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Abstract. At any level of computer networks, interoperability testing
generally deals with several components that communicate while trying
to provide a designated service. When a component remains silent, the
assigned testing verdict is generally Fail, assuming that its behavior is
non-conformant. Sometimes, this silence may be anticipated given the
component’s specifications. In these cases, the fail verdict is not unsatis-
factory. In this paper, we show that “quiescence management” improves
interoperability testing. Based on formal definitions of interoperability
testing, we introduce new definitions that take into account the possi-
ble quiescence of components under test. Through several examples and
scenarios, we show that these new definitions detect non-interoperability
cases with higher precision. Moreover, these new definitions more clearly
distinguish specification-driven quiescences from others, leading to unbi-
ased interoperability tests with accurate verdicts.

1 Introduction

Different methods have been developed to test network components. Among
these methods, we will focus on conformance and interoperability testing. Con-
formance testing evaluates the ability of a component to behave as described
in its specification, generally a standard. Interoperability testing deals with the
ability of two or more components to interact in an operational environment.
This notion can be intuitively defined by the capacity of two or more compo-
nents to behave as described in their specification during their interaction, to
communicate correctly together, and to provide the foreseen service.

Conformance testing is precisely characterized : testing architectures and con-
formance relations [1, 2, 3, 4] were defined. This allows automatic test generation
and execution. This is not the case for interoperability testing although some
definitions exist in [5, 6, 7]. Two main reasons explain the current situation :
interoperability is more often regarded as being a practical requirement than
conformance is. Yet conformance testing is also considered as being prerequisite
to the achievement of interoperability.



Conformance and interoperability concern the same objects (implementa-
tions, specifications, etc). For this reason, the different attempts to define the
notion of interoperability use the concepts and theory defined for conformance
testing. In [5], interoperability testing architectures and interoperability relations
were defined. An interoperability relation defines the conditions that two imple-
mentations must satisfy to be considered interoperable. These interoperability
definitions do not manage possible quiescence of implementations and this leads
to incorrect verdicts during testing. For a black-box testing point of view, an
implementation is quiescent when no observable event occurs. Quiescence may
be foreseen in the specification. In this case, quiescence of an implementation
should not be considered as a wrong behaviour. Based on the interoperability
relations defined in [5], new interoperability relations with quiescence manage-
ment have been defined. We show that these new relations can help in solving
this problem.

This paper is structured as follows. First the model and notations used for
the interoperability definitions are presented in Section 2. In Section 3, we sum-
marize the interoperability definitions of [5]. Some testing results obtained with
these definitions are presented in Section 4. The new interoperability relations
with quiescence management are defined in Section 5. Then, the new testing
results with these relations are presented in Section 6 showing the contribution
of quiescence management in interoperability testing. Finally, conclusion and
future work are to be found in Section 7.

2 Model and notations

The model used to provide formal interoperability definitions, and which we
consequently use, is the model of the IOLTS (Input-Output Labeled Transition
System) [4]. We use it to model specifications. As usual in the black-box testing
context, we also need to model implementations, even if their behaviors are
supposedly unknown. They will also be represented by an IOLTS.

2.1 IOLTS model

Definition 1. An IOLTS is a tuple M = (QM ,ΣM ,∆M , qM
0 ) where

– QM is the set of states of the system and qM
0 ∈ QM is the initial state.

– ΣM denotes the set of observable (input and/or output) events on the in-
teraction points (with the environment) of the system. We note p?a for an
input event and p!a for an output event with p as an interaction point on
which the event is executed and a as the message.

– ∆M ⊆ QM × (ΣM ∪ τ) × QM is the transition relation, where τ 6∈ AM

denotes an internal event. We note q
α
→M q′ for (q, α, q′) ∈ ∆M .

Let us consider an IOLTS M , and let α ∈ ΣM with α = p.{?, !}.m, µi ∈
ΣM ∪ τ , σ ∈ (ΣM)∗, q, q′, qi ∈ QM:



– q
µ1...µn

−→ M q′ =∆ ∃ q0 = q, q1..., qn = q′, ∀i ∈ [1, n], qi−1
µi

→M qi.

– q
ε
⇒M q′ =∆ q = q′ or q

τ...τ
−→M q′.

– q
α
⇒M q′ =∆ ∃ q1, q2, q

ε
⇒M q1

α
→M q2

ε
⇒M q′.

– q
σ
⇒M q′ =∆ q

µ1···µn

=⇒ M q′ =∆ ∃ q0 = q, q1 . . . , qn = q′, ∀i ∈ [1, n], qi−1
µi

⇒M

qi, σ = µ1 · · ·µn.
– out(q) =∆ {α ∈ ΣM

O
| ∃ q′ and q

α
−→M q′} is the set of outputs from q.

– q after σ =∆ {q′ ∈ QM | q
σ
⇒M q′} is the set of states which can be reached

from q by the sequence of actions σ. By extension, all the states reached
from the initial state of the IOLTS M is (qM

0 after σ) and will be noted by
(M after σ). In the same manner, Out(M, σ) =∆ out(M after σ).

– Traces(q) =∆ {σ ∈ (ΣM)∗ | q after σ 6= ∅} is the set of possible observable
traces from q. And, Traces(M) =∆ Traces(qM

0 ).

– µ̄= p!a if µ = p?a and µ̄ = p?a if µ = p!a. For internal events, τ̄ = τ .

2.2 Some definitions

In interoperability testing, we usually need to observe some specific events among
all possible traces of an IUT. These traces, reduced to the expected messages,
can be obtained by a projection of those traces on a set. This latter being used
to select the expected events.

Definition 2. Let us consider an IOLTS M , a trace σ ∈ (ΣM )∗, α ∈ ΣM ,
and a set X. The projection of σ on X is noted by σ/X and is defined by :
ε/X = ε, (α.σ)/X = σ/X if α 6∈ X, and (α.σ)/X = α.(σ/X) if α ∈ X.

Definition 3 (Projection of an IOLTS on a set). Let us consider an IOLTS
M = (Q, Σ, ∆, q0), a set X. The projection of M on the set of events X is noted
by M/X and is defined by :

– MX = (Q, ΣX , ∆(X), q0)
∀(q1, a, q′1) ∈ ∆, a ∈ X, (q1, a, q′1) ∈ ∆(X), a ∈ ΣX

∀(q1, a, q′1) ∈ ∆, a /∈ X, (q1, τ, q
′
1) ∈ ∆(X), a /∈ ΣX

– M/X = (M/X, ΣM/X , ∆M/X , qX
0 ) is the IOLTS MX obtained after deter-

minization :

• QM/X = 2Q

• ΣM/X = Σ \ {a ∈ Σ|a /∈ ΣX}.
• qX

0 = q0 after ε
• ∆M/X is obtained as : (p, a, p′) ∈ ∆M/X if p = p′ after a, with p, p′

∈ 2Q and a ∈ ΣM/X .

Interoperability testing concerns the interaction of two or more implemen-
tations. In order to provide a formal definition of interoperability, we need to
model interaction. This is done in the definition 4. In this definition, ΣU and ΣL

are the set of events on the different interaction points as described in the testing
architecture (figure 1 of section 3.1).



Definition 4 (Synchronous interaction ‖S). The synchronous interaction of
two IOLTS M1 and M2 is noted M1‖SM2 = (QM1 ×QM2 , ΣM1‖SM2 , ∆M1‖SM2 ,
(qM1

0 ,qM2

0 )) with ΣM1‖SM2 ⊆ ΣM1∪ ΣM2 , and the transition relation ∆M1‖SM2

is obtained as follows : ∀(q1, q2) ∈ QM1 × QM2 ,

(q1, a, q′1) ∈ ∆M1 , a ∈ ΣM1

U ∪ {τ}

((q1, q2), a, (q′1, q2)) ∈ ∆M1‖SM2

,
(q2, a, q′2) ∈ ∆M2 , a ∈ ΣM2

U ∪ {τ}

((q1, q2), a, (q1, q′2)) ∈ ∆M1‖SM2

(1)

(q1, a, q′1) ∈ ∆M1 , (q2, ā, q′2) ∈ ∆M2 , a ∈ ΣM1

L , ā ∈ ΣM2

L

((q1, q2), a, (q′1, q
′
2)) ∈ ∆M1‖SM2

(2)

3 Summary of quiescence-less interoperability relations

Interoperability testing can be defined as a set of procedures used to verify
if two or more implementations interact correctly. This test is not precisely
characterized as conformance testing and is often considered as a pragmatic
and a practical requirement. But different attempts to define interoperability
exist [5, 8, 9, 7, 10, 6]. For the quiescence management, we used interoperability
definitions of [5] called interoperability relations. These relations are based upon
ioconf conformance relation and do not manage quiescence. These relations
consider the testing architecture presented in section 3.1 and are presented in
Section 3.2.

3.1 Test architectures

In order to provide a formal definition of interoperability testing, we have taken
into consideration the general testing architecture of figure 1. Different architec-
tures may be obtained from this architecture as described in [11, 8, 7, 12].

This testing architecture is composed of two interacting IUTs. Each of these
two IUTs has two kind of interfaces : UIi and LIi which are the Upper Interfaces
and the Lower Interfaces through which the implementation communicates with
its upper and lower layers. Testers are linked to these interfaces : UTi (Upper
Tester) and LTi (Lower Tester). Depending on the accessibility of the interfaces,
these testers can or can not exist. Thus, we obtained different testing architec-
tures. The unilateral, bilateral and global interoperability testing architectures
respectively correspond to the architecture with testers which observe/control
interfaces of a unique implementation, both implementations separately or both
implementations together. We can also distinguish architectures according to the
accessibility of upper or lower interfaces. In this paper, we only consider the case
of the accessibility of both interfaces : this architecture is called total.
With this architecture, the set ΣM of observable events of the definition 1 can
be decomposed as follows : ΣM = ΣM

U ∪ΣM

L , where ΣM

U (resp. ΣM

L ) is the set of
messages exchanged on the upper (resp. lower) interface. ΣM can be also decom-
posed in order to distinguish input messages from output messages. ΣM = ΣM

I

∪ΣM

O , where ΣM

I (resp. ΣM

O) is the finite set of input (resp. output) messages.
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Fig. 1. General architecture of interoperability testing

3.2 Interoperability relations

In [5], different interoperability relations have been defined. These relations for-
mally specify conditions to be satisfied by two implementations in order to be
considered interoperable. These interoperability relations are based upon a con-
formance relation : the ioconf conformance relation defined in [4] as follows

Definition 5 (Conformance Relation ioconf).
I ioconf S =∆ ∀σ ∈ Traces(S), Out(I, σ) ⊆ Out(S, σ) .

Remark : In the conformance testing theory, the implementations are input-
completed : in each state, an implementation is supposed to be able to receive
any input message on any (upper or lower) interface. In the context of interop-
erability testing, testers can only control the upper interfaces, but not the lower
interfaces which are only observable. Thus, the input-completion of the imple-
mentations concerns only events on the upper interfaces in this context.

The interaction considered is asynchronous : Mi‖Mj = Mi‖SE‖SMj where E
represents the asynchronous environment between the two IOLTS.

Definitions of the interoperability relations without quiescence man-
agement Different interoperability relations were defined depending of the con-
sidered testing architecture and thus, of the access on the different interfaces.
The unilateral total interoperability relation R1 consider the case where we have
only access to one IUT. This relation is based on the fact that, during the inter-
action between I1 and I2, the least we can expect from the implementation I1

is to behave as expected according to its specification S1.



Definition 6 (Unilateral Total Interoperability Relation R1).
R1(I1, I2) =∆ ∀σ1 ∈ Traces(S1), ∀σ ∈ Traces(S1‖S2), σ/ΣS1 = σ1 ⇒

Out((I1‖I2)/ΣI1 , σ) ⊆ Out(S1, σ1).

The relation R1 can be applied independently to I2 (based on the specifica-
tion S2). The bilateral lower interoperability relation corresponds to the relation
R1 applied for both I1 and I2.

Definition 7 (Bilateral Total Interoperability relation R2).
R2(I1, I2) =∆ R1(I1, I2) ∧ R1(I2, I1).

The global total interoperability relation R3 is based on the global behavior of
the interactions between respectively : specifications S1‖S2 and implementations
I1‖I2.

Definition 8 (Global Total Interoperability relation R3).
R3(I1, I2) =∆ ∀σ ∈ Traces(S1‖S2), Out(I1 ‖I2, σ) ⊆ Out(S1‖S2, σ).

Remark : In [5], the formal interoperability relation definitions do not cor-
respond to their literal definitions. Indeed, different relations have been defined
corresponding to the different possible testing architectures. Thus, the interop-
erability relations must consider only events observable with the corresponding
architecture during testing. But the interoperability relations were written in
such a way that the traces also include non-observable events. For this reason,
the formal definition of the interoperability relations were rewritten. The inter-
operability relations presented above are the corrected relations.

The properties of the interoperability relations proved in [5] are still true
because the proofs were based on the literal definitions of the relations. Some of
these properties are :

– R3
∼=R R2 : this equivalence suggests that we may avoid the construction

of the interaction of the specification.
– I1 ioconf S1 ⇒ R1(I1, I2), and I1 ioconf S1 ∧ I2 ioconf S2 ⇒ R2(I1, I2) =

R3(I1, I2) : two implementations conformant to their specification in the
sense of ioconf are considered interoperable with these interoperability re-
lations.

4 Interoperability testing without quiescence

management : some examples

On the example of the figure 2, let us consider these four interactions : I1 with
I4, I2 with I4, I3 with I4, and I1 with I5. The results with the interoperability
relations on these interactions are :

– For I1 and I4, we have : R1(I1, I4), R1(I4, I1), R2(I1, I4) and R3(I1, I4).
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Fig. 2. Specification S and implementations I1, I2, I3, I4 and I5

– For I2 and I4, we have : ¬R1(I2, I4), R1(I4, I2), ¬R2(I2, I4) and ¬R3(I2, I4).
– For I3 and I4, we have : R1(I3, I4), R1(I4, I3), R2(I3, I4) and R3(I3, I4).
– For I1 and I5, we have : R1(I1, I5), R1(I5, I1), R2(I1, I5) and R3(I1, I5).

This last result is unsatisfactory given I5 sends a message that is unexpected
in I1. With an intuitive definition of interoperability, I1 and I5 should be con-
sidered non-interoperable.

Given the test architecture considered, the interoperability scenario (for each
interaction) begins with the tester T1 sending A to the upper interface of I1

(or I2). Then, the testers can not control the scenarios but only observe the
message sent and received on the lower interfaces (communication between the
two IUT). Testers can also receive messages sent by the IUT on its upper inter-
face.

Notation : for the scenario description, the events in the traces are noted :
• For the exchange between a tester and an implementation Ux{!, ?}m

where x is the number of the concerned IUT, {?, !} the kind of the message from
the point of view of the IUT, and m the message.

• For the exchange between the two implementations in interaction, the
sending and the reception are modeled as explained in the definition 1 (cf. Sec-
tion 2.1) with the number of the IUT concerned.

Thus the scenarios of interaction are :

1. For I1 and I4, we have : U1?A.l1!a.l4?a.l4!b.l1?b.U1!B.
2. For I2 and I4, we have : U2?A.l2!a.l4?a.l4!b.l2?b.U2!C.
3. For I3 and I4, we have : U3?A.l3!a.l4?a.l4!b.l3?b.
4. For I1 and I5, we have : U1?A.l1!a.l5?a.l5!c (with no reception of c by I1).

For the second scenario (interaction of I2 and I4), the verdict of the test (when
testing R1(I2, I4) or R3(I2, I4)) is FAIL because of the output U2!C which is not
allowed in the specification S2 after the trace U2?A.l2!a.l4?a.l4!b.l2?b (only U2!B
is allowed after this trace).



For the other scenarios above (1, 3 and 4), the verdicts are also FAIL whereas
the corresponding interoperability relations are verified. The reason is the ab-
sence of quiescence management in the interoperability relations used as a basis
for the tests. Indeed, in practice, quiescence is observed with timers : after each
event a timer is started and a situation of quiescence is observed if a timeout
occurs (the timer is restarted after each other event). All the scenarios presented
terminate : after the last event takes place, the implementation does not return
to the initial state. Thus, after the last event of the scenario, a timer is started.
As there is no other event that can occur, a timeout is observed. The verdict
is FAIL because this timeout (and quiescence corresponding) is considered as a
not-allowed output of the implementations in interaction. But this quiescence
can be foreseen in the specifications. In this case, the verdict must not be FAIL.
For this reason, it is necessary to manage quiescence in interoperability relations.

5 Quiescence management

To manage quiescence, we need to model this kind of event. The definition 1
of the IOLTS does not model quiescence. This is done in Section 5.1. Then,
the operations on the IOLTS used in the interoperability relations are rewritten
with quiescence management in Sections 5.2 and 5.3. Finally, the interoperability
relations with quiescence management are defined section 5.4.

5.1 Quiescence and suspensive IOLTS

Three main situations lead to quiescence of a system :

– A deadlock corresponds to a state after which no event is possible : q ∈
deadlock(M) =∆ Γ (q) = ∅.

– An outputlock corresponds to a state after which only transitions labeled
with input exist and none of these inputs are observed. This is noted : q ∈
outputlock(M) =∆ Γ (q) ⊆ ΣM

I .
– A livelock corresponds to a loop of internal events : q ∈ livelock(M) =∆

∃τ1, · · · , τn, q
τ1,··· ,τn

→ q.

Thus, q ∈ quiescent(M) =∆ q ∈ deadlock(M) ∨ q ∈ outputlock(M) ∨ q ∈

livelock(M). A quiescence state q ∈ quiescent(M) is modeled by q
δ
→M q where δ

is treated as an observable output event. The obtained IOLTS is called suspen-
sive IOLTS [13, 2] and is noted ∆(M).

To study quiescence management in the interoperability relations, we con-
sider the conformance relation ioco [13].

Definition 9 (Conformance Relation ioco). I ioco S =∆ ∀σ ∈ STraces(S)(=
Traces(∆(S))),
Out(∆(I), σ) ⊆ Out(∆(S), σ)



Quiescence management in some operations used in the interoperability rela-
tions of [5] needs to be studied. These operations are the projection of an IOLTS
on a set and the interaction between implementations.

5.2 Projection with quiescence

To calculate the projection of an IOLTS M on a set X , the problem is to preserve
information on all quiescent states. The steps to calculate this projection are :

1. Calculation of ∆(M)
2. Substitution of events of X̄ by internal events
3. Calculation of livelocks : these livelocks can be due to the precedent step.
4. Determinization

The steps 2 and 4 are the two steps of the calculation of the definition 3. The
steps 1 and 3 are necessary to preserve all information on quiescence.

5.3 Interaction with quiescence

The method chosen to calculate the interaction of two IOLTS with quiescence
management is a method with calculation of the suspensive IOLTS followed by
the calculation of the interaction. The steps to calculate the interaction with
quiescence on M1 and M2 are :

1. Calculation of ∆(M1) and ∆(M2).
2. Then the following rules are applied :

– Rules (1) and (2) of the definition 4 of the Section 2.2 i.e. propagation
of events on the upper interface (rule (1)) and mapping of events on the
lower interfaces (rule (2)).

– propagation of quiescence modeled in the two IOLTS : a quiescent state is

noted (q1, q2)
δ(1)
→ M (q′1, q

′
2) if (q1

δ
→M q′1) ∈ ∆(M1), (q1, q2)

δ(2)
→ M (q′1, q

′
2)

if (q2
δ
→M q′2) ∈ ∆(M2), and we have (q1, q2)

δ
→M (q′1, q

′
2) if ((q1, q2)

δ(1)
→ M

(q′1, q
′
2)) ∧ ((q1, q2)

δ(2)
→ M (q′1, q

′
2)).

– an other rule is necessary to model all quiescent states. This rule is ap-
plied on some particular states. The transitions starting from such states
are labeled with output and input on the lower interface. Thus, no qui-
escence is modeled on the state. But if only the input events can be
mapped with output events, quiescence must be modeled in the corre-
sponding state of the interaction.

3. Calculation of all the deadlocks not already modeled.

Remark : Another method to calculate this interaction is the calculation of
the interaction with the rules of the definition 4 followed by the calculation of
quiescence on the interaction. But we observe that some situations of quiescence
modeled, which are necessary for quiescence management in interoperability test-
ing, are not modeled with this method. These situations correspond to the case



where two kinds of events are possible : inputs on the upper interface of one of
the implementations (Ii) and outputs on the upper interface of the other imple-
mentation (Ij). In this case, quiescence of Ii can be allowed but not quiescence
of Ij . The corresponding δ(i) is only modeled with the chosen method of inter-
action calculation.

Notation : In the traces of a scenario, the events of the lower interface were
noted la!m.lb?m and the considered interaction was asynchronous. In the follow-
ing study on interoperability testing with quiescence management of the Section
6, the considered interaction is synchronous. Thus, to model the mapping of the
outputs and inputs on the lower interface, we note la!m(lb?m) or la?m(lb!m) for
a point of view from Ia and lb!m(la?m) or lb?m(la!m) for a point of view from Ib.

5.4 Interoperability relations with quiescence management

With these operations (projection and interaction with quiescence), new inter-
operability relations can be defined. The different between these new relations
noted Rδ

x and the relations of section 3.2 is the quiescence management : for
example, Rδ

1 can be deduced from R1 by using the projection and interaction of
sections 5.2 and 5.3.

Definition 10 (Unilateral total interoperability relation).
Rδ

1(I1, I2) =∆ ∀σ1 ∈ Traces(∆(S1)), ∀σ ∈ Traces(S1‖δS2), σ/ΣS1 = σ1 ⇒
Out((I1‖δI2)/ΣS1 , σ) ⊆ Out(∆(S1), σ1).

The other interoperability relations with quiescence management can be writ-
ten in the same way from the interoperability relations of section 3.2.

6 Interoperability testing with quiescence management

The different scenarios of interaction presented in Section 4 are studied with
quiescence management in this section.

6.1 Interaction between I1 and I4

This example of interaction corresponds to the figure 3. Allowed quiescence is
modeled on the specification : the concerned states are the states 0 and 2 with
outputlocks. Quiescence is also modeled on the IUT and on the interaction of I1

and I4. We can notice that this interaction ends with a deadlock. The results
for the interoperability relations with quiescence management on the interaction
of I1 and I4 are : Rδ

1(I1, I4), Rδ
1(I4, I1), Rδ

2(I1, I4) and Rδ
3(I1, I4). All outputs are

allowed in the specification, but also all quiescent states. Thus, with the inter-
operability relations with quiescence management, this result of interoperability
is preserved in this case.
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Fig. 3. Interaction between I1 and I4

The scenario of the interaction of I1 and I4 for a unilateral total interoper-
ability relation is : U1?A.l1!a.l1?b.U1!B. Then this scenario terminates with a
timeout (due to the deadlock at the end of the interaction). But this deadlock
is allowed in the specification S1 : the state 4 of I1 corresponds to the state 0 of
the specification where an outputlock is modeled.
The scenario of the interaction of I1 and I4 for a global total interoperability rela-
tion is : U1?A.l1!a(l4?b).l1?b(l4!b).U1!B followed by a timeout. As the quiescence
of the state 0 of S1 is propagated to the interaction of the two specifications, the
deadlock at the end of the scenario is also allowed for this architecture and the
scenario based on the corresponding interoperability relation.

Conclusion : As quiescence at the end of the scenario is allowed in the spec-
ifications, the verdict of the test is PASS. Thus with quiescence management,
the verdict corresponds to the result of the interoperability relations : all the
interoperability relations are verified for this interaction, and the verdicts of the
test based on these relations are PASS.

6.2 Interaction between I2 and I4

The results with the interoperability relations with quiescence management
on the interaction of I2 and I4 are : ¬Rδ

1(I2, I4), Rδ
1(I4, I2), ¬Rδ

2(I2, I4) and
¬Rδ

3(I2, I4). The result of non-interoperability is due to the output C on the
upper interface of I2 which is not allowed in S2 after the executed trace.

The scenario of the interaction of I2 and I4 is : U2?A.l2!a(l4?b).l2?b(l4!b).U2!C.
The verdict of this scenario is FAIL because of the output U1!C which is not
allowed in S1. For the unilateral total architecture in the point of view of I4, the
timeout is allowed in the specification S4 and the verdict is PASS : Rδ

1(I4, I2).

Conclusion : Quiescence management does not change this verdict of non-
interoperability due to a non-authorized output (for the unilateral total architec-
ture in the point of view of I2 and the global total architecture). In this scenario,
the verdicts also correspond to the result of the corresponding interoperability
relations.



6.3 Interaction between I3 and I4
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Fig. 4. Interaction between I3 and I4

For this interaction (cf. figure 4), we have I3 ioconf S but ¬I3 ioco S :
the deadlock at the end of I3 is not allowed in the corresponding state (state 3)
of S. The results with the interoperability relations with quiescence management
on the interaction of I3 and I4 are : ¬Rδ

1(I3, I4), Rδ
1(I4, I3), ¬Rδ

2(I3, I4) and
¬Rδ

3(I3, I4).

The scenario of the interaction of I3 and I4 is : U3?A.l3!a(l4?b).l3?b(l4!b).
The timeout at the end of this scenario does not correspond to a quiescent state
of the specification S3 (but an outputlock exists in the specification of I4 for the
state corresponding to the state 4 of this implementation).

Conclusion : For this scenario, the verdict depends of the tested relation. For a
global total interoperability relation or a unilateral total interoperability relation
in the point of view of I3, the verdict is FAIL. This verdict is due to the timeout
at the end of the scenario. Indeed, no quiescence is foreseen in this state in the
specification S3 because in this state, I3 must send the output B on its upper
interface. For a unilateral total interoperability relation in the point of view
of I4, the verdict is PASS. Quiescence is allowed in S4 after the trace l4?a.l4!b.
All these verdicts correspond to the results of the considered interoperability
relations for the tests.

6.4 Interaction between I1 and I5

This interaction (cf. figure 5) corresponds to a case for which the results with
the interoperability relations of [5] were not satisfying. All interoperability re-
lations were verified but the message sent by I5 does not correspond to the
message expected by I1. The results with the interoperability relations with qui-
escence management on the interaction of I1 and I5 are : Rδ

1(I1, I5), ¬Rδ
1(I5, I1),

¬Rδ
2(I1, I5) and ¬Rδ

3(I1, I5). These results correspond more to the practical def-
inition and intuitive notion of interoperability.
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Fig. 5. Interaction between I1 and I5

The scenario of the interaction of I1 and I5 is : U1?A.l1!a(l5?a). The mes-
sage l5!c is not sent by I5 because in the synchronous context an implementation
can not send a message if it is not waited by the implementation in interaction.
Thus, the scenario ends after the exchange of the message a between I1 and I5

with a deadlock.

Conclusion : For this scenario, the verdict also depends of the tested relation.
For a global total interoperability relation or a unilateral total interoperability
relation in the point of view of I5, the verdict is FAIL. This verdict is due to the
timeout at the end of the scenario. No quiescence is allowed at the corresponding
state of the specification S5 after the input a : an output must occur. This
verdict correspond to the results of the considered interoperability relations :
these results are more satisfying because these two implementations are not
considered interoperable. For a unilateral total interoperability relation in the
point of view of I1, the verdict is PASS. Quiescence is allowed in S1 after the
trace U1?A.l1!a. Thus, the non-interoperability is not detected in the point of
view of I1.

6.5 Synthesis and main results

After the study of these interactions, the following properties of interoperability
relations with quiescence management can be highlighted :

– With quiescence management, the verdicts of testing scenarios correspond to
the results of the considered interoperability relations. This was not the case
without quiescence management. Indeed, all timeouts gave a FAIL verdict,
but these timeouts can be allowed in the specification and do not correspond
to an error in the implementations.

– With quiescence management, we can have two conformant implementations
that are not considered interoperable. The interaction of I1 and I5 can be
taken as example for this property.



– The results for the interoperability relations (and the verdicts of the tests)
correspond more to the practical definition and intuitive notion of inter-
operability. Two implementations considered non-interoperable with the in-
teroperability relations without quiescence management remain non-inter-
operable with the new interoperability relations. But two other cases of
non-interoperable exist with the interoperability relations with quiescence
management. The first case corresponds to the non-conformance of one of
the implementations due to quiescence not allowed : an example is the in-
teraction of I3 and I4 where ¬I3 ioco I4. The second case corresponds to
the interaction of an implementation who wants to send a message which is
not expected by the implementation in interaction : example of I1 and I5.
These two cases are no longer considered interoperable with the new inter-
operability relations and the verdicts of the corresponding tests are FAIL.

This study considered a synchronous interaction between implementations.
A point that remains to be studied is the difference between synchronous and
asynchronous interaction. This study has already started but is not advanced
enough to give formal results. Nevertheless, we give here some observations that
seem interesting.

With an asynchronous interaction, the three first scenarios studied above
(interaction of I1 with I4, I2 with I4 and I3 with I4) have the same results.
But the last scenario (interaction of I1 with I5) is different if we consider an
asynchronous interaction. Indeed, the message l5!c can be sent by I5 and is
not received by I1. But the timeout received after this event is foreseen in the
specifications, the interoperability relations are verified and the verdict of the
test is PASS even though the message c can not be received by I1.

This latter situation proves that a more formal study is needed to examine
the influence of an asynchronous environment on quiescence management in
interoperability testing.

7 Conclusion

The goal of the study was to investigate the quiescence management in inter-
operability testing. Based on a previous work that gives formal definitions of
interoperability, we provide new definitions that take into account predictable
quiescences of components. Several examples and scenarios show that using these
new definitions leads to more accurate verdicts in interoperability testing. The
obtained results are more consistent with the intuitive notion of interoperability
and practical usage. In light of this information, we can assume that quiescence
management improves interoperability testing.

Our study considered a context of two implementations communicating via a
synchronous environment. Future work will investigate interoperability criteria
with quiescence management in an asynchronous context. We will also study the
generalization of these interoperability criteria to a context with more than two
implementations.
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