
*This work was supported in part by the U.S. National Science Foundation (NSF)
under grant awards CNS-0403342, CNS-0548403, and by the U.S. Department of
Defense under grant award N41756-06-C-5541.

Message Confidentiality Testing of Security Proto-
cols - Passive Monitoring and Active Checking*

Guoqiang Shu and David Lee

Department of Computer Science and Engineering, the Ohio State University
Columbus, OH 43210, USA

{shug,lee}@cse.ohio-state.edu

Abstract. Security protocols provide critical services for distributed communi-
cation infrastructures. However, it is a challenge to ensure the correct function-
ing of their implementations, particularly, in the presence of malicious parties.
We study testing of message confidentiality – an essential security property.
We formally model protocol systems with an intruder using Dolev-Yao model.
We discuss both passive monitoring and active testing of message confidential-
ity. For adaptive testing, we apply a guided random walk that selects next input
on-line based on transition coverage and intruder's knowledge acquisition. For
mutation testing, we investigate a class of monotonic security flaws, for which
only a small number of mutants need to be tested for a complete checking. The
well-known Needham-Schroeder-Lowe protocol is used to illustrate our ap-
proaches.

1 Introduction

Security protocols have been playing an important role in the critical distributed sys-
tems such as E-Commerce and military infrastructure. Most security protocols use
cryptography to achieve data transmission, authentication and key distribution [16,
17] in a hostile environment [1]. The existence of diverse intruders renders the resil-
ience of those protocol systems more significant, and more challenging. Various
formal modeling and analysis techniques, such as BAN logic, model-checking and
strand spaces [14, 18, 19] have been developed in the recent years to ensure the cor-
rectness of security protocol system. These works are focused on validating the pro-
tocol specification. However, errors can also be introduced to the system in imple-
mentation phases, even if the specification is proven to be flawless. Furthermore,
interconnected communication system interfaces may result in security problems,
such as message content exposure. Systematic testing approaches for security proto-
cols have been largely neglected by the research community, even though numerous
reports show programming errors in security-critical systems are very common
[22,23].

Testing for system security, often known as penetration testing [22] or red-team
testing, refers to the activity of executing a predefined test script with the goal of
finding a security exploit. Thomson in [23] classified four general penetration testing
methods: (1) Testing dependency; (2) Testing unanticipated user input; (3) Expose
design vulnerabilities; and (4) Expose implementation vulnerabilities. Under these
guidelines practical testing has been conducted in industry and proved to be very
helpful. Nonetheless, most of the current penetration testing activities are ad-hoc and

rely on expert knowledge of target systems or existing exploits [7]; the cost of a com-
prehensive testing is high and the response time is too long. On the other hand, cur-
rent testing methods are largely at system level on system misconfiguration [20] or
unexpected side effect of operations [2]. Protocol level penetration testing has not
drawn adequate attention yet is crucial for discovering security protocol implementa-
tion errors. Particularly, automated test selection and execution techniques are desir-
able for complex protocols and for real-time response to security flaws.

In this paper we focus on automated testing of the key property of security proto-
cols: message confidentiality. Several unique characteristics of security protocols
make the traditional conformance testing approaches insufficient and pose new chal-
lenges for both modeling and test generation tasks. First, security protocols have a
huge and special data portion. The I/O messages are from a language defined by cryp-
tographic primitives such as public/private encryption and decryption. The formida-
ble size of the alphabet makes generating a complete checking sequence infeasible.
Therefore, tradeoff is usually made to focus only on a special type of nonconfor-
mance – security flaws. We use Extended Finite State Machine (EFSM) based formal
model [5, 12] to specify the security protocol and augment the model to include secu-
rity protocol message types as the parameter of I/O symbols. On the other hand, secu-
rity properties can be tested only with a precise intruder model. We use EFSM to
formally specify the intruder’s behaviors based on the well-known Dolev-Yao model
[4], which models most powerful and yet realistic intruder. Consequently, the whole
protocol system is modeled as the communication system composed of the intruder
and a set of legitimate principals. Furthermore, we define the notion of intruder’s
knowledge and message confidentiality requirement, and use it as the goal of testing.

Based on this formal model several testing approaches are proposed. We first give
a simple passive monitoring procedure and then describe an active guided random
walk algorithm. The algorithm is inspired by the earlier work [11] where heuristics
are used to achieve high coverage of transitions in a CFSM model. Here our algo-
rithm uses a new heuristic transition selection criterion that favors both new transition
and new knowledge acquisition by the intruder. Both testing algorithms are unstruc-
tured in terms of the global system model, and the composite EFSM does not need to
be computed. We also study mutation testing, since it is known to be efficient for a
range of particular types of errors in software testing [3, 15]. Wimmel’s et al’s work
based on their elegant validation tool AutoFocus [9, 24] is among the first attempts to
apply the idea of mutation testing to security system. The greatest challenge (unad-
dressed by [9, 24]) of mutation testing is to control the number of mutants. This paper
defines mutation functions with special property such that only mutants with single
fault need to be considered for test generation. As a case study, we model the predi-
cate (guard) absence fault type FPA with this property, then present and analyze the
test generation algorithm. We use the well-known Needham-Schroeder-Lowe (NSL)
mutual authentication protocol [18] to illustrate our formal model and testing algo-
rithms.

2 Modeling and Methodologies

After describing a formal model of security protocol systems we present our testing
methods for both passive monitoring and active testing for message confidentiality.

2.1 Security Protocol Model

We define the security protocol message type as follows. First, there are three atom
types: Int, Key and Nonce. A value of type Int is a non-negative bounded integer. A
value of type Key ranges over a finite set K of keys. A value of type Nonce ranges
over a finite set N of nonces. A protocol message is recursively defined as: (1) An
atom; (2) Encryption of a message with a key; or (3) Concatenation of atoms and
encryptions. A message can be represented by a string. For example E(kb,(ka.na)) is a
messages that is formed by encrypting the concatenation of ka and na with another key
kb. Given A=<K, N>, a set of keys and nonces, denote L(A) as the message type and
the set of messages formed using atoms in A. L(A) is obviously infinite, and even if
we restrict the number of atoms that a message contains, its size is exponential.

Among the atom types, Key and Nonce are treated as symbols in the sense that they
can not be composed or calculated using other atom values. Also, Key type contains
both symmetric keys and asymmetric key pairs. For the latter we use ku to represent a
public key and kr for a private key. There are some basic operations defined on mes-
sage type. Let msg be a message, function Elem(msg,i) calculates the ith component
in msg, and D(k,msg) returns m’ when msg = E(k,m’). Both functions are partial and
they are undefined for messages with incompatible formats.

We define an extended finite state machine model that uses protocol message set
L(A) as input and output alphabet.

Definition 1. An Extended Finite State Machine (EFSM) with symbolic message type
is a 7-tuple M=<S, sinit, A, I, O, X, T> where
1. S is a finite set of states;
2. sinit is the initial state;
3. A is the set of atoms, and L(A) is the set of messages formed using atoms in A;
4. I = {i0, i1,…, iP-1} is the input alphabet of size P; each input symbol ik

)0(Pk <≤ contains a parameter π(ik) of type L(A) ;
5. O = {o0, o1,…, oQ-1} is the output alphabet of size Q ;each output symbol ok

)0(Qk <≤ contains a parameter π(ok) of type L(A);
6. X is a vector denoting a finite set of variables of type L(A);
7. T is a finite set of transitions; for Tt ∈ , t = <s, s’, i, o, p(x, π(i)),a(x, π(i), π(o))>

is a transition where s and s’ are the start and end state, respectively; π(i) and π(o)
are the input/output symbol parameters; p(x, π(i)) is a predicate, and a(x, π(i),
π(o)) is an action on the current variable values and parameters.

For practical protocol systems, the machine is often partially specified because a
transition can only be triggered by a message with expected format. We use predi-
cates to model the basic type checking capability. Upon receiving a message, the
machine can reconstruct each element of it if the message format is correct. The spe-
cial case is that some of the encrypted messages might be opaque to a machine be-

cause it does not possess the required key. For each combination of state and input
symbol, there is one transition with a special predicate “else”, meaning that it is en-
abled when all other transitions are not. We further assume that upon an input if none
of the transitions are triggered, and then an implicit “else” transition make the ma-
chine stay at the current state and output nothing. For simplicity, we assume the ma-
chine contains a reliable reset symbol that takes the machine back to the initial state
sinit and resets all state variables. In order to model the global uniqueness of nonce, a
fresh new set of nonce N’⊆ N will be used whenever the machine is reset, so that
different runs (sessions) of the protocol will use different nonces. Since N is finite we
can only model finite number of sessions and each session only uses finite nonces.
Finally, we only consider deterministic EFSM model.

A security protocol is specified by a set of communicating EFSM {M1,M2,···,MC}
that share the same message type L. Each component machine Mk represents a princi-
pal in the protocol system. It is possible that two machines are the same, meaning
there are symmetric peers in the protocol. Moreover, for each transition in a compo-
nent machine Mk, the input (output) symbol carries an extra parameter of the sender
(receiver) identifier. We denote an input message received from Ma as Ma?i and an
output to Ma as Ma!o. The semantics of message sending/receiving follow the typical
communicating FSM model [11]: the input/output is synchronized as a rendezvous
and executed simultaneously.

2.2 Intruder Model

We model an intruder as an additional EFSM MI in the protocol system that runs a
special protocol. To model general behaviors of the intruder, we adapt Dolev-Yao’s
assumptions for two party message exchange protocols [4] that define a widely ac-
cepted powerful intruder model. It has been proved that one intruder poses the same
security threat as multiple intruders and we model only one in our study.

An intruder is first a legitimate principal of the communication system; it can not
only initiate a session with any other component machine Ma but also be the (passive)
peer of any session. Furthermore, the intruder is capable of intercepting messages
between any two legitimate principals. The important effect of this behavior is that
the semantics of message sending and receiving in the original communicating EFSM
model are altered. A transition in Ma with output message Mb!msg now will be jointly
executed with a transition in MI that takes input Ma→ Mb?msg, instead of the transi-
tion in the intended receiver Mb. This should be clearly distinguished with the first
case where the intruder MI is the intended receiver (e.g. Ma outputs MI!msg). Simi-
larly, the intruder can inject any message, impersonating any other machines. That is,
MI can send output Ma→ Mb!msg to Mb and this output matches the transition of Mb
with input Ma?msg.

Besides the capability of catching and injecting normal protocol traffic, the in-
truder is also assumed to be able to generate any new message based on all and only
the messages it possesses. Formally, we define the knowledge of the intruder as a set
of messages Ω = Encl(Ω0+MSG) where Ω0 is the initial knowledge known to the
intruder containing the public and intruder’s own information, and MSG represents
the set of messages the intruder has received. Function Encl(L) is defined as the en-

closure of L under the functions Elem(), D() and E(). Therefore, Ω can be regarded as
all the messages that the intruder is able to construct, using only the messages it ob-
tains. Once the intruder gains a message it will not forget it and Ω never shrinks. As
far as a realistic testing scenario is concerned, we have to assume the intruder has the
capability of recognizing the message format, either by guessing the data field, or by
reading the meta-info such as an XML schema.

Fig. 1. EFSM model for the intruder

Fig. 1 shows the EFSM model of the intruder. MI contains only one state and two

transitions for message interception and injection respectively. Intercept transition
takes any message msg sent from Ma to Mb as input. The guard ensures msg is not
from MI itself and the action updates the knowledge set. Inject transition outputs a
message in the current knowledge set to another machine Mb under the disguise of
Ma. The model of MI is obviously independent of the other component machines.
Note that messages meant to be delivered to MI will also be caught by the Intercept
transition, and in case the intruder does not want to intercept a message, the Inject
transition is fired right after Intercept transition with the same message.

2.3 Testing Security Requirement: Message Confidentiality

Given the specification of protocol roles {M1, M2,…, MC} and the intruder MI, the
global behavior of the whole protocol system under investigation is described by the
Cartesian product of all the machines: M1×M2×···×MC×MI with the input/output
matching rule we define in the previous subsection. Since all the transitions involve
one of the two intruder transitions, an I/O trace produced by the system can be de-
scribed by an interleaving sequence of Intercept and Inject transitions each with a
message in the parameters.

In this paper we focus on black-box penetration testing. The implementations of all
protocol principals are treated as pure black boxes, i.e. B = {B1, B2,…, BC}, each Bi
can be a correct or faulty implementation of Mi. The tester plays the role of intruder
and simulates the machine MI. This is an active testing process because the tester can
choose arbitrarily the parameters of Inject transition, namely the sender, receiver and
message. A test sequence seq is defined as an I/O trace produced by the communicat-
ing system of MI and B. Starting from the initial states, denote the value of Ω in MI
after a test sequence seq is applied as Ω(B, seq), which is the knowledge that an in-
truder gains by performing penetration test seq.

For a given security protocol system, there are many security requirements de-
pending on the specific application needs. Typically, they include message confiden-
tiality, message integrity, authentication, and non-repudiation [20]. In this paper we

Intercept (Ma→ Mb?msg) / -
[a ≠ I] / Ω = Encl(Ω + {msg})

MI
State Variable

Ω: L
Parameters
a,b∈ [1..C]

msg∈L

S0

- / Inject (Ma→ Mb!msg)
[msg in Ω] & [b ≠ I] / {}

focus on the message confidentiality requirement that is the key property of a security
protocol system. Other requirements can be handled, for instance, by appropriate hash
functions, and we shall not digress here.

Definition 2. A protocol implementation B = {B1, B2,…, BC} is insecure with regard
to the confidentiality of messages M*⊂ L if and only if there exists a test sequence
seq and a message m∈M* such that m∈Ω(B, seq).

An implementation is flawed if and only if message content can be uncovered by
the intruder after a test sequence is applied. We model the intruder following Dolev-
Yao’s approach, our definition 2 is consistent with their notion of security of two
party cascade and name stamp protocols [4]. One natural question is that whether the
protocol specification itself is secure. When the implementation of each component
machine is equivalent to its specification, i.e. Bi = Mi, the intruder might still be able
to obtain the secret if the protocol design itself is flawed [14]. Since our goal is test-
ing rather than validation, we assume the protocol design and specification are secure.

As an example of modeling security protocols, we consider the well-known
Needham-Schroeder-Lowe (NSL) mutual authentication protocol [18]. Among many
of its variants, we use a simplest one with three message exchanges [14]. Two princi-
ples, the initiator and the responder, are involved and they are specified as MA and
MB, respectively. The message sequence of a successful run is shown below.

A → B (Ask): A.B.E(KUB,(NA.A))
B → A (Rpl): B.A.E(KUA, (NA.NB.B))
A → B (Cfm): A.B.E(KUB, (NB))

(a)

- / Mpid!Cfm(A.pid.E(KU[pid],N2))
[pid=X1] & [X3=X1] & [N1=N] /{}

Init (p) / Mp!
 Ask(A.p.E(KU[p],NA[p],A))
[p≠A] / {pid=p;N=NA[p];}

Mp?Rpl(x1.x2.E(k,n1,n2,x3)) /-
[x2=A] & [k=KU[A]] & [p=pid]
/ {N1=n1; N2=n2; X1=x1; X3=x3;}

MA
State Variable

pid,N,N1,N2,X1,X3
S0

SS1

SR1

SA - / Mp!Rst
else/ {}

MpRst? / -
[p=pid]/ {}

MpRst? / -
[p=pid]/ {}

(b)

Fig. 2. Needham-Schroeder-Lowe protocol (a) Initiator MA (b) Responder MB

The protocol functions as follows. The initiator A encrypts a nonce with the re-
sponder B’s public key and sends it to B. B then decrypts it and encrypts it together
with another nonce using A’s public key. Finally A gets the second nonce and sends it
back. The purpose of NSL protocol is to allow both principles authenticate each other
and exchange some secrets (two nonces), which later on can be used to construct
shared keys. Fig. 2 shows the two complete EFSM specifications. We assign index 0,
1 and 2 to MA, MB and the intruder MI. The intruder can participate legally as both the
initiator and responder. The atom messages in this protocol include the public keys
(KUA, KUB and KUI) and the nonces. In order to express the security requirement
conveniently, we distinguish the nonces used for different peers. For instance, the
nonce MB uses to challenge MI is NB[I]. Initially the intruder only knows its own key
and nonces, i.e., Ω0 = {KUI, NI[A],NI[B]}. The secret message set is M* =
{NA[B],NB[A]}; the intruder should not obtain the nonces that are only supposed to be
shared only between A and B. Note that in Fig. 2 the parameter (message) of each I/O
symbol is expanded by its structure, which is a short notation for format checking of
the message. A special symbol Rst is used to reset the session when invalid message
is processed.

To summarize this section, we essentially reduce the security testing problem to
searching for special I/O sequences produced by a mixed communicating system,
which contains MI and one or more black boxes as principals. The characteristic of
those sequences is that they lead the reachability graph of MI to a state where the
value of variable Ω contains message content/secret. The tester has full control over
MI but can only observe the I/O behaviors of the other protocol principals.

3. Message Confidentiality Testing

After presenting a simple passive monitoring algorithm, we describe an active testing
procedure that is based on a guided random walk.

MpRst? / -
[p=pid]/ {}

- / Mp!Rst
else/ {}

MB
State Variable

pid, pm,N,N1,X1,X3

Mp?Ask(x1.x2.E(k,n1,x3)) /-
[x2 = B] & [k=KU[B]]
/ {N1=n1; X1=x1; X3=x3; pm=p;}

-/ Mpm!Rpl(B.X1.E(KU[X1],N1,NB[X1],B))
[X3 = X1] & [X1≠B] / {pid=X1;N=NB[pid];}

-/-
[N1=N] & [pid=X1]
/{}

Mp?Cfm(x1.x2.E(k,n1)) /-
[x2 = B] & [k=KU[B]] & [p=pm]
/ {N1=n1; X1=x1;}

S0

SR1

SS1

SR2

SA

- / Mp!Rst
else/ {}

3.1 A Simple Passive Monitoring Algorithm

A passive tester or monitor of security protocol implementation is easy to devise. The
intruder (tester) intercepts all messages among the component machines, updates its
knowledge, replies if the message is directed to itself, and otherwise forwards it with-
out any modification. The testing terminates when the intruder derives any secrets.
The procedure is shown in Algorithm 1. As inherent to all passive testing approaches,
this algorithm only utilizes part of the intruder’s capability and it is suitable when the
intruder could only conduct eavesdropping [1].
Algorithm 1 (Passive Monitoring)
Input: {B1, B2,…, BC}, message secrets M*, Intruder initial knowledge Ω0.
Output: security flaw if observed.
begin
1. Ω=Ω0;
2. while (true)
3. try to execute Intercept (Bi→ Bj?msg) transition with any Bi;
4. if succeed
5. if (M*∩Ω φ≠) return flaw;
6. if (j=I)
7. generate reply msg’ ;
8. execute Inject (MI→ Bi?msg’) transition;
9. else
10. execute Inject (Bi→ Bj?msg) transition;
End

3.2 Active Testing - Guided Random Walk

Now we study active testing approaches that utilize the full power of the intruder.
One simple-minded method of active testing is random walk. Starting with an initial
knowledge set, the intruder (tester) randomly chooses either to intercept a message
from a pair of principals or to construct a message using its current knowledge and
send it to a principal. Pure random walk has several limitations; the coverage of the
model is not high and, more importantly, it does not use the intruder’s knowledge
acquired. We present a guided random walk approach with a high coverage and fully
utilizing the intruder’s knowledge acquired.

The approach is adaptive and unstructured in terms of the composite (global) state
machine. We keep track of the current state Si and variable values Xi for each black
box Bi in order to guide the selection of next transitions. Note that in general tracking
current state is not always possible even under the assumption that Bi contains no
transition errors; it is due to the fact that part of the message is encrypted and intruder
can not utilize the information to infer the current transition and state if he does not
have the key. In this case, the algorithm makes a random guess.

At each step, the intruder always tries to intercept the messages coming from every
machine Bi. Once a message is intercepted, the state of the sender as well as the in-
truder’s knowledge is updated. Then the intruder constructs a message and injects it
to a machine to fire a carefully selected transition. Our algorithm selects transition
and message based on the following criteria. First the transitions of all component

EFSM should be covered fairly. The algorithm keeps track of a counter cnt[t] for each
transition t, and at each step the one that has been executed least is favored. More-
over, we only select the transitions that could possibly be enabled by some input
message and ignore those transitions that will definitely not be triggered (the current
state variables themselves disable the predicate). We calculate Ttrue as the set of all
possible transitions:

 Ttrue = { t<Si, S’i, I, p, a> | t ∈ Mi and ∃msg∈Ω: p(Xi,msg) = true}

Once a transition t is determined, we construct an enabling input message for t us-
ing a greedy algorithm. Ideally we want an input message that will lead the machine
to a state that can generate more new knowledge. That is, for all candidate messages
we calculate the destination state S’ of t, and select one that enables at least one out-
put transition t’ with parameter msg’ not in Ω. We use subroutine lookahead(Ω, S, X,
t) to calculate such messages. If such messages do not exist or there are ties, an ena-
bling message is randomly picked:

 lookahead(Ω, S, X, t<Si, S’i, I, p, a>) = {msg | p(Xi,msg) =true and (∃ t’<
Si’,Si”,O(msg’),p’,a’>:p’(Xi’)=true and msg’∉Ω) }

Algorithm 2 (Active Testing - Guided Random Walk)
Input: {B1, B2,…, BC}, secrets M*, Intruder initial knowledge Ω0.
Output: Adaptive test sequence.
begin
1. initialize each Mi , for all transition t, cnt[t] = 0;
2. X=<X1,...,XC>, S=<S1,...,SC>;
3. Ω=Ω0 , seq=φ ;
4. while (seq.len < L)
5. foreach component Bi
6. try to execute Intercept(Bi→ Bj?msg) with Bi;
7. if succeed
8. deduce or guess the transition t;
9. update Xi, Si, cnt[t] = cnt[t] +1, seq = seq + {t};
10. calculate Ttrue ,select t∈Ttrue with smallest cnt[t];
11. select msg from lookahead(Ω, S, X, t);
12. try to execute Inject transition with t using msg;
13. if succeed
14. update Xi, Si, cnt[t] = cnt[t] +1, seq = seq + {t};
15. if (M*∩Ω Φ≠) return seq;
16. return seq;
end

To avoid infinite tests, the algorithm terminates when either the secret message
content is obtained or the length of test sequence reaches a preset limit. This algo-
rithm is more effective than random walk because the greedy heuristics take into
account both coverage and intruder knowledge acquisition. However, it still has many
inherent limitations. For example, calculation of Ttrue and lookahead() is rather expen-
sive. Also, the effectiveness of the heuristic relies on the estimation of current state

and variable values, and if it fails the algorithm behaves the same as random walk.
Advanced passive testing techniques [8, 10] that estimate data portion more accu-
rately could be applied here to improve the performance.

3.3 Experiment

We conduct an experiment of Algorithm 2 on NSL protocol specified as Fig. 2. Two
implementations are created with a common programming error in each. Then we
treat them as black-boxes and run the algorithm to test for confidentiality violations.

Implementation X: The responder does not verify the encrypted identifier of the
initiator after it receives Ask message, and proceeds as if it were correct.

Implementation Y: The initiator does not verify the encrypted identifier of the re-
sponder after it receives Rpl message, and proceeds as if it were correct. This error
was first uncovered by Lowe [14] as a design flaw in the original Needham-
Schroeder protocol.

For both Implementation X and Y errors have been detected. Table 1 (a) and (b)
show the successful test sequences for them. In the first test sequence, at the begin-
ning the intruder intercepts an Ask message from M0 to M1, and updates the state to
<Ss1,S0>. Now three transitions are feasible and as the result M1?Ask is selected. Loo-
kahead() returns a random message that enables M1?Ask because no message will
further trigger an output transition. In the second round we intercept an Rpl message,
and the intruder will obtain a secret (N0[1]) and terminate the test. The sequence for Y
is more complex. After injecting an Ask message to M1 and intercepting the response,
we have two transitions in Ttrue. M1!Cfm is chosen and executed with a random mes-
sage. At next step M0 happens to initiate a session with MI. This is a rare event yet
critical for detecting errors in this implementation. The only transition that could be
enabled is M0?Rpl, and now the intruder happens to have a message to enable it. The
last step is the interception of Cfm message from M0 that exposes the nonce – secret
N1[0].

 Table 1. Detection of Errors in Implementation X (a) and Y (b)

States Action Note
<S0, S0> Intercept M0→ M1? Ask

(0.1.E(KU[1], N0[1], 0))
Ω+ = {E(KU[1],N0[1],0)}

<SS1, S0> Inject M2→ M1! Ask
(2.1.E(KU[1], N0[1], 0))

Ttrue = {M0?Rpl, M0?Rst, M1?Ask}
t = M1?Ask

<SS1, SR1> Intercept M1→ M2? Rpl
(1.2.E(KU[2], N0[1], N1[2],1))

Ω+ = {N0[1], N1[2]}
N0[1]∈M*

(a)
States Action Note
<S0, S0> Inject M0→ M1! Ask

(0.1.E(KU[1], N2[1], 0))
Ttrue = {M1?Ask}
t = M1?Ask

<S0, SR1> Intercept M1→ M0? Rpl
(1.0.E(KU[0], N2[1], N1[0], 1))

Ω+ = { E(KU[0], N2[1], N1[0], 1)}

<S0, SS1> Inject M0→ M1! Cfm
(0.1.E(KU[1], N2[1], 0))

Ttrue = {M1?Rst, M1?Cfm }
t = M1?Cfm

<S0,SR2> Intercept M0→ M2? Ask Ω+ = {N0[2]}

(0.2.E(KU[2],N0[2],0))

<SS1,SR2> Inject M2→ M0! Rpl
(2.0. E(KU[0], N2[1], N1[0], 1))

Ttrue = {M0?Rpl}
t = M0?Rpl

<SR1,SR2> Intercept M0 → M2? Cfm
(0.2.E(KU[2],N1[0],0))

Ω+ = {N1[0]}
N1[0]∈M*

(b)

4. Mutation Testing

In this section we investigate mutation testing of security protocol, and design struc-
tured and preset test sequences. As introduced earlier mutation testing is a powerful
technique for detecting specific types of security errors. Given the specification Mspec
= {M1, M2,…, MC}, we introduce some faults, resulting in a mutant {M1’, M2’,…,
MC’}. Given a set of mutants P, a test suite is generated such that for each mutant p,
there is at least one test sequence that distinguishes (detects) it with the specification
(correct implementation). A main challenge of mutation testing, when applied to
software in general, is that the number of mutants (therefore the number of tests re-
quired) is huge. The situation is not mitigated in our EFSM model given its equiva-
lent computing power of Turing machine. We model a security flaw as a mutation
function δ on a specification EFSM, and a type of fault F as a set of similar mutation
functions. A mutant under F is the application of one or more such functions. If the
type F contains k functions, then the number of mutants is O(2k).

One can take two hypotheses to reduce the number of mutants generated [3]. First,
competent programmer hypothesis assumes that an implementation only contains a
small number (C) of faults. This reduces the number of mutants to O(kC), which is
still quite large. Second, coupling effect hypothesis states that the test sequences used
to distinguish mutants with simple fault are sensitive enough to also uncover complex
fault. Clearly this is not always true. Given an arbitrary mutation function, a test se-
quence that obtains the secret on δ1(Mspec) may not be effective for δ2δ1(Mspec). In fact,
mutant δ2δ1(Mspec) could even be secure. On the other hand, if we could select test
sequence that satisfies this property, then the number of mutants could be further
reduced to k. For message confidentiality testing, we can reduce the number of mu-
tants based on this observation.

4.1 A Fault Model: Predicate or Guard Absence

There are generally two categories of security sensitive fault in the protocol model.
The first is message format fault. For example, one might use the private key to en-
crypt part of the message instead of the public key, or attach an unnecessary part,
both giving the intruder more information. This type is easier to observe since it
changes the alphabet of some component machines. The second category of fault is
related to the predicate or action of the transitions, but has no effect on the message
types. Based on the observation of security protocols, a commonly encountered im-
plementation error is neglecting critical condition checking. Usually an action is taken
place only if some condition – predicate - is satisfied by the current state and/or the
input message. For example in the NSL protocol, the responder only replies to the

message Ask(x1.x2.E(k,n1,x3)) when the x2 is equal to its own index, and similarly the
initiator only generates to the Cfm message when it verifies the responder’s reply
with the same nonce as the one it sends out. If the programmer neglects to check such
condition such as in Implementation X and Y in section 3, it is likely that the resulting
implementation is insecure. This type of fault is reflected in the EFSM model as the
absence of part of the predicate in a transition - or often called a guard. Assuming the
predicate is specified as a conjunctive normal form of Boolean expressions (i.e.
b1&b2&b3) , we formally define this fault type.

Definition 3. For all the transitions tj, j=0,1,…, from a state s with a same in-
put/output symbol y, a predicate absence (PA) mutation function δPA(s,y,t,b) with
regard to a Boolean expression b in the predicate pj of t=ti, is obtained by removing b
from pj and adding (!pi) to pj for all i ≠ j.

Basically the mutation function removes one Boolean expression from a transition.
In order to keep the resulting machine deterministic, we add its negation to all other
transitions with the same start state and input/output symbol. Fig. 3 shows an example
of a mutant of the function δPA(S1,Y, t, [a=1]).

(a) Specification (b) Mutant δpa(S1,Y, t, [a=1])

Fig 3. Example of mutant δPA

Definition 4. For a protocol specification Mspec, a predicate absence (PA) fault type
FPA is obtained by applying one or more PA mutation functions δPA(s, y, t, b) on Mspec.
A mutant under FPA is defined as δS (Mspec) =δ1δ2… δn (M), where S = {δ1, δ2,…,
δn}⊆ FPA, and for any δa(s, y, ta, ba), δb(s, y, tb, bb)∈S, ta = tb.

A mutant under the PA fault type is the result of application of a set of PA muta-
tion functions, each removing a Boolean expression from a predicate. Note that al-
though this definition does not limit the number of faults in one mutant, it relies on
the competent programmer hypothesis to assume that for each combination of com-
ponent machine, state and I/O symbol, only a predicate from one transition could be
removed. Consequently, if each transition contains a constant number of Boolean
expressions, there are totally O(T) mutation functions and O(2(C × N × P)) mutants
where T is the number of transitions, C is the number component machines, N is the
maximum number of states and P is the number of I/O symbols.

Mx!Y(m1)
[b=1]&[a ≠ 2]&[a ≠ 3]/{}

Mi
State Variable
a,b

Mx!Y(m4)
else / {}

Mx!Y(m3)
[a=3]&[b=1]/ {}

Mx!Y(m2)
[a=2]&[b=1]/ {}

Mx!Y(m1)
[a=1]&[b=1]/{} S2

S1

S3

S5

S4
Mx!Y(m4)
else / {}

Mx!Y(m3)
[a=3]&[b=1]/ {}

Mx!Y(m2)
[a=2]&[b=1]/ {}

S2

S1

S3

S5

S4

Intuitively a mutant with more predicate missing should allow more transitions to
be executed and therefore the security flaws are “monotonically” increasing with
inclusion of more faults in Fpa. This is formulated in the following proposition.

Definition 5. A progressive I/O sequence of a communicating system is an I/O se-
quence that does not trigger any “else” transition of any component machine.

Proposition 1 (Monotonicity). For any two mutants δS1(M) and δS2(M) under Fpa
with S1⊆ S2, if a progressive I/O sequence seq could be generated by MI and δS1(M),
then seq could also be generated by MI and δS2(M).

Sketch of proof: The proof of this proposition is quite straightforward using an in-
duction on the length of the sequence. Suppose a prefix of seq has already been exe-
cuted by δS2(M) and the next message in seq will trigger transition t in Mi. if δS2(M)
has the same t as δS1(M) then t will be executed. If δS2(M) further removes some ex-
pressions from t, then the current states and input message will satisfy the guard of
the new transition, since t is not the “else” transition, and, therefore, t is executed.

An important implication of Proposition 1 is that if a progressive test sequence dis-
covers a message secret for M, and we apply some other mutation functions to intro-
duce more errors, the same test sequence can still expose the message content on the
new mutant. In other words, faults do not cancel the evidence of each other with
regard to a progressive test sequence. We remark that singularity about “else” transi-
tion does not decrease the applicability of this model because this special type of
transition is usually used to model the behavior in abnormal conditions, and will not
be included in an I/O sequence that achieves the functionalities of the protocol.

4.2 Mutation Test Generation Algorithm

Now we describe the procedure of generating test sequences for monotonic flaw type
of FPA. The goal is to generate a set of test sequence that distinguishes all mutants
under FPA. One valid concern would be that not all mutants are necessarily insecure
according to the confidentiality requirement and it is reasonable to only focus on
mutants, which lead to message confidentiality violations. This is a well-studied vali-
dation problem and we shall not digress here. For simplicity, we treat all mutants as
potentially insecure and generate tests to detect each of them:

Algorithm 3 (Test Generation for Fault Type FPA)
Input: Mspec = {M1, M2,…, MC}, secrets M*.
Output: test suite S, fault type F’PA
begin
1. S = {}; F’PA = {};
2. remove all “else” transitions from Mspec
3. calculate and minimize MI× Mspec;
4. foreach mutation function δi
5. calculate δi(Mspec);
6. calculate and minimize MI× δi(Mspec);
7. if (MI× Mspec != MI× δi(Mspec))
8. t = separating sequence of MI× Mspec and MI× δi(Mspec)
9. S = S + {t};

10. F’PA = F’PA + {δi};
11. return S
end

Algorithm 3 applies each mutation function alone to the specification and calcu-
lates a progressive separating sequence. This is done by removing all “else” transi-
tions, minimizing the Cartesian product of the mutant and intruder machine, and cal-
culate a separating sequence. The comparison in Line 7 refers to an equivalence test
of two machines. The algorithm produces a new fault type F’PA which only contains
the mutation functions if the corresponding mutants are distinguishable. The number
of test sequences generated by Algorithm 3 is no more than the number of mutants in
F’PA. The time needed for minimization is O(NlogN) with online minimization algo-
rithm [13], and the calculation of separating sequence requires O(N2) where N is the
number of states in the reduced machine. We propose an optimization technique for
generating separating sequence online in [21], which will reduce the cost of this algo-
rithm for average case but the worst case complexity is the same.

As far as the fault detection capability is concerned, the test suite generated in-
cludes a test case to distinguish every mutant that is derived by applying one mutation
function in F’PA. Since all test sequences are progressive sequence, from Proposition
1, we have:

Proposition 2. Tests generated from Algorithm 3 detect all mutants under F’PA in
time O(N2) where N is the number of states in the reduced machine.

Algorithm 3 also applies to all other fault models that satisfy proposition 1. Note
that the test suite does not discover all faulty mutants in FPA; if a mutation function
itself is not distinguishable, then Algorithm 3 simply discards it.

4.3 Experiment

We again conduct the experiment using NSL protocol. In the specification (Fig. 2) a
total of 19 Boolean expressions are identified, as shown in Fig. 4. These expressions
are used to construct the fault type FPA and the mutants. Among them δb12 and δb7
correspond to the three implementations X and Y in Section 4, respectively. Algorithm
3 produces F’PA = FPA –{δb18, δb19} and the set of 17 test sequences. The last two Boo-
lean expressions are not associated with any I/O behaviors and are not observable.
The lengths of those sequences are shown in Table 2 and the details are omitted. All
the sequences are short (less than 4). This set of test sequences detect all implementa-
tions with one or more Boolean expressions missing.

Fig. 4. Boolean Expressions in NSL Specification

 Table 2. Test Sequence Lengths Generated by Algorithm 3

0

1

2

3

4

5

b
1

b
2

b
3

b
4

b
5

b
6

b
7

b
8

b
9

b
10

b
11

b
12

b
13

b
14

b
15

b
16

b
17

b
18

b
19

Boolean Expression

L
e
n
g
t
h

o
f

T
e
s
t

5. Conclusion

 This paper studies the problem of testing message confidentiality of security proto-
cols. EFSM with symbolic message type is used to model security protocol system
with an omnipotent intruder. A formal definition of message confidentiality property
and the black box testing model are provided. Passive monitoring, guided random
walk and mutation testing approaches are presented with case studies.
 A lot of issues remain to be explored, such as efficient modeling for intruder
knowledge acquisition for more powerful testing results, thorough and structured
active testing procedures, and more general mutation testing with more focus on mes-
sage confidentiality violation yet with less computation costs. On the other hand,
systematic experiments are to be conducted on the de-facto security protocols, such as
Kerberos, electronic payment, and IPSec.

MpRst? / -
b17

- / Mp!Rst - / Mp!Rst

MB

-/ Mpm!Rpl
b12,b13

-/-
b18,b19

Mp?Cfm /-
b14,b15,b16

S0

SR1

SS1

SR2

SA

Mp?Ask /-
b10,b11

MpRst? / -
b9

- / Mp!Rst - / Mpid!Cfm
b6,b7,b8

MpRst? / -
b2

Mp?Rpl /-
b3,b4,b5

MA

SS1

SR1

SA

S0

Ini (p)/Mp! Ask
b1

References
1. Achilles Proxy. http://www.mavensecurity.com/achilles
2. S. Chen, Z. Kalbarczyk, J. Xu and Ravishankar K. Iyer. A Data-Driven Finite State

Machine Model for Analyzing Security Vulnerabilities. International Conference on De-
pendable Systems and Networks (DSN'03), page 605, 2003.

3. R. DeMillo, R. Lipton, and F. Sayward. Hints on Test. Data Selection : Help For The
Practicing Programmer. IEEE Computer, vol. 1 l(4), pages 34-41, 1978.

4. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transaction on
Information Theory 29, pages 198-208, 1983.

5. A. Duale and M. Ümit Uyar. A Method Enabling Feasible Conformance Test Sequence
Generation for EFSM Models. IEEE Trans. Computers 53(5): pages 614-627, 2004.

6. S. Fabbri, J. Maldonado, T. Sugeta, and P. Masiero. Mutation testing applied to validate
specifications based on statecharts. In International Symposium on Software Reliability
Systems (ISSRE), pages 210-219, 1999.

7. D Geer and J. Harthorne. Penetration Testing: A Duet. In Proceedings of. the 18th An-
nual Computer Security Applications Conference (ACSAC), pages 185–198, 2002.

8. S. Jaiswal, G. Iannaccone, J. Kurose and D. Towlsey. Formal Analysis of Passive Meas-
urement Inference Techniques. To appear in Proceedings of IEEE Infocom 2006.

9. J. Jurjens and G. Wimmel. Formally Testing Fail-Safety of Electronic Purse Protocols.
IEEE International Conference on Automated Software Engineering, page 408, 2001.

10. D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin. A formal approach for passive
testing of protocol data portions. In Proceedings of ICNP, pages 122–131, 2002.

11. D. Lee, K. K. Sabnani, D. M. Kristol and S. Paul. Conformance Testing of Protocols
Specified as Communicating Finite State Machines - a Guided Random Walk Based Ap-
proach. IEEE Trans. on Communications, Vol. 44, No. 5, pages 631-640, 1996.

12. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - A
survey. In Proceedings of the IEEE, pages 1090–1123, August 1996.

13. D. Lee and M. Yannakakis. Online minimization of transition systems. In Proceedings of
STOC, pages 264–274, 1992.

14. G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR.
In Proceedings of TACAS'96, LNCS 1055, 1996.

15. B. Marick. The Weak Mutation Hypothesis. Proceedings of The ACM SIGSOFT Sympo-
sium on. Testing, Analysis, and Verification, October, 1991.

16. C. Meadows. Applying formal methods to the analysis of a key management protocol, J.
Comput. Security 1, pages 5-53, 1992.

17. C. Meadows. Formal methods for cryptographic protocol analysis: emerging issues and
trends. IEEE Journal on Selected Areas in Communications, 21(1), pages 44-54, 2003.

18. R. Needham, M. Schroeder. Using encryption for authentication in large networks of
computers, Communications of the ACM, 21(12), pages 993-999, 1978.

19. S. Schneider. Security Properties and CSP, Proceedings of the 1996 IEEE Symposium on
Security and Privacy, page 174, 1996.

20. O. Sheyner, J. Haines, S. Jha, R. Lippmann and J. Wing. Automated Generation and
Analysis of Attack Graphs. IEEE Symposium on Security and Privacy, 2002.

21. G. Shu and D. Lee. Network Protocol System Fingerprinting – A Formal Approach. To
appear in Proceedings of IEEE Infocom 2006.

22. H. Thompson. Application Penetration Testing. IEEE Security & Privacy. 3(1), pages
66–69, 2005.

23. H. Thompson. Why Security Testing Is Hard. IEEE Security and Privacy. 1(4), pages 83-
86, July-August, 2003.

24. G. Wimmel, J. Jürjens, Specification-Based Test Generation for Security-Critical Sys-
tems Using Mutations. Proceedings of ICFEM pages 471-482, 2002.

