Symbolic Model based Testing
for Component oriented Systems

Alain Faivre!, Christophe Gaston! and Pascale Le Gall?*

! CEA LIST Saclay F-91191 Gif sur Yvette
email : {alain.faivre,christophe.gaston}@cea.fr
2 Université d’Evry, IBISC - FRE CNRS 2873,

523 pl. des Terrasses F-91000 Evry
email : pascale.legall@ibisc.univ-evry.fr

Abstract. In acomponent oriented approach, components are designed,
developed and validated in order to be widely used. However one cannot
always foresee which specific uses will be made of components depending
on the system they will constitute. In this paper we propose an approach
to test each component of a system by extracting accurate behaviours
using information given by the system specification. System specifica-
tions are defined as input/output symbolic transition systems structured
by a communication operator (synchronized product) and an encapsula-
tion operator (hiding communication channels). By projecting symbolic
execution of a system on its components, we derive unitary symbolic be-
haviours to be used as test purposes at the component level. In practice,
those behaviours can be seen as typical behaviours of the component in
the context of the system. We will illustrate on an example that those
behaviours could not have been extracted by reasoning uniquely at the
component level.

Keywords: component based system, ioco-based conformance testing,
input/output symbolic transition system, symbolic execution.

1 Introduction

In the framework of reactive systems, a component oriented system is constituted
of components continuously interacting together and with their environment by
means of communication mechanisms. In a first step, basic components are usu-
ally specified, implemented and tested: this is called unitary testing. Then, the
complete system is specified, implemented and tested taking into account the
component based structure: this is called integration testing. Concerning inte-
gration testing, two main approaches can be followed depending on the targeted
fault model. In the first approach, the global system is tested according to be-
haviors involving communication mechanisms, focusing on cases for which those
mechanisms are not observable (i.e internal communications). Obviously, this

* This work was partially supported by the RNRT French project STACS and the
RNTL French project EDEN2 .

approach is used when the targeted fault model mainly deals with communica-
tion mechanisms as in [9,5,1]. In the second approach, the global system is tested
by selecting behaviors of basic components that are typically activated in the
system. It amounts to re-enforce unitary testing with respect to those behaviors.
In terms of fault model, the counterpart of this approach is that communica-
tion mechanisms are supposed to be correctly implemented and correctly used
by programmers. Thus, in this case, a non conformance of the system should
only result of uncorrect implementations of components. [13] has proposed a
theoretical framework based on these assumptions and has stated results con-
cerning preservation of conformance through component composition. In this
contribution, our objective is to re-enforce testing of components and interme-
diate sub-systems. Now, the question is: how to choose behaviors to re-enforce
component and sub-system testing in order to make them more reliable in the
context of the system? In fact, when a sub-system is involved in a more complex
one, it is very probable that all the sub-system behaviors are not activated. In
this paper, the models that we use to denote specifications of communicating
systems are made of simple input/output symbolic transition systems (IOSTS)
([4,6,3]) for denoting basic components, and of two structuring operators, namely
composition and hiding (as in [13]). Those models based on input/output sym-
bolic transition systems are equipped with naming mechanisms that allow us
to easily retrieve all relevant information concerning sub-systems. Those naming
mechanisms together with symbolic execution technics 7] are used to define rele-
vant behaviors of sub-systems. Moreover, we show how to use those behaviors as
test purposes in an ioco-based [11,12,3,4] conformance testing framework. From
a technical point of view, this contribution is an extension of the one presented
in [4] for component oriented system testing. As we do not make any assump-
tion concerning the communication mechanisms, a system (implementation) is
considered as conformant with respect to a structured specification if it has the
same structure, if for each intermediate subspecification, there exists a subsys-
tem corresponding to it, and if each subsystem is conformant according to the
ioco conformance relation with respect to the corresponding subspecification.

The paper is organized as follows. In Section 2, we present the IOSTS formal-
ism, the notion of basic component based system and the notion of (sub-)system.
In Section 3, we show how to define test purposes from symbolic execution of
such systems and how to project them on any sub-system. In Section 4, we define
our symbolic test purposes. Section 5 is a conclusion.

2 Structured Input/Output Symbolic Transition Systems
IOSTS are used to represent behaviors of reactive systems. Those behaviors are
composed of internal actions and communication actions which are emissions
or receptions of values through channels. Internal states are modeled by assign-
ments of particular variables called attributes.

2.1 Basic definitions of IOSTS

We use the following set theory notations. The set of functions of domain A and
codomain B is denoted B#. [] stands for the disjoint union.

For any set X, Identx denotes the identity function on X. For any two
functions f: A — B and g : C' — D such that ANC =0, flg: AUC — BUD
is the function such that flg(z) = f(z) if x € A and f|g(z) = g(z) otherwise.
Moreover, for any E C A, f|g is the restriction of f to E. A data type signature
is a couple 2 = (5, Op) where S is a set of type names, Op is a set of operation
names, each of them being provided with a profile sq -+ s,-1 — s, (for i < n,
5; € 5). Let V = J,cg Vs be a set of typed variable names. The set of £2-terms
with variables in V" is denoted T'o(V) = U,c g T2(V)s and is inductively defined
as usual over Op and V. Type : Tp(V) — S is the function such that for each
t € To(V)s, Type(t) = s. In the following, we overload the notation T'ype by
defining Type(X) = s for any set X C Vi. To(0) is simply denoted Tp,. An
2-substitution is a function of T (V)Y preserving types. Any substitution may
be canonically extended to terms. The set Seng (V) of all typed equational £2-
formulae contains the truth values true, false and all formulae built using the
equality predicates ¢ =t for ¢,t' € To(V)s, and the usual connectives —, V, A.
A 2-model is a family M = {M},cg with, for each f : $1---s, — s € Op, a
function fas : Mg, x --- x M, — M. We define 2-interpretations over V as
applications of MV preserving types, that are also extended to terms of T (V).
A model M satisfies a formula ¢, denoted by M = ¢, if and only if, for all
interpretations v, M |=, ¢, where M =, t = t' iff v(t) = v(t’), and where the
truth values and the connectives are handled as usual. Given a model M and a
formula ¢, ¢ is said satisfiable in M, if there exists an interpretation v such that
M =, ¢. In the sequel, we suppose that data types of our IOSTS correspond to
the generic signature {2 = (S5, Op) and are interpreted in a fixed model M.

10ST S-signatures are composed of a set of particular variables called At-
tributes and of a set of Channel names.

Definition 1. (IOST S-signature) An IOST S-signature is a couple (Att, Chan)
such that Att = |J g Atts. For any two IOSTS-signatures 2; = (Att;, Chan;)
with i € {1,2}, the union of Xy and X, denoted X1UX5 is the IOST S-signature
(Atty [] Atta, Chany U Chans).

Union of signatures does not collapse attributes. Even though Att, and Att,
contain a common variable name z, the union X; U Y5 distinguishes the two
occurrences of x. On the contrary, channel names are used to synchronize com-
munication actions and thus, are shared by a simple identification in the union.

Definition 2. (Actions) The set of communication actions over ¥ = (Att,
Chan), denoted Act(X), is the set Input(X) U Output(X) U {1}, where:
Input(X) ={c?Y | ¢ € Chan,3s € S, Y C Atts}
Output(X) = {clt | ¢ € Chan,t € To(Att)}

c?Y denotes the awaiting of a value to be received through the channel ¢ and
to be stored on all variables of Y. In the sequel, when Y is a singleton {y}, we
can note c?y instead of ¢?{y}. c!lt denotes the emission of the value ¢ through
the channel ¢ and 7 is an internal action without any communication action.

We enrich basic-IOSTS of [4] with a naming mechanism associating to each
transition a name chosen in a set T'IN of transition names.

Definition 3. (IOSTS) An IOSTS over a signature X' = (Att, Chan) is a
triple G = (State, init, Trans) defined by a set State of state names, an initial
state init € State, and a set of transitions Trans C TN X (State x Act(X) x
Seng(Att) x To(Att)A x State). STS denotes the set of all IOSTS.

In the sequel, for any transition ¢r of the form (n, (¢, act, ¢, p, ¢')), name(tr)
stands for n and is called the name of tr, source(tr) (resp. target(tr)) stands for
q (resp. ¢') and is called the source state of tr (resp. target state of tr), act(tr)
stands for act and is called the communication action of tr, guard(tr) stands
for ¢ and is called the guard of tr, subst(tr) stands for p and defines how the
attributes are modified when the transition is fired. Finally, body(tr) stands for
(q,act, ¢, p,q’). For an IOSTS G, Sig(G), Att(G), Chan(G), State(G), init(G)
and Trans(G) resp. stand for X, Att, Chan, State, init and Trans.

Definition 4. (Runs of a transition) With notations of Def. 3, let tr €
Trans. Let us note Act(M) = (Chan x {?,!} x M) U {r}. The set Run(tr) C
MA®x Act(M)x MAt of execution runs of tr is s. t. (', actyr, vf) € Run(tr) iff:

— if act(tr) is of the form c\t (resp. T) then M |=,: guard(tr), v = v’ o
subst(tr) and actyr = clwi(t) (resp. actyr = 7),

— if act(tr) is of the form c?Y then M |, guard(tr), there exists v* such
that v*(z) = vi(z) for all z ¢ Y and for any =,y € Y vi(z) = v%(y),
vf =v% o subst(tr) and actyr = c?v(y) for an arbitrary y € Y.

Forr = (V',actyr, '), we note source(r), act(r), target(r) resp. v*, actyr, v7.

As in [3], we will use §! to denote under which semantic conditions an IOSTS
is quiescent: quiescence refers to situations for which it is not possible to fire an
output transition but only possibly input transitions or 7 transitions.

Definition 5. (Suspension traces and IOSTS semantics) The set of fi-
nite paths in G, denoted FP(G) contains all finite sequence p = try ...tr, of
transitions in Trans(G) such that source(try) = init(G) and for all i < n,
target(tr;) = source(triy1). The set of runs of p denoted Run(p) is the set of
sequences v = r1...1y such that for all i < n, r; is a run of tr; and for all
i < n, target(r;) = source(riy1). We note Tr(r) = act(r1)...act(ry). The set
of suspension traces of a run r of a finite path p, with r € Run(p), denoted
STr(p,r) is the least set s. t.:

— If p can be decomposed as p'.tr with tr € Trans(G) and with r of the form
r' e with r € Run(tr), then {m.act(ry)|m € STr(p’,r')} C STr(p,r).

— If there exists no finite path p.p" for which there exists r.ry -+ -1, € Run(p.p')
with for alli < k — 1, act(r;) = 7 and act(ry) = c!m for some ¢ and m, then
for any® 8, € {8'}*, Tr(r).0m € STr(p, 7).

The set of suspension traces of a path p is STr(p) =
and semantics of G are STT(G) = U, erp(c) STT(p)-

) STr(p,r)

r€Run(p

3 A* denotes the set of finite sequences of elements of A

2.2 Systems

We introduce the concept of library which intuitively allows us to characterize
a set of IOSTS denoting basic components from which systems can be built.
Formally a library is a set of couples, each of them being constituted of an
IOSTS name and an IOSTS definition. IOSTS names are chosen in a given set
BN whose elements are called basic-IOSTS names.

Definition 6. (Library) A library is a set B whose elements are of the form
(n,G) where n € BN and G € §TS, s. t. for any two (n1,G1), (n2,G2) in B,
ny = ng iff Gy = Ga. If Gy # Ga, for any t1 € Trans(G1) and to € Trans(Gs),
name(t1) # name(te). Elements of a library are called basic-IOSTS.

In the sequel we consider a library B and we note BN (B) = {n | (n,G) € B}
and Chan(B) = {c | 3(n,G) € B,c € Chan(GQ)}. A system over a library B is
built from IOSTS of B using two structuring mechanisms: composition which is
used to aggregate two systems by connecting common channels and hiding is
used to internalize some channels inside the system (they are no more visible
from the environment). As for basic-IOSTS, we denote any system by a name
and an IOSTS. The name associated to a system reflects the structure of the
system. The set SN(B) of system names over B is defined as follows:

— for any n € BN(B), n € SN(B), (a basic-IOSTS is also a system),

— for any ny,ne € SN(B), (n1 ® ng) € SN(B) (corresponding to the system
obtained by composing two systems named resp. nqy and ns),

— for any n € SN(B) and C C Chan(B), Hide(C,n) € SN(B) (corresponding
to the system obtained by hiding channels of C' in the system named n).

Intuitively, for any system, transitions introduced in its associated IOSTS
are defined over transitions of basic-IOSTSs composing the system, mainly by
synchronization mechanisms. In order to be able to identify basic transitions
involved in system transitions, the name associated to system transitions will
explicit the underlying synchronization mechanism. Therefore, those names are
of the form (o,{i1, -+ ,i,}) where o is a name of basic output-transition or a
T-transition and 4y, -- ,i, are names of basic input-transitions (with possibly
n = 0). Roughly speaking, the name (o, {i1,--- ,i,}) generally refers to the syn-
chronization of a basic output-transition named o with basic input-transitions
named i1, - - ,i,. Let us point out some particular cases. Any transition obtained
by synchronizing input-transitions named i1, - - - , 4, with an emission of the en-
vironment is denoted (g, {i1,--- ,in}) where £ denotes the absence of output-
transition. Any 7-transition in a system has a name of the form (n,) where n
is the name of some underlying basic 7-transition. The set of system transition
names, denoted STN, is then the set (TN U {e}) x 27N where ¢ ¢ T'N.

We now define systems over a library by means of three constructions: re-
naming to convert a basic-IOSTS into a system, composition and hiding.

Definition 7. (Systems over B) The set Sys(B) of systems over B is the
subset of SN(B) x ZOSTS defined as follows:

Renaming: For any (n,G) € B and t € Trans(G), let us define sn(t) =
(name(t),0) if act(t) = 7 or act(t) € Output(X) and sn(t) = (¢, {name(t)})
otherwise. Let us define R(T'rans(G)) = Uyerrans(c)i(sn(t), body(t))}.

(n, (State(G), Init(G), R(Trans(G))) is in Sys(B).

Composition: For any two systems (n1,G1) and (n2, Ga) of Sys(B), let us
note G = (State(G1) x State(Ga), (init(G1),init(Gs)), Trans) the IOSTS
over Sig(G1) U Sig(Gs) where Trans is defined as follows:

- If ((01’ il)v (QIv C!t7 P15 P1, qll)) € TTanS(Gl) and ((67 iQ)’ (q2’ C?Yv ¥2, P2,
¢)) € Trans(Gz) and such that type(t) = type(Y), then
t = ((o1,41 Ui2), ((q1,q2), clt, 01 A pa, p1 | p2lY 1], (q1,43))) € Trans.
— If ((o1,41), (1, ct, ., p,q1)) € Trans(Gy), for all g2 € State(Ga) let us
notetry,--- ,try, all transitions of the form tr; = (ng, (g2, ¢?Ys, 4, pi, 4))
€ Trans(Gg) for which type(Y;) = type(t). Let us note guard = Nij<n—@;
if n >0 and guard = true otherwise. Then
t = ((01,%1), ((q1, q2), c't, o A guard, p | Ident ay(c,), (41, q2))) € Trans.
— For any two transitions of the form ((g,i1), (q1, ¢?Y1,p1,p1,4})) €
Trans(G1), and ((¢,i2), ((q2, c?Y2, 92, p2,¢5)) € Trans(Ga) such that
type(Y1) = type(Ya), then
t=((e,i1Ui2), ((q1,42), c?(Y1 U Y2), 01 A2, p1 | p2, (41, 43))) € Trans.
— If ((g,11), (q1,c?Y, 0, p,¢))) € Trans(G1), for all g2 € State(G>), let us
notetry,--- ,try, all transitions of the form tr; = (ng, (g2, ¢?Ys, 4, pi, 4l))
€ Trans(Gg) for which type(Y;) = type(Y'). Let us note guard = Nj<p—p;
if n >0 and guard = true otherwise. Then
t=((e,11), ((q1,92), c?Y, 0 A guard, p | Ident a4(c,), (41, q2))) € Trans.
— If ((01,0), (g1, 7,1, p,q))) € Transy, for all g2 € State(G2), then
((017 (Z))) ((QL q2)7 T,$1,p | IdentAtt(Gz)a (qiv QQ))) € Trans.
— The role of G1 and G5 can be permuted in all rules described above.
((n1 ® n2),G) is in Sys(B).

Hiding: For any (n,G) € Sys(B), for any C C Chan(QG), let us note G' =

(State(G),init(G), Trans’) where Trans' is defined as follows:
— For any tr € Trans(G) where act(tr) is either of the form 7, clt or ¢?X
for some ¢ ¢ C, then tr € Trans'.
— For any tr € Trans(G) where act(tr) is of the form clt with ¢ € C, then
(name(tr), (source(tr), T, guard(tr), subst(tr), target(tr))) € Trans’.
(Hide(C,n),G") is in Sys(B).

Systems inherit all notations from the underlying IOSTS framework: for any
system sys = (n, G), Sig(sys) stands for Sig(G), Att(Sys) stands for Att(G)... In
the same way, semantics of sys are the set of suspension traces of G: STr(sys) =
STr(G). Note that for composition, emissions and receptions are not blocking:
if no transition can be synchronized with an input (resp. output)-transition tr,
then ¢r is synchronized with the environment. A synchronization involves at most
one output-transition: when several output transitions sharing the same source
state could be considered at the same time to define a synchronization, this leads
to non-determinism. The hiding operation make unobservable actions ¢!t when
¢ is in C but this operation is non blocking (the output-transition introducing

clt is kept by replacing the communication action by 7). The hiding operation is
blocking for inputs ¢?X for ¢ in C': corresponding transitions are simply removed
in Hiding(C,n). We now define sub-systems involved in a given system.

Definition 8. (Sub-systems) Let (n,G) € Sys(B). The set of sub-systems of
(n,G) denoted SubS((n,G)) C Sys(B) is inductively defined as follows:

— Ifn € BN then SubS((n,G)) = {(n,G)},

— Ifn is of the form ny @nay then SubS((n,G)) = {(n,G)}USubS((n1,G1))U
SubS((n2, G2)) where (n1,G1) and (n2, G2) belongs to Sys(B),

— Ifnis of the form Hide(C,n'), then SubS((n, G)) = {(n, G)}USubS((n’,G"))
where (n', G") belongs to Sys(B).

For any sub-system sys’ of a system sys, we can identify for any transition
tr of sys the underlying transition of sys’ involved in the definition of ¢r. This
transition when it exists is called the projection of tr on sys’.

Definition 9. (Projection of a transition) Let sys € Sys(B), sys’ € SubS(sys)
and tr = ((0,1),b) € Trans(sys). The projection of tr on sys’ is the transition,
when it is defined, trgyy = ((0/,1'),V) € Trans(G') s. t. o' =0 or o’ = ¢ and
i’ Ci.

The naming mechanism for system transitions in Definition 7 makes ((o,4’),b")
unique when it exists. Intuitively, the name (o0,) captures all the subparts of the
system whose state is modified by firing the transition ¢r. In particular, if (o, 1)
does not include names of transitions issued from the sub-system sys’, it simply
means that there is no modification of the state concerning the sub-system sys’,
and thus that there does not exist a corresponding transition trgys .

2.3 An example of a slot machine

We consider a simple slot machine, named S and presented in Figure 1. The
player can enter a bet into the slot machine and if he/she wins, he/she gets
back the amount of his/her bet multiplied by 10. The system S is built from two
basic-IOSTS, named resp. Int and S M for Interface and SlotMachine. Those two
basic-IOSTS are composed and some channels, used for internal communications,
are hidden. Thus the name of S is of the form Hiding(C, Int @ SM) where:

— Int corresponds to the basic interface IOSTS between the environment (player)
and the slot machine SM. When the system is reset (reception on int_start),
the interface IOSTS waits for a bet from the player. The bet is refused when
its amount is greater than 100. Otherwise, the IOSTS transmits to SM the
amount of the bet and then, waits for a result, win or not, from the SM.
Depending of the result, Int transmits to SM which gain should be given
to the player.

— SM corresponds to the internal mechanism of the slot machine. It manages
the different functionalities as appropriately updating the bank amount, de-
ciding whether the player wins or not, and in the relevant cases, delivering
cash to the player. For simplicity sake, the algorithm used to decide whether
the player wins or not, is abstracted by a boolean non initialized variable w.

— C corresponds to all the channels used by Int and SM to communicate.
That is, C = {int_start, int_bet, int_wim, int_amount, int_cash}.

Si0 IOSTS Int IOSTS SM

(&,i0)
int_start ? start
(ts0,9)
int_start ! true
auth_cash := false;
(ts6,) : cash_ok := false; (s.ts1)

[cash_ok]
int_cash_ok ! true
cash_ok := false;

int_bet ? b

bank_amount :=
bank_amount + b;

auth_verdict := true;

(eti1)
. ext_bet ? bb (e,ti8)
. (&,4i7) int_cash_ok ? cc
int_cash_ok ? cc
(ti2,2)
[bb < 0 or bb > 100]
ext_bet_error! true

&>

(ti3,2)
[0 < bb < 10] Gie (ts2,0) :
int_bet ! bb (ts5,0) : [auth_verdict]
* [auth_cash and a < 0] int_win!w
auth_cash := false; auth_verdict := false;
ﬁ\?D cash_ok :=true;
(s.ti4)
int_win ? ww
. (ti5,0) : [ww] (ti6,2) : [not ww] (ts4,9) : (e.ts3)
int_amount ! (10 * bb) int_amount ! (0) [auth_cash and a > 0] int_amount ? a

ext_cash!A auth_cash := true;
bank_amount := bank_amount - a;

auth_cash := false;

cash_ok := true;

Fig. 1. An example of a slot machine

3 System based test Purposes for sub-systems

We show how we define for any system, some test purposes dedicated to test its
sub-systems. Those test purposes will capture behaviors of sub-systems that typ-
ically occur in the whole system. This is done by combining symbolic execution
technics and projection mechanisms.

3.1 Symbolic Execution

We call a symbolic behavior of a system sys any finite path p of sys for which
STr(p) # 0. In order to characterize the set of suspension traces of a symbolic
behavior we propose to use a symbolic execution mechanism. Symbolic execution
has been first defined for programs [7] and mainly consists in replacing concrete
input values and initialization values of variables by symbolic ones in order to
compute constraints induced on these variables by the execution of the program.
Symbolic execution applied to IOSTS-based systems follows the same intuition
considering guards of transitions as conditions and assignments together with
communication actions as instructions. Herein, symbolic execution is presented
as an adaptation of [4]. In the sequel, we assume that a set of fresh variables
F' = U,eg Fs disjoint from the set of attribute variables [, ¢)cp AtH(G) is
given. We now give the intermediate definition of symbolic extended state which is

a structure allowing to store information about a symbolic behavior: the system
current state (target state of the last transition of the symbolic behavior), the
path condition which characterizes a constraint on symbolic variables to reach
this state, and the symbolic values associated to attribute variables. As compared
to [4], we also add a fourth stored information: it is given in the form of a
constraint on symbolic variables which is not computed during the symbolic
execution of the system. It is called an external constraint and in practice it will
be inherited from a projection mechanism.

Definition 10. (Symbolic extended state) A symbolic extended state of
sys is a quadruple n = (q,w, f,0) where q € State(sys), 7 € Seng(F) is
called a path condition, f € Sengn(F) is called an external constraint and
o € To(F)A1(sy%) s called a symbolic assignment of variables. n = (¢, , f, o) is
said to be satisfiable if @ A f is satisfiable*. One notes S(sys) (resp. Ssat(sys))
the set of all the (resp. satisfiable) symbolic extended states over F.

For any symbolic extended state n of the form (g, f,0), ¢ is denoted
state(n), 7 is denoted pc(n), o is denoted sav(n) (for symbolic assignment of
variables) and f is denoted ec(n). Now, we show how to give symbolic counter-
parts to transitions of a system. The idea is to consider any symbolic extended
state defined over the source state of the transition, and to construct a new
target symbolic extended state defined over the target state of the transition.
The external constraint of the target symbolic extended state is a conjunction
formed with the external constraint of the source symbolic extended state and
a new external constraint (denoted ct in the following Definition). In the sequel,
for any system sys, Sig(sys, F') stands for the signature (F, Chan(sys)).

Definition 11. (Symbolic execution of a transition) With notations of
Definition 10, for anyn € S(sys), for any tr € Trans(sys) such that source(tr) =
state(n), a symbolic execution of tr from 7 is a triple st = (n, sa,n’) € S(sys) x

Act(Sig(sys, F)) x S(sys) such that there exists ct € Sengo(F') for which:

— if act(tr) = clt then sa is of the form clz for some z € F and 0 =
(target(tr),pc(n) A sav(n)(guard(tr)) A z = sav(n)(t),ec(n) A ct, sav(n) o
subst(tr)),

— if act(tr) = c?Y then sa is of the form c¢?z for some z € F and nf =
(target(tr), pe(n)Asav(n)(guard(tr)), ec(n)Act, sav(n)o(y +— z)yeyosubst(tr)),

— ifact(tr) = 7 then sa = 7 and ' = (target(tr), pc(n)Asav(n)(guard(tr)), ec(n)
Act, sav(n) o subst(tr)).

The definition of st only depends on tr, 71, ¢t and the chosen variable z.
Therefore, it is conveniently denoted SE(tr,n, ct, z) (if act(tr) = 7, z is useless).
For any st = (1, sa,n), source(st) stands for 7, target(st) stands for n’ and
act(st) stands for sa.

We now define symbolic execution of systems. Intuitively, a symbolic exe-
cution of a system sys is seen as a rooted tree whose paths are composed of

4 Here 7 A f is satisfiable if and only if there exists v € M ¥ such that M =, 7 A f.

sequences of symbolic executions of transitions which are consecutive in sys.
The root is a symbolic extended state made of the initial state init(sys), the
path condition true, an arbitrary initialization g of variables of Att(sys) in F,
and an external constraint reduced to true (no constraint at the beginning of the
execution). Moreover, if a transition is symbolically executed with an external
constraint ct, then it is also executed with the external constraint —ct.

Definition 12. (Symbolic execution of a system) A full symbolic execution
of sys over F' is a triple syssymp = (S(sys),init, R) with init = (init(sys), true,
true,o9) where oo is an injective substitution in FA™Y%) and R C S(sys) x
Act(Sig(sys, F')) x S(sys) satisfies the following properties:

— for any n € S(sys), for all tr € Trans(sys) such that source(tr) = state(n),
there exists exactly two constrained symbolic executions of tr in R respectively
of the form SE(tr,n,ct,z) and SE(tr,n,—ct,z). Those two transitions are
said to be complementary.

— for any (n*, chw,n') € R with § € {,?}, Ya € Att(sys), then oo(a) # z,

— for any (', chw,n’) € R and (0", dfz,n'") € R with 4,4 € {!,?} which are
not complementary, then x # vy.

The symbolic execution of sys over F' associated to syssymp is the triple
SE(sys) = (Ssat(sys), init, Rsqt) where Rqqy is the restriction of R to Ssat(sys)x
Act(Sig(sys, F)) X Ssat(sys).

We use the notation FP(SFE(sys)) to denote the set of finite paths of SFE(sys).
To define a run of a finite path p, we proceed as follows. We choose an inter-
pretation v : F' — M such that M |=, pc(ns) A ec(ng) where 5y is the last
symbolic extended state of p. Then for each (n,act,n’) of p we associate a run
(v(sav(n)),actyr,v(sav(n'))) where actpyr = 7 if act = 7 and actpr = chv(z) if act
is of the form chz with fj € {!, ?}. The sequence of such formed triples constitute
a run of p. Note that the set of all runs of all finite paths of FP(SE(sys)) is
exactly the set of all runs of all finite paths of sys in the sense of Definition 5 and
this set is independent of the external constraints chosen to execute transitions.
Those external constraints are simply used to partition symbolic behaviors. A
trivial partitioning can be characterized by choosing true as external constraints
for executing any transition from any symbolic state. In this case the obtained
symbolic execution is isomorphic to the one described in [4] which does not con-
tain any external constraint. Besides note that any finite path p of a symbolic
execution of sys characterizes a set of suspension traces obviously determined
by its set of runs and the finite path corresponding to p in sys (See Definition
5). Therefore any symbolic execution of sys characterizes a set of suspension
traces which can be easily proven to be this associated to sys in the sense of
Definition 5. Now, since internal actions are not observable in black box testing,
we propose to eliminate them as follows.

Definition 13. (7-reduction of a constrained symbolic execution) The
T-reduction of SE(sys) is the triple SE(sys)r = (Ssat(sys), init, Rl,;), where

RI,, C Ssat(sys) x Act(Sig(sys, F)) x Ssat(sys) is such that for any sequence
sty -« - sty where for all t < n st; € Rggt:

— for alli < n—1 act(st;) = 7, source(st;y1) = target(st;) and act(st,) # T,
— either source(sty) = init or there exists st € Rgqr such that target(st) =
source(sty) and act(st) # T,

then (source(sty),act(sty),target(sty,)) € RL

sat*

Note that SE(sys) and SE(sys), characterize the same suspension traces.
However, we need in the sequel to be able to symbolically identify situations in
which quiescence is allowed. This is done by adding symbolic transitions labeled
by 4! in the SE(sys);.

Definition 14. (Quiescence enrichment) Quiescence enrichment of SE(sys)
is the triple SE(sys)s = (Ssat(sys),init, Rs) where Rs = Rl,, U AR5 with
AR5 C Ssat(sys) x {01} x Ssat(sys) is such that for any n € Ssat(sys), if we note
out,, = {tri,--- ,trn} the set of all transitions tr; € RI,, such that act(tr;) €
output(Sig(sys, F)), if we note f € Senn(F) the formula of the form true if
out, is empty and of the form \,., —(pc(target(tr;)) A ec(target(tr;))) other-
wise, if we note n' = (state(n),pc(n) A f,ec(n), sav(n)) then (n,8!,n') € ARs.

An example of a slot machine: symbolic execution Figure 2 shows a sub-tree
of the symbolic execution of the slot machine system presented in Figure 1, as
carried out by the AGATHA tool ([8,2]).
External constraints for any

o pc: true
- tart = start_init
two complementary tran- : > Semar asomn
L. M1 : (Si0,Ss0) N cc = cc_init b = b_init
sitions are resp. true and T~ - wwewwint w=winit
. 1i0 || tsO e e
false in the correspond- auth.verdit = auth._verdict_n
ing full symbolic execution. WSS i o
They never appear in the ti1 po: bb_0 <0 or bb_0 > 100
start = true
figure. We use the so-called M3 : (Si2,Ss1) O gsam
. . oo , el bl
inclusion criteria to end i3] ts1 ti2 P Tl ST

/ authiveniicl = false
(M4:(sizsst)] (M2:(SitSst))~ Ektione

bank_amount_init

this execution. This cri-
teria allows to stop sym-
bolic execution when it de-
tects that an encountered

tid || ts2

M5 : (Si4,Ss1)

pc: 0 < bb_0 <= 100 and not w_init
start = true
bb = bb_0 a=0

1i6 || ts3 cc = true b=bb_0

symbolic extended state is 15 1113 € i omnrase M

. . . . auth_verdict = false

included in another already [M6 : (Si5,Ss1)] [M8 : (Si6,Ss1)] | sk
bank_amount =

bank_amount_init—9 * bb_0

computed one. Intuitively, ts4

(¢, 7, f,0) is included in
(¢, 7, f',0")if¢ =qand
the constraints induced on
Att(sys) by o and A f
are stronger than those in- ~
duced by ¢’ and 7' A f’. T - - - = - -
The interested readers can
refer to [10,4] for more for-
mal definitions. Let us point out that the symbolic sub-tree of S computes three
characteristic symbolic behaviors. The left path corresponds to a winning bet,

pc: 0 < bb_0 <= 100 and w_init

start = true

bb = bb_0 a=10*bb_0

cc = true b=bb_0

ww = w_init w = w_init

auth_cash = false

auth_verdict = false

cash_ok = false

bank_amount =
bank_amount_init—9 * bb_0

i7 || ts6

(m2:(sit,ss1)]
T

—

Fig. 2. Symbolic execution of the slot machine

the middle path corresponds to a lost bet, and finally the right path corresponds
to a forbidden bet. The initial and ending states are annotated with symbolic
values of all attribute variables.

3.2 Symbolic behavior projections

For any finite path p of a symbolic execution of sys and a sub-system sys’ of
sys, we characterize the symbolic behavior pgys of sys’ involved in p. For this
purpose, we begin by defining the projection of a symbolic transition.

Definition 15. (Projection of a symbolic transition) Let sys be a system
of Sys(B). Let sys’ € SubS(sys). Let tr € Trans(sys) such that treye is defined.
Let us note st = SE(tr,n, ct, z) a symbolic execution of tr and Nsys € Ssat(sys’)
such that state(nsys) = source(trsys). The projection of st on sys’ of source
Nsys' 18 SE(trsys, Nsys, pe(target(st)) A ec(target(st)), z).

The external constraint of the target state of the projection represents the
constraints induced by the nature of the interactions of the sub-system with the
other parts of the whole system. Now we generalize to symbolic behaviors.

Definition 16. (Projection of a path) Let p € FP(SE(Sys)). The projec-
tion of p on sys’ denoted peys: € (Ssat(Sys’) x Act(Sig(sys’, F)) X Ssat(Sys’))*
together with its associated target state denoted target(psys) are inductively mu-
tually defined as follows:

— if p is of the form st = SE(tr,init,ct,z) € Rsqr then let us note ngys =
(init(sys'), true, true, sav(init)| ap(sys)) then psys is the projection stgys of
st on sys’ of source nsys when it is defined, and in this case target(psys) =
target(stsys). Otherwise peys s the empty path and target(psys') = Nsys’ -

— if p is of the form p'.st with st = SE(tr,n,ct,z) then either the projec-
tion stsys of st on sys' of source target(py,,) is defined and: psys =
p’sys,.stsys/ and target(psys) = target(steys). Otherwise, psys = p’sys, and
target(psys') = target(p,q)-

Thus from any symbolic behavior of a system we can identify by projection
symbolic behaviors of any sub-system whose external constraints reflect a usage
of the sub-system in the whole system. Those projected behaviors are then good
candidates to become behaviors to be tested on sub-systems: thus they will be
chosen to construct test purposes.

4 Symbolic execution based conformance testing

4.1 Conformance testing and system-based test purposes

Model-based testing supposes that a conformance relation formally defines how
are linked the specification G and the system under test SUT. Our work is based
on the widely used ioco relation, initially designed for labeled transition systems

[11] and afterwards adapted for symbolic transition systems [6,3,4]. All the ioco-
based testing settings consider that the SUT is a black-box system which can be
observed only by its behavior given as input/output sequences. These sequences
of observations may include the special output ¢! indicating that the SUT is in
a quescient state. The set of all traces, possibly including suspension transitions,
which can be observed from SUT is denoted STr(SUT). When dealing with
IOSTS, data handled in these sequences are concrete values denoted by ground
terms of T;. By test hypothesis, the SUT is modeled as a labeled transition
system S for which transitions are emissions (outputs), receptions (inputs) car-
rying concrete values and such that the set of suspension traces of S coincide
with STr(SUT). Moreover, as usual, the SUT is supposed to accept all inputs
in all states (hypothesis of input-enabled system). Intuitively a SUT conforms to
its specification G' with respect to ioco if any SUT output (including 4!) is spec-
ified in G provided that the sequence of input/output preceding the considered
observation is also specified in G.

Definition 17. (ioco) An input-enabled system SUT conforms to G iff for any
tra € STr(G) N STr(SUT), if there exists act € Act(M) U {d!} of the form clt
or 0! such that tra.act € STr(SUT), then tra.act € STr(G).

A test execution consists in executing a transition system, called a test case,
on the SUT in order to produce test verdicts. The test case and the SUT are
synchronized by coupling emissions and receptions. Test purposes are used to
select some behaviors to be tested. In a previous work [4], we have proposed
to model test purposes as finite trees extracted from symbolic executions of G.
Such a symbolic execution describes all the possible behaviors of G. Therefore it
is equivalent to test the SUT by selecting paths in G or in a symbolic execution
of G. Indeed, we have demonstrated the following completeness result : if an
SUT does not conform to a specification G, then there exists a test purpose
such that our corresponding testing algorithm can emit a verdict FAIL. The
main advantage of characterizing test purposes from a symbolic execution of G
is that the testing process can be expressed as a simultaneous traversal of both
the symbolic execution and the test purpose. Verdicts are emitted according
to the fact that the observed behavior, in the form of a sequence of inputs
(stimulations) and outputs (observations), does or does not belong to the test
purpose and to the symbolic execution. We have defined 4 verdicts: WeakPASS
when the behavior belongs to the test purpose and to at least one path of the
symbolic execution which is not in the test purpose, PASS when the behavior
belongs to the test purpose and not to any path of the symbolic execution which
does not belong to the test purpose, INCONC (for inconclusive) when the
behavior belongs to the symbolic execution and not to the test purpose, and
finally FAIL when the behavior belongs neither to the test purpose nor to the
symbolic execution. In the sequel, we slightly adapt the framework described in
[4] to our purpose. Behaviors of any sub-system sys’ to be tested are obtained
by projecting behaviors of a symbolic execution of the whole system. It remains
to define test purposes dedicated to test such projected behaviors. As basic-
IOSTS and hiding mechanism introduce 7-transitions, then such a projected

behavior psy,s may contain 7-transitions. Since such internal transitions cannot
be observed during testing, we construct test purposes from a 7-reduced symbolic
execution enriched by quiescence. We identify all its finite paths whose last
transitions are output-transitions (including d-transitions) and which result of
the 7-reduction of a path whose pyys is a prefix. Those 7-reduced finite paths
become behaviors to be tested.

Definition 18. (Test purpose) Let SE(sys') be a symbolic execution of sys’
such that psys € FP(SE(sys')). Let us note exty(psys) the set {psys'} if Dsys
is of the form p.(n,act,n’) with act € Output(Sig(sys’, F')) and whose elements
are all paths of the form pgys.(ni,acti,ny) - (N, acty,nl,) with act; = 7 for
i < n and act, € Output(Sig(sys’, F)) otherwise. Let us note T C Sgat(sys’)
the set of all the target states of all the finite paths of ext,(psys). A symbolic test
purpose for psys and SE(sys') is an application TP : Ssqr — {skip, accept, ©}
such that:

— for alln € T, TP(n) = accept,

— for all finite path sty - - - st,, such that for alli < n, st; € R, and T P(target(sty))
= accept, then T P(source(st;)) = skip,

— If exto(psys') = {Psys'} then all other states n verify TP(n) = ©,

— if exto(psys') # {Psys'} and the last transition of psys is an input-transition
st then if there exists a transition sts € ARs s. t. source(sts) = target(st)
then T P(target(sts)) = accept and all other states n € Rs verify TP(n) = ©,

— if exto(Psys') # {Psys'} and the last transition of psys is a T-transition then
all other states € Ry verify TP(n) = ®.

Definition 18 introduces the notion of symbolic test purpose, which extends
the notion of test purposes as defined in [4] by considering a symbolic execution
of a system which incorporates constraints issued from a surrounding system.
Let us remark that constraint symbolic executions allow us to characterize test
purposes in the same way: a test purpose is a finite sub-tree of a J-enriched
symbolic execution whose leaves are target states of output transitions (identified
by means of the labeling function which associates accept to those states). The
algorithm of test case generation given in [4] can directly be applied.

An example of a slot machine: projection Let us consider p the left path of Fig-
ure 2, corresponding to the winning case. In Figure 3, the left path represents
p. The right path is the projection pgys of p on SM. Nearby each symbolic ex-
tended state name S's; we indicate in the grey box the content of the symbolic
state, up to simplifications in path conditions and external constraints for sake
of readability. The behavior denoted by pgas corresponds intuitively to the fol-
lowing scenario: after the initialization, a bet is received for amount greater to
0 and less or equal to 100 (this is a constraint induced by the interface). Then
SM sends a verdict stating that the player has won, the value to be removed of
the bank account is received and correspond to 10 times the bet. The amount
is sent to the interface and effectively removed from the bank account. Finally,
SM sends an ending operation message to the Int. A test purpose L for this

behavior would label Ng by accept and NO to N5 by skip. On the right part of
the figure, N'2 and N’4 are target states of the complementary transitions of
respectively (N_1,int_bet?bb_0, N_2) and (N_3,int-amount?a_0, N4). N'2 char-
acterizes cases for which the received bet is out of the range allowed by the
interface. N characterizes situation for which the gain does not correspond to
10 times the bet contrarily to the information sent by the interface.

pc,, :true ec . :true
—_ — = — » 0, i a<ainit
b — b_init
W w_init
0 2 auth_cash « auth_cash_init
int_start ? true / int_start ! true auth_verdict — auth_verdict_init

int_start ! true cash_ok — cash_ok_init

bank_amount « bank_amount_init

o pc, : true ec, :true
o, : auth_cash — false
ext_bet?bb_0/ auth_verdict « false

cash_ok « false
int_bet ? bb_0

pe, : true ec, : 0<bb_0s100 pc’, : true ec’, :bb_050orbb_0>100

o,: bebbo \@ 0,: bebbo
int_bet ! bb_0/ - auth_verdict < true auth_verdict « true

int_bet ? bb_0 - bank_amount — bank_amount —
- bank_amount_init + bb_0 bank_amount_init + bb_0
- int_win ! win_init

int_win ? win_init / pe, : true ec, :0<bb_0<100
int_win ! win_init _ - o,: auth_verdict — false
- \

@ P int_amount ? a_0
pc, : true ec, :0<bb_0=100

int_amount ! 10 *bb_0/ and w_init = true pc’, itrue ec’, :0<bb_0<100
int_amount ? 10 * bb_0 anda_0=10"bb_0 and w_init = true
—_ - o,: a<al a_0#10*bb_0
—_ auth_cash « true o,: a<al
| auth_cash « true
/ ext_cashla 0 pc, : a0>0ec :0<bb 0s 100 and w_init = true
€
da_0=10*bb_0
ext_cash ! 10 *bb_0 o,: bank_amount j" - =
- - = bank_amount_init + bb_0-a_0
- auth_cash « false
cash_ok «— true

int_cash_okt ? true / int_cash_ok ! true

int_cash_ok ! true pc, : a_0>0ec :0<bb_0<100and w_init=true anda_0=10*bb_0
o,: a<al b < bb_0
- - - — @ W w_init auth_cash « false
auth_verdict — false cash_ok « false

bank_amount — bank_amount_init + bb_0 -a_0

Fig. 3. Projection in the example of the slot machine

Those two situations are possible for SM but note relevant in the frame of the
whole system. Therefore L would label N'2 and N’4 with ®. To conclude, let us
point out that such a test purpose cannot be deduced only from the knowledge
of SM: it clearly depends on the way SM is used in the whole system S. This
exemplifies our initial goal of eliciting from a system dedicated test purposes for
each subsystem.

5 Conclusion and future works

We have extended the framework of IOSTS introduced in [4], in order to deal
with component-based system specifications and we have used symbolic execu-
tion mechanisms in order to compute behaviors of sub-systems constrained by
systems in which they are involved. Then, we have defined test purposes from
those constrained behaviors. The definition of dedicated methodologies for com-
ponent based systems should clearly rely on the targeted fault models. We plan
to study fault models that mainly deal with communication mechanisms as in

[5]. For such fault models, a testing methodology would probably preconize to
construct test purposes for behaviors involving a lot of internal communication
synchronizations. Besides, we also plan to target fault models that mainly deal
with basic components. As in [13], we could consider that composition and hiding
mechanisms are well implemented such that an appropriate testing methodology
would only consider test purposes directly defined at the component level. More
generally, our next goal is to provide testing methodologies for component based
systems which take advantage of the fact that some components or subsystems
have been previously intensively tested such that a large class of tests becomes
useless in the context of the whole system.

References

1. I. Berrada, R. Castanet, and P. Félix. Testing Communicating Systems : a Model,
a Methodology, and a Tool. In Proc. of the 17th Int. Conference TestCom 2005,
volume 3502 of LNCS, pages 111-128. Springer-Verlag, 2005.

2. C. Bigot, A. Faivre, J.-P. Gallois, A. Lapitre, D. Lugato, J.-Y. Pierron, and
N. Rapin. Automatic test generation with AGATHA. In Tool session of TACAS
2003, pages 591-596, 2003.

3. L. Frantzen, J. Tretmans, and T.A.C. Willemse. A Symbolic Framework for Model-
Based Testing. In Proc. of the Int. Workshops FATES/RV 2006, volume 4262 of
LNCS, pages 40-54. Springer-Verlag, 2006.

4. C. Gaston, P. Le Gall, N. Rapin, and A. Touil. Symbolic Execution Techniques
for Test Purpose Definition. In Proc. of the 18th Int. Conference TestCom 2006,
volume 3964 of LNCS, pages 1-18. Springer-Verlag, 2006.

5. R. Gotzhein and F. Khendek. Compositional Testing of Communication Systems.
In Proc. of the 18th Int. Conference TestCom 2006, volume 3964 of LNCS, pages
227-244. Springer-Verlag, 2006.

6. B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based on
approximate analysis. In Proc. of the 11th Int. Conference TACAS 2005, volume
3440 of LNCS, pages 349-364. Springer-Verlag, 2005.

7. J.-C. King. A new approach to program testing. Proc. of the Int. Conference on
Reliable software, 21-23:228-233, 1975.

8. D. Lugato, N. Rapin, and J.-P. Gallois. Verification and tests generation for SDL
industrial specifications with the AGATHA toolset. In Proc. of the Workshop on
Real-Time Tools affiliated to CONCUR 2001, 2001. ISSN 1404-3203.

9. P. Pelliccione, H. Muccini, A. Bucchiarone, and F. Facchini. TeStor: Deriving Test
Sequences from Model-based Specification. In Proc. of the 8th Int. Symp. CBSE
2005, volume 3489 of LNCS, pages 267-282. Springer-Verlag, 2005.

10. N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois. Behavioural unfolding of
formal specifications based on communicating automata. In Proc. of the 1th Int.
Workshop ATVA 2003, 2003.

11. J. Tretmans. Conformance Testing with Labelled Transition Systems: Implemen-
tation Relations and Test Generation. Computer Networks and ISDN Systems,
29:49-79, 1996.

12. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103-120, 1996.

13. M. van der Bijl, A. Rensink, and J. Tretmans. Compositional Testing with IOCO.
In Proc. of the 3rd Int. Workshop FATES 2003, volume 2931 of LNCS, pages
86-100. Springer-Verlag, 2003.

