Communication Patterns for Expressing
Real-Time Requirements Using MSC
and their Application to Testing

Helmut Neukirchen!, Zhen Ru Dai?, and Jens Grabowski!

! Institute for Informatics, University of Géttingen
Lotzestr. 16-18, D-37083 Gottingen, Germany
{neukirchen, grabowski}@informatik.uni-goettingen.de
2 Fraunhofer FOKUS, Competence Center TIP
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany
dai@fokus.fraunhofer.de

Abstract. This paper introduces real-time communication patterns
(RTC-patterns) for capturing real-time requirements of communication
systems. RTC-patterns for some of the most common real-time require-
ments are presented. They are formalized by using Message Sequence
Charts (MSCs). The application of RT'C-patterns to testing is explained
by an example. The example shows how real-time requirements which are
expressed using RTC-patterns can be related to TiMEDTTCN-3 evalua-
tion functions.

1 Introduction

The motivation for the work presented in this paper comes from our research on
test specification and test generation for testing real-time requirements of com-
munication systems. Especially, we investigate graphical specification methods
that can be used in all phases of an integrated system development methodology
and that allow an automated generation and implementation of test cases.

We use the Testing and Test Control Notation (TTCN-3) [5] as test imple-
mentation language and developed TtmEDTTCN-3 [3] as an associated real-time
extension to support the test of real-time requirements. For graphical test speci-
fication, we apply the Message Sequence Chart (MSC?) language [13]. The MSC-
based specification of real-time test cases and generation of TrMEDTTCN-3 code
from MSC test specifications is explained in [4].

Even though it is possible to generate TimMmEDTTCN-3 code automatically
for each MSC test description, we would like to facilitate and harmonize the
use of TrmMEDTTCN-3 by providing a common set of test evaluation functions.
This would make test results more comparable and avoid misinterpretations due
to the use of different or erroneous evaluation functions. The key issue of this

3 The term MSC is used both for a diagram written in the MSC language and for the
language itself.

2 Helmut Neukirchen, Zhen Ru Dai, and Jens Grabowski

approach is the identification of commonly applicable evaluation functions for
TiMEDTTCN-3 test cases. Such functions are used to evaluate relations among
time stamps of events, which are observed during a test run. An evaluation
function is related to the number of interfaces of the system under test, the
number of time stamps to be considered and the number of relations among
these time stamps. It would be necessary to provide an infinite set of evaluation
functions to cover all cases. This is not possible and, therefore, we look for a
mechanism to identify evaluation functions for the most common cases.

Our idea is to use real-time communication patterns (RTC-patterns) for ex-
pressing real-time requirements and to provide evaluation functions for these
patterns only. By using RTC-patterns during test design or by scanning test
specifications for RT'C-patterns, it is possible to use predefined evaluation func-
tions in TiMEDTTCN-3 test descriptions.

The idea of patterns is not new. Software patterns as described in [6,2] fo-
cus on structural aspects of software design. Conventional software patterns are
independent of an implementation language and described in a rather informal
manner. Different from software patterns, SDL patterns [7] are tailored to the
development of SDL [12] systems. They benefit from the formal SDL semantics,
which offers the possibility of precisely specifying how to apply a specific pat-
tern, under which assumptions this will be allowed, and what properties result
for the embedding context.

RTC-patterns are used to describe real-time requirements in form of time
relations among communication operations at the interfaces of a communication
system. We use MSC for the pattern description. The formality of MSC allows
formalizing at least some parts of the pattern instantiation. Even though the
application domain of testing communication systems motivates our work on
RTC-patterns, we believe that such patterns are of general interest for system
development. Therefore, we present RTC-patterns independent of the testing do-
main (Section 2) and explain afterwards their application to testing (Section 3).

2 MSC and Patterns

This section gives a short introduction into the subset of the MSC language,
which is used in this paper, and presents MSC patterns for capturing real-time
requirements.

2.1 MSC

Basically, an MSC describes the flow of messages between the instances of a
communication system. For example, the MSC Referenced (Fig. 1¢) includes three
instances, i.e., PCO, System; and System:, and specifies that message m3 is sent
from System; to Systems.

The MSC language supports abstraction from and refinement of behavior by
decomposed instances and references. The decomposition mechanism allows to
refine the behavior of an instance. This is shown in Fig. 1a and 1b. The keywords

RT Communication Patterns Using MSC and their Application to Testing

(a) Top Level MSC

msc TimeConstraint msc Internal
System
PCO d:sc ?rr]rt]gr?;?d System; Systema
ZS — ml \ml)
(8,10): [Referenced | ([Referenced |
— /
I I

(b) Decomposition of System

msc Expanded

PCO

System;

Systems

PCO System; Systemg
| | | | | |
— ml
msc Referenced ZF \ m3

(8,10),
|
v |

m?2 /

(¢) MSC referenced in (a) (d) Expansion of MSC (a) using (b) and (c)
Fig. 1. Used MSC Constructs

decomposed as followed by the name Internal in the header of instance System
(Fig. 1a) indicates that System is an abstraction of the behavior specified by MSC
Internal (Fig. 1b). The MSCs in Fig. 1la and 1b also contain reference symbols,
which both refer to the MSC Referenced. The semantics of a reference symbol is
given by the referenced MSC, i.e., the behavior of the referenced MSC replaces
the reference. By applying the rules for decomposed instances and references,
the MSC TimeConstraint can be expanded to the MSC shown in Fig. 1d.

For the specification of complex communication behavior in a compact man-
ner within one diagram, MSC provides inline expressions. In this paper, we only
use loop inline expressions to specify the repeated occurrence of events. Fig. 4
presents an example, the behavior of the reference symbols loopedPreamble, Re-
sponseTimePattern and loopedPostamble is repeated n times.

MSC allows to attach time annotations to events like sending or receiving a
message. In this paper we make use of relative time constraints which limit the
duration between two events. A time constraint is shown in Fig. la: the time
difference between sending m1 and receiving m2 at instance PCO is restricted to

4 Helmut Neukirchen, Zhen Ru Dai, and Jens Grabowski

be between 8 and 10 seconds. The value of a time constraint is specified using
intervals. The interval boundaries may be open, by using parenthesis, or closed,
by using square bracket. An omitted lower bound is treated as zero, an omitted
upper bound as infinite.

Time constraints can also be attached to the beginning and end of an inline
expression (Figures 4 and 5). In this case, the constraint refers to the first or
last event respectively which occurs inside the inline expression.

In addition to such relative time constraints, Fig. 7 contains a time constraint
for a cyclic event (sending message ml) every t seconds) inside a loop inline
expression. The definition of such periodic events is not supported in the MSC
standard. Therefore, we use an extension proposed in [14].

2.2 RTC-Patterns and MSC

In the following, MSCs are used to present RTC-patterns for the most common
hard real-time requirements [1,9,10].* Since real-time requirements are always
related to some functional behavior on which they are imposed, it is not possible
to provide patterns for pure real-time requirements. Therefore, the RTC-patterns
contain communication events on which the real-time requirements are imposed.

In order to ease specification and testing of real-time communication systems,
it was our intention to provide patterns for testable real-time requirements only.
In general, testable requirements can be obtained if the involved events of the
system can be observed and stimulated. Thus, we assume that the system for
which the requirements are specified has appropriate interfaces called points of
control and observation (PCOs).

In our RTC-patterns, we represent each PCO as one MSC instance. The
system is described by a single decomposed instance with the name System.
We abstract from the internal structure of the system by omitting in the System
instance header the actual reference to an MSC that refines the system behavior.
Hence, we obtain a black-box view of the system.

The most common real-time requirements are related to delay, throughput,
periodic events and jitter respectively. Basically, those requirements describe
time relations between one sending and one receiving event, or the repeated oc-
currence of one sending and one receiving event. Depending on the number of
PCOs of a system, the RTC-pattern for a certain requirement may look different,
i.e., several pattern variants may exist for describing the same real-time require-
ment in different system configurations. In this paper, we provide RTC-patterns
for systems with one or two PCOs only.

Delays: Latency/Response Time The term delay is often used as an um-
brella term for both latency and response time [9], since both only differ in the
number of PCOs which are involved in the requirement. Hence, patterns for both
types of real-time requirements are given.

4 Note, that MSC is not well suited for expressing requirements involving statistical
properties like soft real-time requirements or loss distributions.

RT Communication Patterns Using MSC and their Application to Testing 5

msc LatencyPattern

pcor |, SStM pcon
decomposed

N
AT |

(t1, t2) 1 | furtherEvents
I

vl . —

Fig. 2. Latency pattern

msc ResponseTimePattern msc ResponseTimePcoPattern
System System
PCO decomposed PCO decomposed
— 1 1
A \m) _y
I
(t1, t2) 1 [furtherEvents] (t1, m)@[furtherEvents]
! m?2 - m?2
I I
(a) Response time pattern (b) Response time for the PCO pattern

Fig. 3. Response Time Patterns

Latency describes the delay which is introduced during the transmission of
a signal by a component (the system), which is responsible for forwarding this
signal [10]. The RTC-pattern for the latency requirement is given by the MSC
LatencyPattern in Fig. 2. The allowed latency between sending message ml via
PCO1 and receiving it at PCO2 should be between ¢ and ¢t time units. The delay
may be introduced by some further events that may include communication
with the system environment (indicated by the MSC reference furtherEvents),
the transmission times for message m1°, and additional computations inside the
system (indicated by the decomposed keyword in the heading of the System
instance).

Response time is a delay requirement where the same PCO is used for sending
a message and receiving the corresponding answer. The response time pattern is
shown in Fig. 3a. In contrast to the latency pattern, the messages in the response

® Even though in this pattern the same message name is used for both transmissions,
the actual contents of the forwarded message may differ due to changes introduced
by the system, e.g., updated hop counters or processing of the actual payload.

6 Helmut Neukirchen, Zhen Ru Dai, and Jens Grabowski

msc ThroughputOnePcoPattern

System
PCO decomposed

loop Kn> J

[loopedPreamble |

(t1,t2)

(ResponseTimePattern|

q4---=---p>

I I
[loopedPostamble |
| |

**

Fig. 4. Throughput pattern with one PCO

time pattern usually differ significantly, e.g., request (message m1) and response
(message m2) in a client-server system. The given MSC shows a pattern for a
response-time of ¢1 and ¢, time units between sending message m1 and receiving
message m2.

The response time requirement can also be turned into an requirement or
assumption for the system environment or tester. This is necessary, if a timely
behavior of the environment is needed by the system to fulfill some other require-
ments. This requirement can be specified using the response time PCO pattern
given in Fig. 3b.

Throughput While delay-based real-time requirements focus on a systems per-
formance for a single set of events, throughput requirements consider a systems
performance over a longer duration. This means, the number of messages per
time that a system has to deliver or to process repeatedly is constrained [9]. In
MSC, this can be expressed using loop inline expressions with time constraints.

The throughput one PCO pattern shown in Fig. 4 captures a throughput
requirement for communication which is observed at one PCO.

The loop inline expression includes the references loopedPreamble, Respon-
seTimePattern and loopedPostamble. ResponseTimePattern refers to RTC-patterns
response time (Fig. 3a) or response time PCO (Fig. 3b). The response time
patterns define the functional behavior, which is part of the throughput require-
ment. Additional behavior, which precedes or follows the response pattern, may
be contained in the MSC references loopedPreamble and loopedPostamble.

Even if a throughput requirement is fulfilled, this does not necessarily imply
that all response time requirements are fulfilled for each of the loop’s iteration
(e.g., due to bursty behavior and buffers inside the system). Thus, when inserting
a response time pattern into the throughput pattern, it has to be considered
whether only the functional behavior of a response time pattern is desired or

RT Communication Patterns Using MSC and their Application to Testing 7

msc ThroughputTwoPcoPattern

pcor |, OStM peop
decomposed

loop| <n> J

loopedPreamble

I
LatencyPattern

I
loopedPostamble

A
|
|
|
(t1,t2) |
|
|
|
V-

Fig. 5. Throughput pattern with two PCOs

also an additional real-time constraint. In the first case, the delay pattern has
to be instantiated with the time interval [0, co) which is equivalent to removing
the real-time constraint from the response time pattern. The latter case leads to
requirements for periodic events and their jitter (see next section).

The given throughput pattern constrains a throughput 7P to be % < TP <
% events per time unit. Note, that those “events” typically consist of a set of
events, in particular such according to one of the delay patterns presented before.

For specifying a throughput requirement, which is observed at two PCOs, the
throughput two PCO pattern shown in Fig. 5 is appropriate. This RTC-pattern
re-uses the latency pattern (Fig. 2) for describing the functional behavior, which

is part of the throughput requirement.

Periodic Events and Jitter In contrast to throughput requirements, require-
ments for periodic events have to hold for each single execution of a periodic
event. Like for the throughput requirement, iteration of events can be obtained
using MSC loop inline expressions — but for periodic requirements, the time
constraint is contained inside the loop. Depending on the numbers of involved
PCOs, several patterns are possible. In this paper, we can only present some
selected cases.

The first class of periodic requirements can be obtained, if delay patterns are
put inside the loop. As an example, Fig. 6 shows a cyclic response time pattern,
where the response time pattern from Fig. 3a has been chosen as delay pattern.
Thus, the expressed real-time requirement is that the response time needs to
hold every iteration of the loop.

Such MSCs can also be interpreted as delay jitter specifications. Delay jitter
describes the variation of the delay during repetition. Note, that several interpre-
tations of “jitter” exist [11]. Here, we use the following definition: J; = D; — D,
where D is the ideal (target) delay, D; the actual delay of the i*" pair of events
and thus J; the jitter in the i*" repetition. Hence, a delay jitter requirement

8 Helmut Neukirchen, Zhen Ru Dai, and Jens Grabowski

msc CyclicResponseTimePattern

System
PCO decomposed

| N |
loop <n>

 loopedPreamble |

T
|

2
v _ .

loopedPostamble
——— —

Fig. 6. Expansion of a looped response time pattern

msc PeriodicResponseStimulusPattern

Syst
PCO decgrsn:rtr)]sed
LI
loop| <n> J

(tl'f22+\; [loopedPreamble]

- — 1

(\ _ \mx
loopedPostamble

Fig. 7. Periodic response stimulus pattern

for the overall sequence of delays is expressed by the following inequation:
Vi JJ- < J; < JV, where J~ is the maximal allowed deviation below and
J7T the maximal allowed deviation above the target delay D.

The RTC-pattern in Fig. 6 expresses a target delay D for which t; < D < t,
holds and a delay jitter requirement with J— = t; — D and J* =ty — D. Le.,
the interval (t1,t2) could alternatively be written as (D + J~, D + J71).

While time constraints for delays can be easily expressed using MSC, it is not
possible to express the periodicity of cyclic events, i.e., a frequency. The reason is,
that standard MSC does not allow to attach time constraints to a pair of events
which spans over adjacent repetitions of a loop. Thus, MSC extensions for either
high-level MSC [15] or plain MSC [14] have been suggested. The notation for

RT Communication Patterns Using MSC and their Application to Testing 9

msc PeriodicResponseStimulusUnrolled

System
PCO decomposed

| | | |

1
loopedPostamble

. E—

Fig. 8. Pattern of Fig. 7 with unrolled loop

the extension of plain MSC is shown in Fig. 7. The semantics of this extension
can be obtained by unrolling that loop as shown in Fig. 8.

The periodic response stimulus pattern in Fig. 7 specifies a periodic sending
of message ml to the system. The requested periodicity ¢ is specified as an
additional parameter of the time interval. Likewise to delay jitter, a jitter for
the periodicity or frequency jitter respectively is also specified by this pattern
via t1 and t2, i.e. periodicity jitter requirement with J~ = t; —f and J© = t5 —%.

Further patterns can be obtained if two PCOs are used or the periodicity con-
straint is attached to another event, e.g., if the frequency of a message reception
at a PCO should be constrained.

3 Application to Testing

In the previous section, it was shown how MSC RTC-patterns can be applied
for specifying real-time requirements. In this section, we demonstrate how the
RTC-patterns can be used for test development with TrmEpTTCN-3. First, we
describe how to associate RTC-pattern to TrmEDTTCN-3. Then, we provide an
application of this approach using an example.

10 Helmut Neukirchen, Zhen Ru Dai, and Jens Grabowski

3.1 Applying RTC-Patterns to TimEpTTCN-3

TrmeDTTCN-3 [3] is a real-time extension for TTCN-3 [5]. It introduces the
concept of absolute time, extends the TTCN-3 logging mechanism, supports
online and offline evaluation of tests and adds the new test verdict conf to the
existing TTCN-3 test verdicts.

This section does not introduce the TimEDTTCN-3 language in detail. How-
ever, the presented TiMEDTTCN-3 code should be understandable for readers
with some basic knowledge of common programing languages like, e.g., C++.
Further details about TTCN-3 and TtMEDTTCN-3 can be found in [3] and [5].

TivepTTCN-3 distinguishes between two different evaluation mechanisms
for real-time requirements. On the one hand, online evaluation refers to the
evaluation of a real-time requirement during the test run. On the other hand,
offline evaluation means to evaluate a real-time requirement after the test run.
We explain both by presenting the online evaluation of a latency requirement
and by describing the offline evaluation of a throughput requirement.

Fig. 9 shows the TtMmEDTTCN-3 code fragment, which is related to the la-
tency RTC-pattern. The relevant events for measuring the latency of two events
are the sending of message ml and receiving of message m1 (cf. Fig. 2). Thus,
before m1 is sent to the SUT and after m1 is received, the points in time are
measured and stored in the variables timeA and timeB (lines 2 and 6 of Fig. 9).
The online evaluation function for latency is called in Line 7 with the parameters
of the measured time values, i.e., timeA and timeB, and the allowed timebounds
which are supposed to be stored in t1 and t2.

The definition of the function evalLatencyOnline can be found in the lines 6-15
of Fig. 11. Fig. 11 is an excerpt of the library module EvaluationFunctionModule,
which embodies all functions for real-time evaluations.

In Fig. 9, function evallLatencyOnline is called in Line 7 within a setverdict
operation. Depending on the time measurement, the function returns a pass
verdict, if the real-time requirement is met, or a conf verdict (=non-functional
fail) if the requirement is not met. The setverdict operation sets the verdict of
the test case to the result of evalLatencyOnline.

(1) wvar float timeA, timeB;

timeA := self.now;

PCOl.send(m1l);

furtherEvents();

PCO2.receive(ml);

timeB := self.now;
setverdict(evalLatencyOnline(timeA, timeB, t1, t2));

NN N~~~
~N O Ot i~ W N
—

Fig. 9. TiMEDTTCN-3 Code for online latency evaluation

RT Communication Patterns Using MSC and their Application to Testing 11

(1) testcase ThroughputOffline(integer n) {
(2) wvar integer i;

(3) log(myTimestampType:{”loopBegin”, self.now});
(4) for (i:=0; i < n; i:=i+1) {

(5) loopedPreamble();

(6) LatencyPattern();

(7) loopedPostamble();

)}

(9)

log(myTimestampType:{”"loopEnd”, self.now});

(10) }

(11) control {

(12) wvar testrun myTestrun;

(13) wvar logfile myLog;

(13) wvar verdicttype myVerdict;

(14) myTestrun := execute(ThroughputOffline(n));

(15) myVerdict := myTestrun.getverdict;

(16) if (myVerdict == pass) {

(17) myLog := myTestrun.getlog;

(18) myVerdict := evalThroughputOffline(”loopBegin”, ”loopEnd”,
n/upperbound, n/lowerbound, n, myLog);

19) myTestrun.setverdict(myVerdict);

(
(20) }
(

Fig.10. TiMEDTTCN-3 Code for offline throughput evaluation

Lines 1-10 in Fig. 10 depict a code fragment for a test case developed with
the throughput two PCO pattern (cf. Fig. 5) that uses the offline evaluation
mechanism for the throughput requirement. The events relevant for throughput
are executed in a loop. Since for throughput only the overall duration is of
interest, only the time points immediately before and after the execution of the
loop construct are measured and stored in a logfile (lines 3 and 9 of Fig. 10).
Each entry of the logfile contains the name of the event and the associated time
value, which is gained by the self.now statement.

In order to perform the offline evaluation, first test case ThroughputOffline is
invoked in the control part of the TrmEpTTCN-3 module (Line 14 of Fig. 10) and
afterwards, the verdict of the functional behavior is checked (lines 15 and 16).
If the functional verdict is a pass verdict, the real-time requirement will be
evaluated. For that, the logfile is retrieved (Line 17) and the evaluation function
eval ThroughputOffline is called (Line 18). The parameters of the function are the
identifiers of the logfile entries, the upper and lower throughput bounds®, the
number of iterations and the logfile generated by the test case.

5 The throughput bounds are calculated from the number of iterations and the interval
bounds.

12 Helmut Neukirchen, Zhen Ru Dai, and Jens Grabowski

(1) module EvaluationFunctionModule() {

(2) type record ThroughputTimestampType {

(3) float logTime,

(4) charstring id

®)

(6) function evalLatencyOnline(float sendSigTime, float receiveSigTime,

float lowerbound, float upperbound) return verdicttype {
var float timeDiff;
timeDiff := receiveSigTime - sendSigTime;
if ((lowerbound <= timeDiff) and (timeDiff <= upperbound)) {
return pass; // non-functional pass
}
else {
return conf; // non-functional fail
}

}

function evalThroughputOffline(charstring loopEntry, charstring loopExit,
float lowerThroughput, float upperThroughput, integer n, logfile timelog)
return verdicttype {

== e e~~~
UL W N~ O O o
NN AN AN NN NN

—_
(=)

}
}

(17) var TimestampType stampA, stampB;

(18) var float timeDiff;

(19) if (timelog.first(TimestampType:{?,-}, TimestampType:{?, loopEntry}) == true) {
(20) stampA := timelog.retrieve;

(21) // Get current timestamp entry

(22) if (timelog.next(TimestampType:{?, loopExit}) == true) {
(23) stampB := timelog.retrieve;

(24) // Get current timestamp entry

(25)

(26) else {

(27) return fail; // Error while retrieving log

(28))

(29)

(30) else{

(31) return fail; // Error while retrieving log

(32) }

(33) timeDiff := stampB.logTime - stampA.logTime;

(34) if ((lowerThroughput < n/timeDiff) and (n/timeDiff < upperThroughput)) {
(35) return pass; // non-functional pass

(36) }

(37) else{

(38) return conf; // non-functional fail

(39)

(40)

(41)

}

Fig. 11. Module with evaluation functions

RT Communication Patterns Using MSC and their Application to Testing 13

The definition of function evalThroughputOffline can also be found in the li-
brary module EvaluationFunctionModule (lines 16-40 of Fig. 11). The function has
six parameters: the labels of the entry and exit time stamps of the loop (loopEntry,
loopExit), the lower and upper throughput bounds (lowerThroughput, upperThrough-
put), the number of iterations (n) and the logfile to evaluate (timelog). Lines 19-32
navigate to the relevant time stamps in the logfile and retrieve the entries: The
operation first (Line 19) sorts the logfile entries and moves a cursor to the first
matching entry in the logfile. A ”?” indicates the field that is used as a sorting
key. The second parameter of the first operation is used to move the cursor to the
entry which relates to the loopEntry. The logfile entry which matches, is extracted
by the retrieve operation (Line 20). The operation next (Line 22) advances the
cursor to the subsequent time stamp with a label identified by loopExit. The cal-
culation of the actual throughput value is performed in lines 33—-39 based on the
arithmetic expression for throughput presented in Section 2.2. Depending on the
evaluation, the function returns a pass verdict, if the real-time requirement is
met, or a conf verdict if the requirement is violated.

In Fig. 10, the offline evaluation function is called in Line 18. The result of
the function call is then used to set the final verdict of the test case (Line 19).

3.2 The Inres Example

Fig. 12 shows an MSC test purpose for testing an Initiator implementation of the
Inres protocol [8] with real-time requirements. The Inres system can be accessed
via the PCOs ISAP and MSAP. The functional requirement of the test purpose
is to test 100 data transfers. For doing this, a connection needs to be established.

msc InresRTexample
inres
I [suT] [MsAP]
[Connection_Establishment]
(0.1s,1.0s)
: loop <1005]|
i
! v'A;”; IDATreq (‘data’)
ol MDATind (DT, number, 'data’) |
! I
S 2 R I
: [1ms,5ms]|
0 MDATreq (AK, number)
1 I <
I
LY
[Connection_Release]
g
" ThroughputPattern i LatencyPattern

Fig. 12. Test purpose for the Inres example

14 Helmut Neukirchen, Zhen Ru Dai, and Jens Grabowski

After the test, the connection has to be released. The real-time requirements of
the test purpose are to test:

)

)

) testcase InresRTexample() runs on inres {
) var integer i;

) var float timeBegin, timeEnd;

) var verdicttype myVerdict;

) Connection_Establishment();

) // throughput pattern scheme begin

) log(ThroughputTimestampType:{self.now, ”loopBegin” });
) for (i:=0; i<100; i:=i+1) {

) // latency pattern scheme begin

) timeBegin := self.now;

) ISAP.send(IDATreq:{"data” });

) MSAP.receive(MDATind:{DT, number, "data” });
) timeEnd := self.now;

) my Verdict := evalLatencyOnline(timeBegin, timeEnd, 0.001, 0.005);
) setverdict(myVerdict);

) // online evaluation of latency.

) // latency pattern scheme end;

) MSAP.send(MDATreq:{AK, number});
)}

) log(ThroughputTimestampType:{self.now, "loopEnd” });
) // offline evaluation of throughput in control part;

) // throughput pattern scheme end.

) Connection_Release();

) setverdict(pass);

) stop;

)

)

)

)

)

)

)

)

)

)

)

control {
var testrun myTestrun;
var logfile myLog;
var integer i;
var verdicttype myVerdict;
myTestrun := execute(InresRTExample);
my Verdict := myTestrun.getverdict;
if (myVerdict == pass) {
myLog := myTestrun.getlog;
my Verdict := evalThroughputOffline(”loopBegin”, "loopEnd”,
100/1.0, 100/0.1, 100, myLog);
// offline evaluation function of throughput
myTestrun.setverdict(my Verdict);

Fig. 13. Test case generated from Fig. 12

RT Communication Patterns Using MSC and their Application to Testing 15

1. a latency constraint between the signals IDATreq and MDATind, and
2. a throughput constraint on the loop construct.

When scanning through the given MSC diagram, the RTC-pattern for latency
and throughput with two PCOs (Section 2.2) can be recognized. The shaded areas
in Fig. 12 show where both patterns are located in the diagram.

In this example, the latency between IDISreq and MDATind shall be evaluated
during the test execution (i.e., online) and the throughput of the loop construct
after the test execution (i.e., offline). The MSC diagram does not define which
evaluation mechanism is desired since the MSC language does not provide the
possibility to express those kind of requirements. We consider such information
as directives for a code generation algorithm.

In the previous section, we have introduced the TiMEDTTCN-3 code frag-
ments and evaluation functions for online latency and offline throughput require-
ments (Figures 9, 10 and 11). Now, we shall utilize them in our example.

Fig. 13 shows the TiMmEDTTCN-3 code for the Inres example, which can be
generated automatically from the MSC diagram in Fig. 12. The module Inres-
RTexampleModule (Fig. 13) imports all evaluation functions and types from the
library EvaluationFunctionModule (Line 2). It contains only one test case called
InresRTexample (lines 3-28) and the module control part (lines 29-42).

Test case InresRTexample starts with a connection establishment (Line 7). Af-
ter connection establishment, points in time for the throughput measurement
are logged. Analogous to the throughput code fragment, the time value and
the event names are stored in the logfile just before the for loop contruct starts
and just after it terminates (lines 9 and 22 in Fig. 13). These logged informa-
tions are accessed after the test run for the offline evaluation of the throughput
requirement.

The online evaluation of latency between the signals IDATind and MDATreq
is executed within the test case in lines 12-16. According to the code fragment
presented in Section 3.1, the time before and after the time-critical events IDATreq
and MDATreq are stored in the variables timeBegin and timeEnd. The evaluation
is performed during the test run (Line 16) and the verdict of the test case is set
in Line 17.

In the control part (lines 29-42), the throughput evaluation function is in-
voked. After the test case InresRTExample has been successfully executed regard-
ing its functional behavior (lines 34-36), the logfile is fetched (Line 37) and
the offline evaluation function evalThroughputOffline is called (Line 38). The final
verdict is set with respect to the outcome of the evaluation function (Line 40).

4 Summary and Outlook

In this paper, MSC-based RTC-patterns for the specification of delay, through-
put and periodic real-time requirements of communication systems have been
presented. We demonstrated, how test development is eased, since pre-defined
TiMEDTTCN-3 evaluation functions can be associated to each RTC-pattern.

16 Helmut Neukirchen, Zhen Ru Dai, and Jens Grabowski

RTC-patterns may also improve the requirements definition and the specifi-
cation phase of an integrated development methodology for real-time communi-
cation systems. For this, the formalisation of instantiation and composition of
MSC-based RTC-patterns has to be studied. A formalization is possible due to
the formality of MSC. Further investigations on the required MSC extensions,
tool support and the usability of such an approach is necessary. Such investiga-
tions will be the focus of our future work.

Furthermore, we will implement support for RT'C-patterns in our tool, which
translates MSC test descriptions into TrmMEDTTCN-3 test cases. This includes
also the provision of a library of generic evaluation functions for the RT'C-patterns.

References

1. ATM Forum Performance Testing Specification (AF-TEST-TM-0131.000). The
ATM Forum Technical Committee, 1999.

2. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture — A System of Patterns. Wiley, 1996.

3. Z.R. Dai, J. Grabowski, and H. Neukirchen. TIMEDTTCN-3 — A Real-Time Ex-
tension for TTCN-3. In I. Schieferdecker, H. Konig, and A. Wolisz, editors, Testing
of Communicating Systems, volume 14, Berlin, March 2002. Kluwer.

4. Z.R. Dai, J. Grabowski, and H. Neukirchen. TIMEDTTCN-3 Based Graphical
Real-Time Test Specification. In D. Hogrefe and A. Wiles, editors, Testing of Com-
municating Systems, volume 2644 of Lecture Notes in Computer Science (LNCS).
Springer, May 2003.

5. ETSI European Standard (ES) 201 873-1 (2002). The Testing and Test Control No-
tation version 3; Part 1: TTCN-3 Core Language. European Telecommunications
Standards Institute (ETSI), Sophia-Antipolis (France), also published as ITU-T
Rec. Z.140.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

7. B. Geppert. The SDL Pattern Approach — A Reuse-Driven SDL Methodology for
Designing Communication Software Systems. PhD thesis, University of Kaiser-
slautern (Germany), July 2001.

8. D. Hogrefe. Report on the Validation of the Inres System. Technical Report
TAM-95-007, Universitiat Bern, November 1995.

9. Request for Comments 1193: Client requirements for real-time communication ser-
vices. Internet Engineering Task Force (IETF), 1990.

10. Request for Comments 1242: Benchmarking Terminology for Network Interconnec-
tion Devices. Internet Engineering Task Force (IETF), July 1991.

11. Request for Comments 3393: IP Packet Delay Varation Metric for IP Performance
Metrics (IPPM). Internet Engineering Task Force (IETF), November 2002.

12. ITU-T Rec. Z.100 (1999). Specification and Description Language (SDL). Inter-
national Telecommunication Union (ITU-T), Geneve.

13. ITU-T Rec. Z.120 (1999). Message Sequence Chart (MSC). International Telecom-
munication Union (ITU-T), Geneve.

14. H. Neukirchen. Corrections and extensions to Z.120, November 2000. Delayed
Contribution No. 9 to ITU-T Study Group 10, Question 9.

15. T. Zheng and F. Khendek. An extension to MSC-2000 and its application. In
Proceedings of the 3rd SAM (SDL and MSC) Workshop, 2002.

