelia Zahlten2

1 Department of Mathematics and Computer Science
University of Bremen, Germany

{jp,florian,elenav}@informatik.uni-bremen.de
2 Verified Systems International GmbH, Bremen, Germany

{hloeding,cmz}@verified.de
3 Daimler AG, Stuttgart, Germany

{artur.honisch,hermann.s.schmid,peer.smuda}@daimler.com

Abstract. In this paper we present a model for automotive system
tests of functionality related to turn indicator lights. The model cov-
ers the complete functionality available in Mercedes Benz vehicles, com-
prising turn indication, varieties of emergency flashing, crash flashing,
theft flashing and open/close flashing, as well as configuration-dependent
variants. It is represented in UML2 and associated with a synchronous
real-time systems semantics conforming to Harel’s original Statecharts
interpretation. We describe the underlying methodological concepts of
the tool used for automated model-based test generation, which was
developed by Verified Systems International GmbH in cooperation with
Daimler and the University of Bremen. A test suite is described as initial
reference for future competing solutions. The model is made available in
several file formats, so that it can be loaded into existing CASE tools or
test generators. It has been originally developed and applied by Daimler
for automatically deriving test cases, concrete test data and test proce-
dures executing these test cases in Daimler’s hardware-in-the-loop sys-
tem testing environment. In 2011 Daimler decided to allow publication
of this model with the objective to serve as a ”real-world” benchmark
supporting research of model based testing.

1 Introduction

Model-based testing. Automated model-based testing (MBT) has received
much attention in recent years, both in academia and in industry. This interest
has been stimulated by the success of model-driven development in general, by
the improved understanding of testing and formal verification as complementary
activities, and by the availability of efficient tool support. Indeed, when compared
to conventional testing approaches, MBT has proven to increase both quality and
efficiency of test campaigns; we name [13] as one example where quantitative



evaluation results have been given. In this paper the term model-based testing
is used in the following, most comprehensive, sense: the behavior of the system
under test (SUT) is specified by a model elaborated in the same style as a model
serving for development purposes. Optionally, the SUT model can be paired with
an environment model restricting the possible interactions of the environment
with the SUT. A symbolic test case generator analyzes the model and specifies
symbolic test cases as logical formulae identifying model computations suitable
for a certain test purpose (also called test objective). Symbolic test cases may
be represented as LTL formulas of the form Fφ, expressing that finally the
test execution should produce a computation fragment where the test purpose
specified by φ is fulfilled.

Constrained by the transition relations of SUT and environment model, a
solver computes concrete model computations which are witnesses of symbolic
test cases Fφ. More formally, solvers elaborate solutions of so-called bounded
model checking instances

tc(c,G) ≡def

c−1∧
i=0

Φ(σi, σi+1) ∧G(σ0, . . . , σc) (1)

In this formula σ0 represents the current model state and Φ the transition re-
lation associated with the given model, so any solution of (1) is a valid model
computation fragment of length c. Intuitively speaking, tc(c,G) tries to solve
LTL formula Fφ within c computation steps, starting in model pre-state σ0,
so that each step is a valid model transition, and test purpose φ is encoded in
G(σ0, . . . , σc).

The inputs to the SUT obtained from these computations are used in the test
execution to stimulate the SUT. The SUT behavior observed during the test ex-
ecution is compared against the expected SUT behavior specified in the original
model. Both stimulation sequences and test oracles, i. e., checkers of SUT be-
havior, are automatically transformed into test procedures executing the concrete
test cases in a software-in-the-loop or hardware-in-the-loop configuration.

Observe that this notion of MBT differs from “weaker” ones where MBT is
just associated with some technique of graphical test case descriptions. Accord-
ing to the MBT paradigm described here, the focus of test engineers is shifted
from test data elaboration and test procedure programming to modeling. The
effort invested into specifying the SUT model results in a return of investment,
because test procedures are generated automatically and debugging deviations
of observed against expected behavior is considerably facilitated because the
observed test executions can be “replayed” against the model.

Objectives and Main Contributions. The main objective of this article is to
present a “real-world” example of a model used in the automotive industry for
system test purposes. The authors have experienced the “validation powers” of
such models with respect to realistic assessment of efforts in model development,
and with respect to the tool capabilities required to construct concrete model



computations – i. e., test data – for given symbolic test cases. We hope to
stimulate a competition of alternative methods and techniques which can be
applied to the same benchmark model in order to enable objective comparison of
different approaches. For starting such a competition we also give an overview of
the methods and algorithms applied in our tool and present performance values,
as well as test generation results to be compared with the results obtained using
other methods and tools.

To our best knowledge, comparable models of similar size, describing con-
current real-time behavior of automotive applications and directly derived from
industrial applications are currently not available to the public, at least not
for application in the MBT domain. As a consequence, no systematic approach
to benchmark definitions has been made so far. We therefore suggest a simple
classification schema for such benchmarks, together with a structuring approach
for the test suites to be generated. While this article can only give an overview
of the model, detailed information are publicly available on the website [17]
(www.mbt-benchmarks.org).

Overview. In Section 2 we present an introductory overview over the bench-
mark model. In Section 3 the methods applied in our test generator are sketched,
with the objective to stimulate discussions about the suitability of competing
methods. The representation of symbolic test cases as constraint solving prob-
lems (CSP) is described, and we sketch how these CSPs are solved by the test
generation engine in order to obtain concrete test stimulations to be passed from
the test environment to the SUT.

In Section 4 we propose a classification of benchmarks which are significant
for assessing the effectiveness and performance of model-based testing tools.
This classification induces a structure for reference test suites. In Section 5 a
test generation example is presented.

Since the complete model description and the detailed explanation of algo-
rithms used for test case generation and CSP solving is clearly beyond the page
restriction of this submission, interested readers are referred to [17], where the
material is presented in more comprehensive form, and the model can be down-
loaded in XMI format and as a model file for the EnterpriseArchitect CASE tool
[23] which was used to create the model and its different export formats. Addi-
tionally an archive may be downloaded whose files allow to browse through the
model in HTML format. The symbolic test cases used in the performance results
are also available, so that the sequence of CSP solutions created by our test case
generator can be repeated by other tools. The current benchmark evaluation
results, including test generations performed with our tool are also published
there.

Related Work. Benchmarking has been addressed in several testing domains.
For “classical” software testing the so-called Siemens benchmarks [9] provide
a collection of C programs with associated mutations rated as representative
for typical programming bugs. A more comprehensive discussion and review of



available software testing benchmarks is given in [14]. In [15] an initiative for
event-driven software testing benchmarks has been launched.

In the field of model-based embedded systems testing only very few bench-
marks are currently available, and none of them appear to describe comprehen-
sive industrial control applications. In [10] a Matlab/Simulink model for a flight
control system has been published. According to our classification proposed in
Section 4 it addresses the benchmark category test strength benchmarks: A set
of test cases is published which have been generated using random generation
techniques inspired by Taguchi methods. To analyze the strength of test cases,
several mutants of the model have been provided which may either be executed
in Simulink simulation mode or as C programs generated from the mutant mod-
els. Since random test generation techniques on the input interface to the SUT
are used, the model coverage achieved is only analyzed after test suite execu-
tion. As a consequence, no test generation benchmarks suggested in Section 4
are discussed. All existing benchmarks we are aware of may be classified as test
strength benchmarks. Our proposition of test generation benchmarks seems to
be a novel concept.

While our test generation approach relies on constraint solvers to find test-
input-data, search-based testing techniques use randomized methods guided by
optimization goals. In [1] the use of random testing, adaptive random testing and
genetic algorithms for use in model-based black-box testing of real-time systems
is investigated. To this end, the test-environment is modeled in UML/MARTE
while the design of the SUT is not modeled at all, since all test data are derived
from the possible environment behavior. An environment simulator is derived
from the model that interacts with the SUT and provides the inputs selected by
one of the strategies. The environment model also serves as a test oracle that
reports errors as soon as unexpected reactions from the SUT are observed. This
and similar approaches are easier to implement than the methods described in
this paper, because there is no need to encode the transition relation of the
model and to provide a constraint solver, since concrete test data is found by
randomized model simulations. We expect, however, that the methods described
in [1] do not scale up to handle systems of the size presented here, where the
concurrent nature of the SUT requires to consider the interaction between several
components in real-time (the model would be too large to construct a single
large product automaton from the many smaller ones describing the component
behavior). To the best knowledge of the authors there is no work on using search
based testing on synchronous parallel real-time systems in order to achieve a high
degree of SUT coverage, let alone to find test input data to symbolic test-cases.

The solutions presented here have been implemented in the RT-Tester test
automation tool which provides an alternative to TRON [16, 6] which supports
timed automata test models and is also fit for industrial-strength application.
TRON is complementary to RT-Tester, because it supports an interleaving se-
mantics and focuses on event-based systems, while RT-Tester supports a syn-
chronous semantics with shared variable interfaces. RT-Tester also competes



with the Conformiq Tool Suite [5], but focuses stronger on embedded systems
testing with hard real-time constraints.

2 Model Overview

General. Our MBT benchmark model specifies the turn indicator functions
available in Mercedes Benz cars; this comprises left-/right turn indication, emer-
gency flashing, crash flashing, theft flashing and open/close flashing. The level of
detail given in the model corresponds to the observation level for system testing.
To provide the full functionality, several automotive controllers cooperate using
various communication busses (CAN and LIN). The signals exchanged between
controllers can be observed by the testing environment; additionally the envi-
ronment can stimulate and monitor discrete and analogue interfaces between
SUT and peripherals, such as switches, buttons, indicator lights and various
dashboard indications. Capturing this functionality in a formal way requires a
concurrent real-time system semantics.

System Interface. In Fig. 1 the interface between system under test (SUT)
and testing environment (TE) is shown. Due to the state-based nature of the
hardware interfaces (discretes, periodic CAN or LIN bus messages repeatedly
sending state information) the modeling formalism handles interfaces as shared
variables written to by the TE and read from by the SUT or vice versa.

The TE can stimulate the SUT via all interfaces affecting the turn indication
functionality in the operational environment: in CentralLockingRM ∈ {0, 1, 2}
denotes the remote control for opening and closing (i. e. unlocking and locking)
cars by means of the central locking system. Signal in CrashEvent ∈ {0, 1} acti-
vates a crash impact simulator which is part of the TE, and in EmSwitch ∈ {0, 1}
simulates the “not pressed”/“pressed” status of the emergency flash switch on
the dashboard. Signal in IgnSwitch ∈ {0, . . . , 6} denotes the current status of the
ignition switch, and in TurnIndLvr ∈ {0, 1, 2} the status of the turn indicator
lever (1 = left, 2 = right). In special-purpose vehicles (SPV), such as taxis or
police cars, additional redundant interfaces for activation of emergency flashing
and turn indicators exist (e. g., in EmSwitchSPV ∈ {0, 1}). Observe that these
redundant interfaces may be in conflicting states, so that the control software
has to perform a priority-dependent resolution of conflicts. Inputs to the SUT
marked by OPTION specify different variants of vehicle style and equipments,
each affecting the behavior of the turn indication functions. In contrast to the
other input interfaces to the SUT, options remain stable during execution of a
test procedure, since their change requires a reset of the automotive controllers,
accompanied by a procedure for loading new option parameters. If the TE com-
ponent does not contain any behavioral specifications, the test generator will
create arbitrary timed sequences of input vectors suitable to reach the test goals,
only observing the range specifications associated with each input signal. This
may lead to unrealistic tests. Therefore the TE may be decomposed into con-
current components (typically called simulations) whose behavior describe the



admissible (potentially non-deterministic) interaction of the SUT environment
on some or all interfaces. The test generator interprets these simulations as ad-
ditional constraints, so that only sequences of input vectors are created, whose
restrictions to the input signals controlled by TE components comply with the
transition relations of these simulations.

SUT outputs are captured in the SignalsOut interface (Fig. 1 shows only
a subset of them). The indicator lights are powered by the SUT via interfaces
pwmRatio FL, pwmRatio FR, . . . ∈ {0, . . . , 120} where, for example, FL stands for
“forward left” and RR for “rear right”. The TE measures the percentage of the
observed power output generated by the lamp controllers, 100% denoting iden-
tity with the nominal value. System integration testing is performed in grey box
style: apart from the SUT outputs observable by end users, the TE also moni-
tors bus messages produced by the cooperating controllers performing the turn
indication service. Message tim EFS ∈ {0, 1}, for example, denotes a single bit in
the CAN message sent from a central controller to the peripheral controllers in
order to indicate whether the emergency flash switch indicator on the dashboard
should be activated, and tim FL ∈ {0, 1} is the on/off command to the controller
managing the forward-left indicator light.

TestEnvironment SystemUnderTestSignalsOut SignalsOut

SignalsIn SignalsIn

<<interface,TE2SUT>>
SignalsIn

in_CentralLockingRM: int
in_CrashEvent: int
in_EmSwitch: int
in_EmSwitchHighPrio: int
in_EmSwitchLowPrio: int
in_EmSwitchSPV: int
in_IgnSwitch: int
in_TheftAlarm: int
in_TurnIndLvr: int
in_TurnIndLvrSPV: int
OPTION_Country: int
OPTION_Trailer: int
OPTION_VehicleStyle: int

<<interface,SUT2TE>>
SignalsOut

oc_FlashCmdLock: int
oc_FlashCmdUnlock: int
pwmRatio_FL: int
pwmRatio_FR: int
pwmRatio_RL: int
pwmRatio_RR: int
pwmRatio_SM_FL: int
pwmRatio_SM_FR: int
pwmRatio_SM_RL: int
pwmRatio_SM_RR: int
pwmRatio_EFS: int
pwmRatio_TL: int
pwmRatio_TR: int
tim_EFS: int
tim_FL: int
tim_FR: int
tim_RL: int
tim_RR: int
tim_SM_FL: int
tim_SM_FR: int
tm_SM_RL: int
...

Fig. 1: Interface between test environment and system under test.



First-Level SUT Decomposition. Fig. 2 shows the functional decomposition
of the SUT functionality. Component NormalAndEmerFlashing controls left/right
turn indication, emergency flashing and the dependencies between both func-
tions (see below). Component OpenCloseFlashing models the indicator-related
reactions to the locking and unlocking of vehicles with the central locking sys-
tem. CrashFlashing models indications triggered by the crash impact controller.
TheftFlashing controls reactions triggered by the theft alarm system. These func-
tions interact with each other, as shown in the interface dependencies depicted
in Fig. 2: the occurrence of a crash, for example, affects the emergency flash
function, and opening a car de-activates a theft alarm. The local decisions of the
above components are fed into the PriorityHandling component where conflicts
between indication-related commands are resolved: if, for example, the central
locking system is activated while emergency flashing is active, the open/close
flashing patterns (one time for open, 3 times for close) are not generated; instead,
emergency flashing continues. Similarly, switching off the emergency switch has
no effect if the high-priority emergency interface (in EmSwitchHighPrio ∈ {0, 1})
is still active. Priority handling identifies the function to be performed and
relays the left-hand/right-hand/both sides flashing information to the compo-
nents OnOffDuration and AffectedLamps. The former determines the durations
for switching lights on and off, respectively, during one flashing period. These
durations depend both on the status of the ignition switch and the function to
be performed. The latter specifies which lamps and dashboard indications have
to participate in the flashing cycles. This depends on the OPTION VehicleStyle
which determines, for example, the existence of side marker lamps (interfaces
pwmRatio SM FL, FR, RL, RR), and on the OPTION Trailer which indicates the
existence of a trailer coupling, so that the trailer turn indication lamps (pwmRa-
tio TL, TR) have to be activated. Moreover, the affected lamps and indications
depend on the function to be performed: open-close flashing, for example, affects
indication lamps on both sides, but the emergency flash switch indicator (pwm-
Ratio EFS) is not activated, while this indicator is affected by emergency, crash
and theft flashing. The MessageHandling component transmits duration and iden-
tification of affected lamps and indicators on a bus and synchronizes the flash
cycles by re-transmission of this message at the beginning of each flashing cy-
cle. Finally, component LampControl comprises all output control functions, each
function controlling the flashing cycles of a single lamp or dashboard indicator.

Behavioral Semantics. Model components behave and interact according to
a concurrent synchronous real-time semantics, which is close to Harel’s original
micro-step semantics of Statecharts [8]. Each leaf component of the model is
associated with a hierarchic state machine. At each step starting in some model
pre-state σ0, all components possessing enabled state machine transitions pro-
cess them in a synchronous manner, using σ0 as the pre-state. The writes of all
state machine transitions affect the post-state σ1 of the micro-step. Two con-
current components trying to write different values to the same variable in the
same micro-step cause a racing condition which is reflected by deadlock of the



transition relation and – in contrast to interleaving semantics – considered as
a modeling error. Micro-steps are discrete transitions performed in zero time.
Inputs to the SUT remain unchanged between discrete transitions. If the system
is in a stable state, that is, all state machine transitions are disabled, time passes
in a delay transition, while the system state remains stable. The delay must not
exceed the next point in time when a discrete transition becomes enabled, due
to a timeout condition. At the end of a delay transition, new inputs to the SUT
may be placed on each interface. The distinction between discrete and delay
transitions is quite common in concurrent real-time formalisms, and it is also
applied to interleaving semantics, as, for example, in Timed Automata [21]. The
detailed formal specification of the semantic interpretation of the model is also
published on the website given above [19].

IgnSwitchBusRouting

NormalAndEmerFlashing OpenCloseFlashing CrashFlashing TheftFlashing

PriorityHandling

OnOffDuration MessageHandling AffectedLamps

LampControl

Fig. 2: First-level decomposition of system under test.

3 Benchmark Reference Tool

Tool Components and Basic Concepts. The reference data for the bench-
marks have been created using our model-based testing tool RT-Tester. It con-
sists of a parser front-end transforming textual model representations (XMI ex-
port provided by the CASE tool) into internal representations of the abstract
model syntax.



A constraint generator derives all model coverage goals from the abstract
syntax tree and optionally inputs user-defined symbolic test cases. Users may
select which symbolic test cases should be discharged in the same test proce-
dure. A transition relation generator traverses the model’s abstract syntax tree
and generates the model transition relation Φ needed for expressing computa-
tion goals according to Equation (1). During the test data and test procedure
generation process, the constraints associated with these symbolic test cases are
passed on to an abstract interpreter. The interpreter performs an abstract con-
servative approximation of the model states that are reachable from the current
model state within a pre-defined number n of steps. The goals which may be
covered within n steps according to the abstract interpretation are passed on
in disjunctive form to an SMT solver. The solver unrolls the transition relation
in a step-by-step manner and tries to solve at least one of the goals. If this
succeeds, a timed sequence of input vectors to the SUT is extracted from the
solution provided by the SMT solver. Starting from the current model state, a
concrete interpreter executes this sequence until a new stable state is reached
where further inputs may be generated to cover the remaining goals. If the solver
cannot discharge any goal within n steps, random simulations and/or backtrack-
ing to model states already visited can be performed in order to identify other
model states from where the next goal may be reached. Constraint generator,
interpreters and solver represent the core of the tool, called the test generation
engine. Its components only depend on the abstract syntax representation of the
model and its transition relation, but not on the concrete modeling syntax and
the syntax required by the test execution environment for the test procedures.

At the end of the generation process a multi-threaded test procedure is gen-
erated which stimulates the SUT according to the input sequences elaborated by
the solver and simultaneously checks SUT reactions with respect to consistency
with the model. In the sections below we highlight the most important features
of the tool; a detailed description is given in [19].

SMT-Solver. The constraint solving problems of type (1) may contain linear
and non-linear arithmetic expressions, bit-operations, array-references, compar-
ison predicates and the usual Boolean connectives. Data types are Booleans,
signed and unsigned integers, IEEE-754 floating-point numbers and arrays.

Our SMT-solver SONOLAR uses the classical bit-blasting approach that
transforms a formula to a propositional satisfiability problem and lets a SAT-
solver try to find a solution [11, 2]. Variables in the formula are translated to
vectors of propositional variables (i. e., bit vectors). The lengths of these bit
vectors correspond to the bit width of the respective data types. Operations are
encoded as propositional constraints relating input to output bit vectors. Since
we reason on bit-level, this enables us to precisisely capture the actual seman-
tics of all operations. Integer arithmetic takes potential overflows into account
and each floating point operation is correctly rounded to the selected IEEE-754
rounding-mode.



To this end, the formula is first represented as an acyclic expression graph,
where each variable and each operation of the formula is represented as a node.
Using structural hashing on these nodes, identical terms are shared among ex-
pressions. This representation allows us to perform word-level simplifications,
normalization and substitutions. The expression graph is then bit-blasted to an
And-Inverter Graph (AIG). AIGs are used by several SMT solvers to synthesize
propositional formulas [11, 2, 12]. Each node of an AIG is either a propositional
variable or an and -node with two incoming edges that may optionally be in-
verted, i.e. negated. The AIG is structually hashed and enables us to perform
bit-level simplifications. Readers are referred to [7, 3] for more information on
logic synthesis using AIGs. The AIG is then translated to CNF using the stan-
dard Tseitin encoding and submitted to a SAT solver.

In order to handle the extensional theory of arrays we adopted the approach
described in [4]. Instead of bit-blasting all array expressions to SAT up-front,
array expressions that return bit-vectors associated with array-reads or checks for
array equality are replaced by fresh variables. This results in an over-abstraction
of the actual formula since the array axioms are left out. If the SAT solver is
able to find a solution to this formula the model is checked for possible array
inconsistencies. In this case, additional constraints are added on-demand to rule
out this inconsistency. This process is repeated until either the SAT solver finds
the refined formula to be unsatisfiable or no more array inconsistencies can
be found. While unrolling the transition relation constraints are incrementally
added to the SMT solver.

Abstract Interpretation. Our abstract interpreter has been developed to
compute over-approximations of possible model computations in a fast way. Its
main application is to determine lower bounds of the parameter c in Formula (1)
specifying the number of times the transition relation Φ must be unrolled before
getting a chance to solve tc(c,G). This considerably reduces generation time,
because (a) the SMT solver can skip solution trials for tc(c,G) with values of
c making a solution of tc(c,G) infeasible, and (b) the abstract interpretation
technique provides the means for non-chronological backtracking in situations
where it is tried to solve tc(c,G) from a former model state already visited
(see [18] for a more detailed description).

The abstract interpreter operates on abstract domains: interpretation of
model behavior is performed using an abstract state space ΣA instead of the
concrete one. ΣA is obtained by replacing each concrete data type D of the
concrete state space Σ with an adequate abstract counterpart L(D). Functions
defined over concrete data types D0, . . . , Dn are lifted to the associated abstract
domains L(D0), . . . , L(Dn). In order to be able to reason about concrete com-
putations while computing only the abstract ones, concrete and abstract states
are related to one another by Galois connections. A Galois connection is a tuple
of mappings (. : P(Σ) → ΣA, / : ΣA → P(Σ)) defining for any set of con-
crete states the associated abstract state and vice versa, see [18] for additional
details. Finally, each abstract domain L(D) is equipped with a join operator



t : L(D)× L(D)→ L(D) which establishes the basis for the join operator over
two abstract states t : ΣA × ΣA → ΣA. This operator is essential as it allows
to reduce the complexity usually arising when interpreting large models where
the computation of all reachable states would otherwise be infeasible, due to the
number of states and the number of control decisions.

The abstract interpreter uses the interval, Boolean and power set lattices as
abstract domains for numerical data types, Booleans and state machine loca-
tions, respectively. The interpretation of a given model is parametrized by an
initial abstract state σ0

A ∈ ΣA, an integer cmax denoting the maximal number of
transition steps to be interpreted and a test case goal G to be checked for satisfi-
ability. Starting in the given initial state, the interpreter computes a sequence of
up to cmax abstract states 〈σ1

A, σ
2
A, . . .〉 where each state σi+1

A is guaranteed to
“include”4 every concrete state σi+1 reachable from any of the concrete states
represented by σi

A. The interpretation stops as soon as either the maximal num-
ber of steps has been reached or the test case goal G evaluates to true or >5.
In the latter case the actual step number is returned.

4 MBT Benchmark Classification

We propose to classify MBT benchmarks according to the following character-
istics, denoted by test strength benchmarks and test generation benchmarks.

Test strength benchmarks investigate the error detection capabilities of con-
crete test cases and test data generated by MBT tools: even if two MBT tools
produce test suites of equivalent model coverage, they will usually possess dif-
ferent strength, due to different choices of symbolic test cases, representatives of
equivalence classes, boundary values and timing of input vectors passed to the
SUT, or due to different precision of the test oracles generated from the model.
Mutation testing is an accepted approach to assessing test suite strength; there-
fore we suggest to generate model mutants and run test suites generated from
the unbiased model as model-in-the-loop tests against these mutants. The evalu-
ation criterion is the percentage of uncovered mutations for a fixed set of mutant
models.

Test generation benchmarks input symbolic test cases as introduced in Sec-
tion 3 and measure the time needed to generate concrete test data. We advocate
a standard procedure for providing these test objectives for a given model, struc-
turing symbolic test cases into several sets. The first sets should be related to
model coverage criteria [24], such as (1) control state coverage (every control
state of the SUT model is visited by at least one test), (2) state machine transi-
tion coverage (every transition of every state machine is taken at least once) and
(3) MC/DC coverage (conditions of the type φ1 ∧ φ2 are tested at least once for

4 In the sense that σi+1 ∈ (σi+1
A )/

5 > is the Boolean lattice value representing the concrete value set {false, true}.



each of the valuations (φ1, φ2) = (false, true), (true, false), (true, true), and
conditions of the type φ1 ∨ φ2 are tested at least for (φ1, φ2) = (false, false),
(true, false), (false, true)).

Conventional model coverage criteria as the ones listed in (1 — 3) do not pos-
sess sufficient strength for concurrent real-time systems, because the dependen-
cies between state machines operating in parallel are not sufficiently addressed.
Since models as the one under consideration are too large to consider coverage
of all state vector combinations, a pragmatic compromise is to maximize the
coverage of all basic control state pairs of interacting components C1, C2, com-
bined with pairs of input equivalence classes of signals influencing C1, C2. As
a consequence we suggest symbolic test cases consisting of (a subset of) these
combinations as a forth set. As a fifth set of symbolic test cases it is proposed
to define application-specific test cases of specific interest.

Given these classes for a specific model, this induces 5 test suites to realize
a comprehensive test generation benchmark.

Evaluation criteria for test generation benchmarks. Apart from the time
needed to generate concrete test data, the number of SUT resets involved in the
resulting test procedures should be minimized as well: since SUT resets usually
consume significant time when testing embedded systems, hardware-in-the-loop
tests avoiding resets significantly reduce the test suite execution time. Moreover,
test executions covering many test cases drive the SUT into more internal states
than test executions resetting the SUT between two or only a small number of
test cases. As a consequence, the error detection capabilities of test procedures
are usually increased with the number of test cases they cover between resets.
Avoiding resets is adverse to the reduction of generation time: if some goal Fφ is
very time consuming to reach from a given model state σ0, backtracking to a for-
mer model state from where computation fragments fulfilling Fφ can be reached
more easily frequently helps to reduce the generation time in a significant way.
Since the SUT is usually unable to roll back into a previous state, backtracking
enforces a SUT reset, after which the new computation can be exercised. For
comparing the performance of tools we suggest to calculate Pareto frontiers of
pairs (generation time,number of resets) for each competing tool, and compare
the tool-dependent frontiers.

Significance of test generation benchmarks. According to standards appli-
cable to safety-critical systems verification [22, 20] the error detection strength of
a test suite is just one aspect to be addressed when justifying the adequateness
of test cases. Complementary to that the standards require to account for suffi-
cient coverage on the levels of requirements, design and code. As a consequence,
the capability of test automation tools to generate sufficient test cases to achieve
such coverage has significant impact on verification and certification efforts.



5 Test Generation Example

The benchmark website [17] contains two classes of symbolic test cases: (1)
user-defined test cases reflect specific test purposes identified by test engineers.
They serve either to test more complex requirements which cannot be traced
in the model to simple sets of basic control states or transitions to be covered,
or they are used to explore SUT reactions in specific situations where a failure
is suspected. (2) Model-defined test cases aim at covering certain parts of the
model according to pre-defined strategies, such as basic control state coverage,
state machine transition coverage and MC/DC coverage. They are automatically
derived by our tool from the abstract syntax representation of the model.

In this section a test generation based on user-defined test cases from [17,
Test UD 003] is presented. The underlying test purpose is to investigate the
interaction between theft alarm and open/close flashing: theft alarm flashing is
only enabled when the doors are locked. As a reaction to alarm-sensor activation
the turn indicator lights shall start flashing on both sides. Pressing the remote
control key to unlock the doors automatically shuts off the alarm flashing.

(a) Generated inputs and internal model
state oc CentralLockingStatus.

(b) Expected outputs and internal model
state ooo OnDuration.

Fig. 3: Generation results of theft alarm test procedure.

Instead of explicitly determining the sequence of timed input vectors to the
SUT which is suitable for covering the test purpose described, we specify simpler
and shorter symbolic test cases that may also refer to internal model states and



leave it up to the tool’s generation engine to calculate the concrete test input
data and its timing. Symbolic test case6

TC-turn_indication-THEFT_ALARM-0001;
[ SystemUnderTest.TheftFlashing.TheftFlashing.THEFT_ALARM_ACTIVE.ALARM_OFF
&& ! in_TheftAlarm ]
Until
[ _timeTick >= 2000 && in_TheftAlarm ]

refers to SUT inputs (theft alarm-sensor in_TheftAlarm) the model execution
time (_timeTick) and basic control states of state machines which are part of
the SUT model (SystemUnderTest.TheftFlashing...ALARM_OFF). The LTL
formula is a directive to the test generation engine to find a computation which
finally reaches a model state where theft alarm flashing is enabled but not yet
active (this is the case when the basic control state ...ALARM_OFF is reached),
and the theft alarm-sensor should remain passive until 2000ms have passed since
start of test (the leading finally operator is always omitted in our symbolic test
case specifications). The inputs derived by the generation engine to cover this
test case drive the SUT into a state where an alarm is signaled and the SUT
has to react by activating theft alarm flashing. The next symbolic test case to
be processed is

TC-turn_indication-THEFT_ALARM-0002;
[ SystemUnderTest.TheftFlashing.TheftFlashing.THEFT_ALARM_ACTIVE.ALARM_ON

&& in_TheftAlarm ]
Until
[ _timeTick >= 4000 && IMR.in_TheftAlarm &&

SystemUnderTest.oc_CentralLockingStatus == 1 ]

This formula is a directive to stay in the theft alarm state for at least another
2 seconds after which a model state is to be reached where the internal model
variable oc_CentralLockingStatus has value 1 (= “unlocked”), indicating that
an “unlock doors” command has been given via remote key control. Again, the
associated inputs and timing is calculated by the test generation engine. The
final symbolic test case to be processed by the generator is

TC-turn_indication-THEFT_ALARM-0003;
[ SystemUnderTest.TheftFlashing.TheftFlashing.THEFT_ALARM_OFF ]
Until
[ _timeTick >= 6000 &&
SystemUnderTest.TheftFlashing.TheftFlashing.THEFT_ALARM_OFF ]

It is a directive to stay in the “theft alarm disabled” state ...THEFT_ALARM_OFF

for at least another two seconds, so that it can be observed that after one flash
period signaling that the doors have been unlocked, no further alarm indica-
tions are made. The signal flow associated with this test (inputs and expected
SUT outputs) is depicted in Fig. 3. The generator created a sequence of in-
put vectors where first doors are closed by means of the remote key control
input in_CentralLockingRM (2 = lock, 1 = unlock). This triggers three flash-
ing periods for left and right indicator lamps (pwmRatio_FR, pwmRatio_FL, see
Fig. 3b). For open/close flashing the on-duration of a flashing period is 340ms;
this is captured in the internal model variable ood_OnDuration whose contents

6 The symbols used in the test cases below are taken from the turn indicator model
published in [17]. A detailed description of inputs, outputs and internal model vari-
ables can be found there.



will be transmitted by the SUT via CAN bus and can therefore be observed
and checked by the threads running on the test engine and acting as test ora-
cles. After two seconds an alarm is raised by setting in_TheftAlarm = 1. This
changes the on-duration of the flashing period to 220ms. Theft alarm flashing
is switched off at model execution time stamp 4000, approx. 500ms after the
unlock-doors signal has been given (in_CentralLockingRM=1); the change of
the internal oc_CentralLockingStatus from 0 to 1 indicates that the “doors
unlocked” status has now been realized (see Fig. 3a). One flashing period signals
“doors unlocked” (again with on-duration 340ms), after which no further alarm
indications occur.

6 Conclusion

We have presented a model of an automotive control application, covering the
full functionality related to turn indication, emergency flashing, crash, theft and
open/close flashing. The model is a 1-1-transcription of the one currently used
by Daimler for system testing of automotive controllers. As the only adaptation
we have presented the model in pure UML 2.0 style, while Daimler uses a specific
UML profile optimized for their hardware-in-the-loop testing environment. The
model is made available to the public in complete form through the website [17],
together with benchmark test suites and performance values achieved with our
reference tool. Additionally, a classification of benchmarks for embedded systems
test tools has been suggested which takes into account both the test strength
and the performance for automated test suite generation.

The underlying methods of the MBT tool used by the authors for performing
embedded systems test have been described, in order to facilitate the comparison
of competing techniques applied to the benchmarks in the future. The tool is
currently applied in industrial projects in the automotive, railway and avionics
domains.
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