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Abstract. Security protocols provide critical services for distributed communi-
cation infrastructures. However, it is a challenge to ensure the correct function-
ing of their implementations, particularly, in the presence of malicious parties. 
We study testing of message confidentiality – an essential security property. 
We formally model protocol systems with an intruder using Dolev-Yao model. 
We discuss both passive monitoring and active testing of message confidential-
ity. For adaptive testing, we apply a guided random walk that selects next input 
on-line based on transition coverage and intruder's knowledge acquisition. For 
mutation testing, we investigate a class of monotonic security flaws, for which 
only a small number of mutants need to be tested for a complete checking. The 
well-known Needham-Schroeder-Lowe protocol is used to illustrate our ap-
proaches. 

1   Introduction 

Security protocols have been playing an important role in the critical distributed sys-
tems such as E-Commerce and military infrastructure. Most security protocols use 
cryptography to achieve data transmission, authentication and key distribution [16, 
17] in a hostile environment [1]. The existence of diverse intruders renders the resil-
ience of those protocol systems more significant, and more challenging. Various 
formal modeling and analysis techniques, such as BAN logic, model-checking and 
strand spaces [14, 18, 19] have been developed in the recent years to ensure the cor-
rectness of security protocol system. These works are focused on validating the pro-
tocol specification. However, errors can also be introduced to the system in imple-
mentation phases, even if the specification is proven to be flawless. Furthermore, 
interconnected communication system interfaces may result in security problems, 
such as message content exposure. Systematic testing approaches for security proto-
cols have been largely neglected by the research community, even though numerous 
reports show programming errors in security-critical systems are very common 
[22,23]. 

Testing for system security, often known as penetration testing [22] or red-team 
testing, refers to the activity of executing a predefined test script with the goal of 
finding a security exploit. Thomson in [23] classified four general penetration testing 
methods: (1) Testing dependency; (2) Testing unanticipated user input; (3) Expose 
design vulnerabilities; and (4) Expose implementation vulnerabilities. Under these 
guidelines practical testing has been conducted in industry and proved to be very 
helpful. Nonetheless, most of the current penetration testing activities are ad-hoc and 



 

 

rely on expert knowledge of target systems or existing exploits [7]; the cost of a com-
prehensive testing is high and the response time is too long. On the other hand, cur-
rent testing methods are largely at system level on system misconfiguration [20] or 
unexpected side effect of operations [2]. Protocol level penetration testing has not 
drawn adequate attention yet is crucial for discovering security protocol implementa-
tion errors. Particularly, automated test selection and execution techniques are desir-
able for complex protocols and for real-time response to security flaws. 

In this paper we focus on automated testing of the key property of security proto-
cols: message confidentiality. Several unique characteristics of security protocols 
make the traditional conformance testing approaches insufficient and pose new chal-
lenges for both modeling and test generation tasks. First, security protocols have a 
huge and special data portion. The I/O messages are from a language defined by cryp-
tographic primitives such as public/private encryption and decryption. The formida-
ble size of the alphabet makes generating a complete checking sequence infeasible. 
Therefore, tradeoff is usually made to focus only on a special type of nonconfor-
mance – security flaws. We use Extended Finite State Machine (EFSM) based formal 
model [5, 12] to specify the security protocol and augment the model to include secu-
rity protocol message types as the parameter of I/O symbols. On the other hand, secu-
rity properties can be tested only with a precise intruder model. We use EFSM to 
formally specify the intruder’s behaviors based on the well-known Dolev-Yao model 
[4], which models most powerful and yet realistic intruder. Consequently, the whole 
protocol system is modeled as the communication system composed of the intruder 
and a set of legitimate principals. Furthermore, we define the notion of intruder’s 
knowledge and message confidentiality requirement, and use it as the goal of testing. 

Based on this formal model several testing approaches are proposed. We first give 
a simple passive monitoring procedure and then describe an active guided random 
walk algorithm. The algorithm is inspired by the earlier work [11] where heuristics 
are used to achieve high coverage of transitions in a CFSM model. Here our algo-
rithm uses a new heuristic transition selection criterion that favors both new transition 
and new knowledge acquisition by the intruder. Both testing algorithms are unstruc-
tured in terms of the global system model, and the composite EFSM does not need to 
be computed. We also study mutation testing, since it is known to be efficient for a 
range of particular types of errors in software testing [3, 15]. Wimmel’s et al’s work 
based on their elegant validation tool AutoFocus [9, 24] is among the first attempts to 
apply the idea of mutation testing to security system. The greatest challenge (unad-
dressed by [9, 24]) of mutation testing is to control the number of mutants. This paper 
defines mutation functions with special property such that only mutants with single 
fault need to be considered for test generation. As a case study, we model the predi-
cate (guard) absence fault type FPA with this property, then present and analyze the 
test generation algorithm. We use the well-known Needham-Schroeder-Lowe (NSL) 
mutual authentication protocol [18] to illustrate our formal model and testing algo-
rithms. 

 



 

 

2   Modeling and Methodologies 

After describing a formal model of security protocol systems we present our testing 
methods for both passive monitoring and active testing for message confidentiality. 

2.1 Security Protocol Model 

We define the security protocol message type as follows. First, there are three atom 
types: Int, Key and Nonce. A value of type Int is a non-negative bounded integer. A 
value of type Key ranges over a finite set K of keys. A value of type Nonce ranges 
over a finite set N of nonces. A protocol message is recursively defined as: (1) An 
atom; (2) Encryption of a message with a key; or (3) Concatenation of atoms and 
encryptions. A message can be represented by a string. For example E(kb,(ka.na)) is a 
messages that is formed by encrypting the concatenation of ka and na with another key 
kb. Given A=<K, N>, a set of keys and nonces, denote L(A) as the message type and 
the set of messages formed using atoms in A. L(A) is obviously infinite, and even if 
we restrict the number of atoms that a message contains, its size is exponential. 

Among the atom types, Key and Nonce are treated as symbols in the sense that they 
can not be composed or calculated using other atom values. Also, Key type contains 
both symmetric keys and asymmetric key pairs. For the latter we use ku to represent a 
public key and kr for a private key. There are some basic operations defined on mes-
sage type. Let msg be a message, function Elem(msg,i) calculates the ith component 
in msg, and D(k,msg) returns m’ when msg = E(k,m’). Both functions are partial and 
they are undefined for messages with incompatible formats. 

We define an extended finite state machine model that uses protocol message set 
L(A) as input and output alphabet. 
 
Definition 1. An Extended Finite State Machine (EFSM) with symbolic message type 
is a 7-tuple M=<S, sinit, A, I, O, X, T> where 
1. S is a finite set of states; 
2.  sinit is the initial state;  
3. A is the set of atoms, and L(A) is the set of messages formed using atoms in A; 
4. I = {i0, i1,…, iP-1} is the input alphabet of size P; each input symbol ik 

)0( Pk <≤  contains a parameter π(ik) of type L(A) ; 
5. O = {o0, o1,…, oQ-1} is the output alphabet of size Q ;each output symbol ok 

)0( Qk <≤  contains a parameter π(ok) of type L(A);  
6. X is a vector denoting a finite set of variables of type L(A); 
7. T is a finite set of transitions; for Tt ∈ , t = <s, s’, i, o, p(x, π(i)),a(x, π(i), π(o))> 

is a transition where s and s’ are the start and end state, respectively; π(i) and π(o) 
are the input/output symbol parameters; p(x, π(i)) is a predicate, and  a(x, π(i), 
π(o)) is an action on the current variable values and parameters. 

For practical protocol systems, the machine is often partially specified because a 
transition can only be triggered by a message with expected format. We use predi-
cates to model the basic type checking capability. Upon receiving a message, the 
machine can reconstruct each element of it if the message format is correct. The spe-
cial case is that some of the encrypted messages might be opaque to a machine be-



 

 

cause it does not possess the required key. For each combination of state and input 
symbol, there is one transition with a special predicate “else”, meaning that it is en-
abled when all other transitions are not. We further assume that upon an input if none 
of the transitions are triggered, and then an implicit “else” transition make the ma-
chine stay at the current state and output nothing. For simplicity, we assume the ma-
chine contains a reliable reset symbol that takes the machine back to the initial state 
sinit and resets all state variables. In order to model the global uniqueness of nonce, a 
fresh new set of nonce N’⊆ N will be used whenever the machine is reset, so that 
different runs (sessions) of the protocol will use different nonces. Since N is finite we 
can only model finite number of sessions and each session only uses finite nonces. 
Finally, we only consider deterministic EFSM model. 

A security protocol is specified by a set of communicating EFSM {M1,M2,···,MC} 
that share the same message type L. Each component machine Mk represents a princi-
pal in the protocol system. It is possible that two machines are the same, meaning 
there are symmetric peers in the protocol. Moreover, for each transition in a compo-
nent machine Mk, the input (output) symbol carries an extra parameter of the sender 
(receiver) identifier. We denote an input message received from Ma as Ma?i and an 
output to Ma as Ma!o. The semantics of message sending/receiving follow the typical 
communicating FSM model [11]: the input/output is synchronized as a rendezvous 
and executed simultaneously. 

2.2   Intruder Model 

We model an intruder as an additional EFSM MI in the protocol system that runs a 
special protocol. To model general behaviors of the intruder, we adapt Dolev-Yao’s 
assumptions for two party message exchange protocols [4] that define a widely ac-
cepted powerful intruder model. It has been proved that one intruder poses the same 
security threat as multiple intruders and we model only one in our study. 

An intruder is first a legitimate principal of the communication system; it can not 
only initiate a session with any other component machine Ma but also be the (passive) 
peer of any session. Furthermore, the intruder is capable of intercepting messages 
between any two legitimate principals. The important effect of this behavior is that 
the semantics of message sending and receiving in the original communicating EFSM 
model are altered. A transition in Ma with output message Mb!msg now will be jointly 
executed with a transition in MI that takes input Ma→ Mb?msg, instead of the transi-
tion in the intended receiver Mb. This should be clearly distinguished with the first 
case where the intruder MI is the intended receiver (e.g. Ma outputs MI!msg). Simi-
larly, the intruder can inject any message, impersonating any other machines. That is, 
MI can send output Ma→ Mb!msg to Mb and this output matches the transition of Mb 
with input Ma?msg.  

Besides the capability of catching and injecting normal protocol traffic, the in-
truder is also assumed to be able to generate any new message based on all and only 
the messages it possesses. Formally, we define the knowledge of the intruder as a set 
of messages Ω = Encl(Ω0+MSG) where Ω0 is the initial knowledge known to the 
intruder containing the public and intruder’s own information, and MSG represents 
the set of messages the intruder has received. Function Encl(L) is defined as the en-



 

 

closure of L under the functions Elem(), D() and E(). Therefore, Ω can be regarded as 
all the messages that the intruder is able to construct, using only the messages it ob-
tains. Once the intruder gains a message it will not forget it and Ω never shrinks. As 
far as a realistic testing scenario is concerned, we have to assume the intruder has the 
capability of recognizing the message format, either by guessing the data field, or by 
reading the meta-info such as an XML schema.  

 

 
Fig. 1. EFSM model for the intruder 

 
Fig. 1 shows the EFSM model of the intruder. MI contains only one state and two 

transitions for message interception and injection respectively. Intercept transition 
takes any message msg sent from Ma to Mb as input. The guard ensures msg is not 
from MI itself and the action updates the knowledge set. Inject transition outputs a 
message in the current knowledge set to another machine Mb under the disguise of 
Ma. The model of MI is obviously independent of the other component machines. 
Note that messages meant to be delivered to MI will also be caught by the Intercept 
transition, and in case the intruder does not want to intercept a message, the Inject 
transition is fired right after Intercept transition with the same message. 

2.3   Testing Security Requirement: Message Confidentiality 

Given the specification of protocol roles {M1, M2,…, MC} and the intruder MI, the 
global behavior of the whole protocol system under investigation is described by the 
Cartesian product of all the machines: M1×M2×···×MC×MI with the input/output 
matching rule we define in the previous subsection. Since all the transitions involve 
one of the two intruder transitions, an I/O trace produced by the system can be de-
scribed by an interleaving sequence of Intercept and Inject transitions each with a 
message in the parameters. 

In this paper we focus on black-box penetration testing. The implementations of all 
protocol principals are treated as pure black boxes, i.e. B = {B1, B2,…, BC}, each Bi 
can be a correct or faulty implementation of Mi. The tester plays the role of intruder 
and simulates the machine MI. This is an active testing process because the tester can 
choose arbitrarily the parameters of Inject transition, namely the sender, receiver and 
message. A test sequence seq is defined as an I/O trace produced by the communicat-
ing system of MI and B. Starting from the initial states, denote the value of Ω in MI 
after a test sequence seq is applied as Ω(B, seq), which is the knowledge that an in-
truder gains by performing penetration test seq.  

For a given security protocol system, there are many security requirements de-
pending on the specific application needs. Typically, they include message confiden-
tiality, message integrity, authentication, and non-repudiation [20]. In this paper we 

Intercept (Ma→ Mb?msg) / - 
[a ≠ I] / Ω = Encl(Ω + {msg}) 

MI 
State Variable 

Ω: L 
Parameters 
a,b∈ [1..C] 

msg∈L 

S0 

- / Inject (Ma→ Mb!msg) 
[msg in Ω] & [b ≠ I] / {} 



 

 

focus on the message confidentiality requirement that is the key property of a security 
protocol system. Other requirements can be handled, for instance, by appropriate hash 
functions, and we shall not digress here. 

Definition 2. A protocol implementation B = {B1, B2,…, BC} is insecure with regard 
to the confidentiality of messages M*⊂ L if and only if there exists a test sequence 
seq and a message m∈M* such that m∈Ω(B, seq). 

An implementation is flawed if and only if message content can be uncovered by 
the intruder after a test sequence is applied. We model the intruder following Dolev-
Yao’s approach, our definition 2 is consistent with their notion of security of two 
party cascade and name stamp protocols [4]. One natural question is that whether the 
protocol specification itself is secure. When the implementation of each component 
machine is equivalent to its specification, i.e. Bi = Mi, the intruder might still be able 
to obtain the secret if the protocol design itself is flawed [14]. Since our goal is test-
ing rather than validation, we assume the protocol design and specification are secure.  

As an example of modeling security protocols, we consider the well-known 
Needham-Schroeder-Lowe (NSL) mutual authentication protocol [18]. Among many 
of its variants, we use a simplest one with three message exchanges [14]. Two princi-
ples, the initiator and the responder, are involved and they are specified as MA and 
MB, respectively. The message sequence of a successful run is shown below. 

A → B (Ask): A.B.E(KUB,(NA.A)) 
B → A (Rpl): B.A.E(KUA, (NA.NB.B)) 
A → B (Cfm): A.B.E(KUB, (NB)) 

 
(a) 

- / Mpid!Cfm(A.pid.E(KU[pid],N2)) 
[pid=X1] & [X3=X1] & [N1=N] /{} 

Init (p) / Mp! 
 Ask(A.p.E(KU[p],NA[p],A)) 
[p≠A] / {pid=p;N=NA[p];} 

Mp?Rpl(x1.x2.E(k,n1,n2,x3)) /-  
[x2=A] & [k=KU[A]] & [p=pid] 
/ {N1=n1; N2=n2; X1=x1; X3=x3;} 

MA 
State Variable 

pid,N,N1,N2,X1,X3 
S0 

SS1 

SR1

SA - / Mp!Rst 
else/ {} 

MpRst? / - 
[p=pid]/ {} 

MpRst? / - 
[p=pid]/ {} 



 

 

 
(b) 

Fig. 2.  Needham-Schroeder-Lowe protocol (a) Initiator MA (b) Responder MB 

The protocol functions as follows. The initiator A encrypts a nonce with the re-
sponder B’s public key and sends it to B. B then decrypts it and encrypts it together 
with another nonce using A’s public key. Finally A gets the second nonce and sends it 
back. The purpose of NSL protocol is to allow both principles authenticate each other 
and exchange some secrets (two nonces), which later on can be used to construct 
shared keys. Fig. 2 shows the two complete EFSM specifications. We assign index 0, 
1 and 2 to MA, MB and the intruder MI. The intruder can participate legally as both the 
initiator and responder. The atom messages in this protocol include the public keys 
(KUA, KUB and KUI) and the nonces. In order to express the security requirement 
conveniently, we distinguish the nonces used for different peers. For instance, the 
nonce MB uses to challenge MI is NB[I]. Initially the intruder only knows its own key 
and nonces, i.e., Ω0 = {KUI, NI[A],NI[B]}. The secret message set is M* = 
{NA[B],NB[A]}; the intruder should not obtain the nonces that are only supposed to be 
shared only between A and B. Note that in Fig. 2 the parameter (message) of each I/O 
symbol is expanded by its structure, which is a short notation for format checking of 
the message. A special symbol Rst is used to reset the session when invalid message 
is processed. 

To summarize this section, we essentially reduce the security testing problem to 
searching for special I/O sequences produced by a mixed communicating system, 
which contains MI and one or more black boxes as principals. The characteristic of 
those sequences is that they lead the reachability graph of MI to a state where the 
value of variable Ω contains message content/secret. The tester has full control over 
MI but can only observe the I/O behaviors of the other protocol principals.  

3.   Message Confidentiality Testing 

After presenting a simple passive monitoring algorithm, we describe an active testing 
procedure that is based on a guided random walk. 

MpRst? / - 
[p=pid]/ {} 

- / Mp!Rst 
else/ {} 

MB 
State Variable 

pid, pm,N,N1,X1,X3 

Mp?Ask(x1.x2.E(k,n1,x3)) /- 
[x2 = B] & [k=KU[B]]  
/ {N1=n1; X1=x1; X3=x3; pm=p;} 

-/ Mpm!Rpl(B.X1.E(KU[X1],N1,NB[X1],B)) 
[X3 = X1] & [X1≠B] / {pid=X1;N=NB[pid];} 

-/- 
[N1=N] & [pid=X1] 
/{} 

Mp?Cfm(x1.x2.E(k,n1)) /- 
[x2 = B] & [k=KU[B]] & [p=pm] 
/ {N1=n1; X1=x1;} 

S0 

SR1 

SS1

SR2 

SA 

- / Mp!Rst 
else/ {} 



 

 

3.1 A Simple Passive Monitoring Algorithm 

A passive tester or monitor of security protocol implementation is easy to devise. The 
intruder (tester) intercepts all messages among the component machines, updates its 
knowledge, replies if the message is directed to itself, and otherwise forwards it with-
out any modification. The testing terminates when the intruder derives any secrets. 
The procedure is shown in Algorithm 1. As inherent to all passive testing approaches, 
this algorithm only utilizes part of the intruder’s capability and it is suitable when the 
intruder could only conduct eavesdropping [1]. 
Algorithm 1 (Passive Monitoring) 
Input: {B1, B2,…, BC}, message secrets M*, Intruder initial knowledge Ω0. 
Output: security flaw if observed. 
begin 
1. Ω=Ω0; 
2. while (true) 
3.    try to execute Intercept (Bi→ Bj?msg) transition with any Bi; 
4.    if succeed 
5.       if (M*∩Ω φ≠ ) return flaw; 
6.       if (j=I)  
7.          generate reply msg’ ; 
8.          execute Inject (MI→ Bi?msg’) transition; 
9.       else 
10.          execute Inject (Bi→ Bj?msg) transition; 
End 

3.2 Active Testing - Guided Random Walk 

Now we study active testing approaches that utilize the full power of the intruder. 
One simple-minded method of active testing is random walk. Starting with an initial 
knowledge set, the intruder (tester) randomly chooses either to intercept a message 
from a pair of principals or to construct a message using its current knowledge and 
send it to a principal. Pure random walk has several limitations; the coverage of the 
model is not high and, more importantly, it does not use the intruder’s knowledge 
acquired. We present a guided random walk approach with a high coverage and fully 
utilizing the intruder’s knowledge acquired. 

The approach is adaptive and unstructured in terms of the composite (global) state 
machine. We keep track of the current state Si and variable values Xi for each black 
box Bi in order to guide the selection of next transitions. Note that in general tracking 
current state is not always possible even under the assumption that Bi contains no 
transition errors; it is due to the fact that part of the message is encrypted and intruder 
can not utilize the information to infer the current transition and state if he does not 
have the key. In this case, the algorithm makes a random guess.  

At each step, the intruder always tries to intercept the messages coming from every 
machine Bi. Once a message is intercepted, the state of the sender as well as the in-
truder’s knowledge is updated. Then the intruder constructs a message and injects it 
to a machine to fire a carefully selected transition. Our algorithm selects transition 
and message based on the following criteria. First the transitions of all component 



 

 

EFSM should be covered fairly. The algorithm keeps track of a counter cnt[t] for each 
transition t, and at each step the one that has been executed least is favored. More-
over, we only select the transitions that could possibly be enabled by some input 
message and ignore those transitions that will definitely not be triggered (the current 
state variables themselves disable the predicate). We calculate Ttrue as the set of all 
possible transitions:  

 Ttrue = { t<Si, S’i, I, p, a> | t ∈  Mi and ∃msg∈Ω: p(Xi,msg) = true} 

Once a transition t is determined, we construct an enabling input message for t us-
ing a greedy algorithm. Ideally we want an input message that will lead the machine 
to a state that can generate more new knowledge. That is, for all candidate messages 
we calculate the destination state S’ of t, and select one that enables at least one out-
put transition t’ with parameter msg’ not in Ω. We use subroutine lookahead(Ω, S, X, 
t) to calculate such messages. If such messages do not exist or there are ties, an ena-
bling message is randomly picked:   

 lookahead(Ω, S, X, t<Si, S’i, I, p, a>) = {msg | p(Xi,msg) =true and ( ∃ t’< 
Si’,Si”,O(msg’),p’,a’>:p’(Xi’)=true and msg’∉Ω) } 

Algorithm 2 (Active Testing - Guided Random Walk) 
Input: {B1, B2,…, BC}, secrets M*, Intruder initial knowledge Ω0. 
Output: Adaptive test sequence. 
begin 
1. initialize each Mi , for all transition t, cnt[t] = 0; 
2. X=<X1,...,XC>, S=<S1,...,SC>; 
3. Ω=Ω0 , seq=φ ; 
4. while (seq.len < L) 
5.    foreach component Bi 
6.       try to execute Intercept(Bi→ Bj?msg) with Bi; 
7.       if succeed  
8.          deduce or guess the transition t; 
9.          update Xi, Si, cnt[t] = cnt[t] +1, seq = seq + {t}; 
10.    calculate Ttrue ,select t∈Ttrue with smallest cnt[t]; 
11.    select msg from lookahead(Ω, S, X, t); 
12.    try to execute Inject transition with t using msg; 
13.    if succeed  
14.       update Xi, Si, cnt[t] = cnt[t] +1, seq = seq + {t}; 
15.    if (M*∩Ω Φ≠ ) return seq; 
16. return seq; 
end 

To avoid infinite tests, the algorithm terminates when either the secret message 
content is obtained or the length of test sequence reaches a preset limit. This algo-
rithm is more effective than random walk because the greedy heuristics take into 
account both coverage and intruder knowledge acquisition. However, it still has many 
inherent limitations. For example, calculation of Ttrue and lookahead() is rather expen-
sive. Also, the effectiveness of the heuristic relies on the estimation of current state 



 

 

and variable values, and if it fails the algorithm behaves the same as random walk. 
Advanced passive testing techniques [8, 10] that estimate data portion more accu-
rately could be applied here to improve the performance. 

3.3 Experiment  

We conduct an experiment of Algorithm 2 on NSL protocol specified as Fig. 2. Two 
implementations are created with a common programming error in each. Then we 
treat them as black-boxes and run the algorithm to test for confidentiality violations. 

Implementation X: The responder does not verify the encrypted identifier of the 
initiator after it receives Ask message, and proceeds as if it were correct. 

Implementation Y: The initiator does not verify the encrypted identifier of the re-
sponder after it receives Rpl message, and proceeds as if it were correct. This error 
was first uncovered by Lowe [14] as a design flaw in the original Needham-
Schroeder protocol. 

For both Implementation X and Y errors have been detected. Table 1 (a) and (b) 
show the successful test sequences for them. In the first test sequence, at the begin-
ning the intruder intercepts an Ask message from M0 to M1, and updates the state to 
<Ss1,S0>. Now three transitions are feasible and as the result M1?Ask is selected. Loo-
kahead() returns a random message that enables M1?Ask because no message will 
further trigger an output transition. In the second round we intercept an Rpl message, 
and the intruder will obtain a secret (N0[1]) and terminate the test. The sequence for Y 
is more complex. After injecting an Ask message to M1 and intercepting the response, 
we have two transitions in Ttrue. M1!Cfm is chosen and executed with a random mes-
sage. At next step M0 happens to initiate a session with MI. This is a rare event yet 
critical for detecting errors in this implementation. The only transition that could be 
enabled is M0?Rpl, and now the intruder happens to have a message to enable it. The 
last step is the interception of Cfm message from M0 that exposes the nonce – secret 
N1[0]. 

 Table 1. Detection of Errors in Implementation X (a) and Y (b) 

States Action Note 
<S0, S0> Intercept M0→ M1? Ask 

(0.1.E(KU[1], N0[1], 0)) 
Ω+ = {E(KU[1],N0[1],0)} 
 

<SS1, S0> Inject M2→ M1! Ask 
(2.1.E(KU[1], N0[1], 0)) 

Ttrue = {M0?Rpl, M0?Rst, M1?Ask} 
t = M1?Ask 

<SS1, SR1> Intercept M1→ M2? Rpl 
(1.2.E(KU[2], N0[1], N1[2],1)) 

Ω+ = {N0[1], N1[2]}  
N0[1]∈M* 

(a) 
States Action Note 
<S0, S0> Inject M0→ M1! Ask 

(0.1.E(KU[1], N2[1], 0)) 
Ttrue = {M1?Ask} 
t = M1?Ask 

<S0, SR1> Intercept M1→ M0? Rpl 
(1.0.E(KU[0], N2[1], N1[0], 1)) 

Ω+ = { E(KU[0], N2[1], N1[0], 1)} 

<S0, SS1> Inject M0→ M1! Cfm 
(0.1.E(KU[1], N2[1], 0)) 

Ttrue = {M1?Rst, M1?Cfm } 
t = M1?Cfm 

<S0,SR2> Intercept M0→ M2? Ask Ω+ = {N0[2]}  



 

 

(0.2.E(KU[2],N0[2],0))  

<SS1,SR2> Inject M2→ M0! Rpl 
(2.0. E(KU[0], N2[1], N1[0], 1)) 

Ttrue = {M0?Rpl} 
t = M0?Rpl 

<SR1,SR2> Intercept M0 → M2? Cfm 
(0.2.E(KU[2],N1[0],0)) 

Ω+ = {N1[0]} 
N1[0]∈M* 

(b) 

4.   Mutation Testing  

In this section we investigate mutation testing of security protocol, and design struc-
tured and preset test sequences. As introduced earlier mutation testing is a powerful 
technique for detecting specific types of security errors. Given the specification Mspec 
= {M1, M2,…, MC}, we introduce some faults, resulting in a mutant {M1’, M2’,…, 
MC’}. Given a set of mutants P, a test suite is generated such that for each mutant p, 
there is at least one test sequence that distinguishes (detects) it with the specification 
(correct implementation). A main challenge of mutation testing, when applied to 
software in general, is that the number of mutants (therefore the number of tests re-
quired) is huge. The situation is not mitigated in our EFSM model given its equiva-
lent computing power of Turing machine. We model a security flaw as a mutation 
function δ on a specification EFSM, and a type of fault F as a set of similar mutation 
functions. A mutant under F is the application of one or more such functions. If the 
type F contains k functions, then the number of mutants is O(2k). 

One can take two hypotheses to reduce the number of mutants generated [3]. First, 
competent programmer hypothesis assumes that an implementation only contains a 
small number (C) of faults. This reduces the number of mutants to O(kC), which is 
still quite large. Second, coupling effect hypothesis states that the test sequences used 
to distinguish mutants with simple fault are sensitive enough to also uncover complex 
fault. Clearly this is not always true. Given an arbitrary mutation function, a test se-
quence that obtains the secret on δ1(Mspec) may not be effective for δ2δ1(Mspec). In fact, 
mutant δ2δ1(Mspec) could even be secure. On the other hand, if we could select test 
sequence that satisfies this property, then the number of mutants could be further 
reduced to k. For message confidentiality testing, we can reduce the number of mu-
tants based on this observation. 

4.1   A Fault Model: Predicate or Guard Absence 

There are generally two categories of security sensitive fault in the protocol model. 
The first is message format fault. For example, one might use the private key to en-
crypt part of the message instead of the public key, or attach an unnecessary part, 
both giving the intruder more information. This type is easier to observe since it 
changes the alphabet of some component machines. The second category of fault is 
related to the predicate or action of the transitions, but has no effect on the message 
types. Based on the observation of security protocols, a commonly encountered im-
plementation error is neglecting critical condition checking. Usually an action is taken 
place only if some condition – predicate - is satisfied by the current state and/or the 
input message. For example in the NSL protocol, the responder only replies to the 



 

 

message Ask(x1.x2.E(k,n1,x3)) when the x2 is equal to its own index, and similarly the 
initiator only generates to the Cfm message when it verifies the responder’s reply 
with the same nonce as the one it sends out. If the programmer neglects to check such 
condition such as in Implementation X and Y in section 3, it is likely that the resulting 
implementation is insecure. This type of fault is reflected in the EFSM model as the 
absence of part of the predicate in a transition - or often called a guard. Assuming the 
predicate is specified as a conjunctive normal form of Boolean expressions (i.e. 
b1&b2&b3) , we formally define this fault type. 

Definition 3. For all the transitions tj, j=0,1,…, from a state s with a same in-
put/output symbol y, a predicate absence (PA) mutation function δPA(s,y,t,b) with 
regard to a Boolean expression b in the predicate pj of t=ti, is obtained by removing b 
from pj and adding (!pi) to pj for all i ≠ j.  

Basically the mutation function removes one Boolean expression from a transition. 
In order to keep the resulting machine deterministic, we add its negation to all other 
transitions with the same start state and input/output symbol. Fig. 3 shows an example 
of a mutant of the function δPA(S1,Y, t, [a=1]).  

 
(a) Specification (b) Mutant δpa( S1,Y, t, [a=1]) 

Fig 3. Example of mutant δPA 

Definition 4. For a protocol specification Mspec, a predicate absence (PA) fault type 
FPA is obtained by applying one or more PA mutation functions δPA(s, y, t, b) on Mspec. 
A mutant under FPA is defined as δS (Mspec) =δ1δ2… δn (M), where S = {δ1, δ2,…, 
δn}⊆ FPA, and for any δa(s, y, ta, ba), δb(s, y, tb, bb)∈S, ta = tb.  

A mutant under the PA fault type is the result of application of a set of PA muta-
tion functions, each removing a Boolean expression from a predicate. Note that al-
though this definition does not limit the number of faults in one mutant, it relies on 
the competent programmer hypothesis to assume that for each combination of com-
ponent machine, state and I/O symbol, only a predicate from one transition could be 
removed. Consequently, if each transition contains a constant number of Boolean 
expressions, there are totally O(T) mutation functions and O(2(C × N × P)) mutants 
where T is the number of transitions, C is the number component machines, N is the 
maximum number of states and P is the number of I/O symbols. 
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Intuitively a mutant with more predicate missing should allow more transitions to 
be executed and therefore the security flaws are “monotonically” increasing with 
inclusion of more faults in Fpa. This is formulated in the following proposition. 

Definition 5. A progressive I/O sequence of a communicating system is an I/O se-
quence that does not trigger any “else” transition of any component machine.  

Proposition 1 (Monotonicity). For any two mutants δS1(M) and δS2(M) under Fpa 
with S1⊆ S2, if a progressive I/O sequence seq could be generated by MI and δS1(M), 
then seq could also be generated by MI and δS2(M). 

Sketch of proof: The proof of this proposition is quite straightforward using an in-
duction on the length of the sequence. Suppose a prefix of seq has already been exe-
cuted by δS2(M) and the next message in seq will trigger transition t in Mi. if δS2(M) 
has the same t as δS1(M) then t will be executed. If δS2(M) further removes some ex-
pressions from t, then the current states and input message will satisfy the guard of 
the new transition, since t is not the “else” transition, and, therefore, t is executed. 

An important implication of Proposition 1 is that if a progressive test sequence dis-
covers a message secret for M, and we apply some other mutation functions to intro-
duce more errors, the same test sequence can still expose the message content on the 
new mutant. In other words, faults do not cancel the evidence of each other with 
regard to a progressive test sequence. We remark that singularity about “else” transi-
tion does not decrease the applicability of this model because this special type of 
transition is usually used to model the behavior in abnormal conditions, and will not 
be included in an I/O sequence that achieves the functionalities of the protocol. 

4.2 Mutation Test Generation Algorithm 

Now we describe the procedure of generating test sequences for monotonic flaw type 
of FPA. The goal is to generate a set of test sequence that distinguishes all mutants 
under FPA. One valid concern would be that not all mutants are necessarily insecure 
according to the confidentiality requirement and it is reasonable to only focus on 
mutants, which lead to message confidentiality violations. This is a well-studied vali-
dation problem and we shall not digress here. For simplicity, we treat all mutants as 
potentially insecure and generate tests to detect each of them: 

Algorithm 3 (Test Generation for Fault Type FPA) 
Input: Mspec = {M1, M2,…, MC}, secrets M*. 
Output: test suite S, fault type F’PA    
begin 
1. S = {}; F’PA = {}; 
2. remove all “else” transitions from Mspec  
3. calculate and minimize MI× Mspec; 
4. foreach mutation function δi 
5.    calculate δi(Mspec); 
6.    calculate and minimize MI× δi(Mspec);  
7.    if (MI× Mspec != MI× δi(Mspec)) 
8.       t = separating sequence of MI× Mspec and MI× δi(Mspec) 
9.       S = S + {t}; 



 

 

10.       F’PA = F’PA + {δi}; 
11. return S 
end 

Algorithm 3 applies each mutation function alone to the specification and calcu-
lates a progressive separating sequence. This is done by removing all “else” transi-
tions, minimizing the Cartesian product of the mutant and intruder machine, and cal-
culate a separating sequence. The comparison in Line 7 refers to an equivalence test 
of two machines. The algorithm produces a new fault type F’PA which only contains 
the mutation functions if the corresponding mutants are distinguishable. The number 
of test sequences generated by Algorithm 3 is no more than the number of mutants in 
F’PA. The time needed for minimization is O(NlogN) with online minimization algo-
rithm [13], and the calculation of separating sequence requires O(N2) where N is the 
number of states in the reduced machine. We propose an optimization technique for 
generating separating sequence online in [21], which will reduce the cost of this algo-
rithm for average case but the worst case complexity is the same.  

As far as the fault detection capability is concerned, the test suite generated in-
cludes a test case to distinguish every mutant that is derived by applying one mutation 
function in F’PA. Since all test sequences are progressive sequence, from Proposition 
1, we have: 

Proposition 2. Tests generated from Algorithm 3 detect all mutants under F’PA in 
time O(N2) where N is the number of states in the reduced machine. 

Algorithm 3 also applies to all other fault models that satisfy proposition 1. Note 
that the test suite does not discover all faulty mutants in FPA; if a mutation function 
itself is not distinguishable, then Algorithm 3 simply discards it. 

4.3 Experiment 

We again conduct the experiment using NSL protocol. In the specification (Fig. 2) a 
total of 19 Boolean expressions are identified, as shown in Fig. 4. These expressions 
are used to construct the fault type FPA and the mutants. Among them δb12 and δb7 
correspond to the three implementations X and Y in Section 4, respectively. Algorithm 
3 produces F’PA = FPA –{δb18, δb19} and the set of 17 test sequences. The last two Boo-
lean expressions are not associated with any I/O behaviors and are not observable. 
The lengths of those sequences are shown in Table 2 and the details are omitted. All 
the sequences are short (less than 4). This set of test sequences detect all implementa-
tions with one or more Boolean expressions missing. 



 

 

  
Fig. 4. Boolean Expressions in NSL Specification 

  Table 2. Test Sequence Lengths Generated by Algorithm 3 
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5.    Conclusion 

    This paper studies the problem of testing message confidentiality of security proto-
cols. EFSM with symbolic message type is used to model security protocol system 
with an omnipotent intruder. A formal definition of message confidentiality property 
and the black box testing model are provided. Passive monitoring, guided random 
walk and mutation testing approaches are presented with case studies.  
    A lot of issues remain to be explored, such as efficient modeling for intruder 
knowledge acquisition for more powerful testing results, thorough and structured 
active testing procedures, and more general mutation testing with more focus on mes-
sage confidentiality violation yet with less computation costs. On the other hand, 
systematic experiments are to be conducted on the de-facto security protocols, such as 
Kerberos, electronic payment, and IPSec. 
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