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Abstract Over the past years, the scope of telecommunication services
has increased dramatically making network infrastructure-related ser-
vices a very competitive market. Additionally, the traditional telecoms
are combined with Internet technologies for providing a larger range of
services. The obvious outcome is the increase of the number of sub-
scribers and services demand. Due to this complexity, the performance
testing of continuously evolving telecommunication services has become
a real challenge and requires efficient and more powerful testing solu-
tions. This ability highly depends on the performance test design and on
the efficient use of hardware resources for test execution.

This paper proposes a performance testing methodology which copes
with the characteristics mentioned above. The methodology consists of
a set of methods and patterns, exemplified for the TTCN-3 language, to
realize adequate performance tests for multi-service systems. The effec-
tiveness of this methodology is demonstrated throughout a case study
on IP Multimedia Subsystem (IMS) performance testing.

1 Introduction

The Service Providers (SP) are evolving their networks from legacy technologies
to "fourth generation” technologies which involves: evolution of ”traditional”
wire-line telecom standards to Voice over IP (VoIP) standards, evolution of GSM
and CDMA networks to 3GPP/3GPP2 standards (e.g. UMTS), introduction of
wireless LAN (WLAN) standards (e.g. IEEE 802.16), for both data and voice
communications [17]. The current direction is to realize a convergence point of
these trends into a set of technologies termed the IP Multimedia Subsystem
(IMS). The concept behind IMS is to support a rich set of services available
to end users on either wireless or wired User Endpoints (UE), provided via a
uniform interface.

The performance testing of telecommunication services raises a challenging
problem: how to create efficient tests to evaluate the performance of such sys-
tems?. A typical multi-service system offers a number of services which can be
accessed through entry-points [13]. The system consists of many sub-systems
(hardware and software) communicating usually through more than one proto-
col. The service consumers are the end users which access the services through



compatible devices called User-Endpoints (UEs). The service consumption is re-
alized through communication protocols involving different types of transactions
(e.g. authentication, charging, etc.). With the specification of IMS, the current
telecommunication infrastructure is moving rapidly to a generic approach [5]
to create, deploy and manage services, therefore we expect a large variety of
services to be available soon in many tested systems.

The services are becoming more and more complex, requiring more comput-
ing resources on the system side and more messages exchange between involved
components. The expectation is that the more complex and demanded the service
is, the more the system performance decreases. The service demand is usually
unpredictable since it depends on user preferences for services. As a result, the
overall system load is a composition of instances from different services where
each type of service contributes in a small proportion.

This paper elaborates a set of methods and patterns to design and implement
efficient performance tests for systems which offer a large number of services and
typically have to handle a large number of requests in short periods of time. We
selected the TTCN-3 [10] technology to exemplify some of the patterns presented
in the paper.

This paper is structured as follows. The next section presents several related
works and it is followed by the description of the performance test design process
for multi-service systems. Section 4 introduces the concrete elements. Section 5
discusses various implementation patterns. In Section 6 a case study which ap-
plies the performance test design methods to IP Multimedia System is presented.
The paper ends with the conclusions section.

2 Related Work

There are various commercial and open source tools which can be used for per-
formance testing of multi-service systems. Although there are many documents
put out by software vendors, very few research papers present performance test
tools design issues.

In [2] and [12] the Tecl/Tk [24] language is used to develop performance test
frameworks. These papers explain the complex requirements of load testing and
give a detailed overview for the extensive use of Tcl/Tk within the system. The
design and implementation illustrate the code re-usability inherent in using Tcl
as an application glue language.

The Faban tool [21] provides a framework to automate running of server
benchmarks as well as a container to host benchmarks allowing new benchmarks
to be deployed. Similarly, Weevil tool [23] is a generic automation tool for the
deployment and execution of distributed workloads.

Another automated load generator and performance measurement tool for
multi-tier software systems is Autoperf [18]. The tool requires a minimal system
description for running load testing experiments and it is capable of generating
server resource usage profiles, which are required as an input to performance
models.



In [19] the Hammer [7], LoadRunner [15] and eLoad [6] are compared. The
paper also motivates the implementation of an inhause tool for performance test-
ing. The test tool is based on Visper middle-ware [20] which is written in Java
and provides the primitives, components, and scalable generic services for direct
implementation of architectural and domain specific decisions.

The work presented in this paper targets a missing gap in performance test-
ing, namely the use of the TTCN-3 language for performance testing. Our plat-
form enables TTCN-3 test engineers use the same language for both, functional
and non-functional tests, but also benefit from the use of a dedicated testing
language.

3 The Performance Test Design Process

Though performance testing is a common topic among people and organizations,
the research does not address performance testing of multi-service systems at a
general level but rather targets only for specific types of applications e.g. web
applications [14]. The methodology presented in this paper is based on the per-
formance test design process which is depicted in Figure 1. This process refines
the general process described in [9] as applied to multi-service systems.
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Figure 1. The Performance Test Design Process

performance metrics

Performance Requirements. The process starts with the selection of per-
formance requirements. In this step the test engineer has to identify which fea-
tures characterize the performance of the tested system. High number of trans-
actions per unit of time, fast response times, low error rate under load con-
ditions are examples of common performance requirements. But there are also
other specific requirements which might be considered for a system in particular:
availability, scalability or utilization. A detailed view on performance require-



ments selection is provided in [3] where a performance requirements framework
integrates and catalogues performance knowledge and the development process.

Workload. The next step is to define the workload. The workload com-
prehends the performance testing focus points, test interfaces and scenarios of
interest. The test engineer has to identify for each scenario the sequence of ac-
tions the test system should interchange with the (System under Test) SUT,
interaction protocols and input data sets. Since a multi-service system provides
many services for each use-case, it is required that the workload is created as a
composition of multiple test scenarios from each call model.

Performance Metrics. In a third step, the performance metrics have to be
defined. Two types of metrics are regarded: global metrics (similar to other re-
lated works [11] e.g. CPU, MEM, fail rate, throughput etc) and scenario related
metrics (defined for each scenario e.g. error rate, latency).

Performance Test Plan. The workloads are documented in a performance
test plan which contains the technical documentation related to the execution of
the performance test: which hardware is used to run the test, software versions,
the test tools and the test schedule. The test cases and the test data are then
implemented and executed in a selected performance test tool. Part of the test
plan is also the performance test procedure which is specific to the selected type
of performance test: volume, load, stress, benchmark etc.

Performance Test Report. A test report is a document, with accompany-
ing data files, that provides a full description of an execution of a performance
test. The test results should present the computed metrics and data sets in the
form of charts, graph or other visual format.

4 Workload Elements

4.1 Use-Cases and Test Scenarios

The first step in the workload creation is to identify the use-cases and, for each
use-case, select multiple test scenarios. A use-case is associated to one service
and define interaction models between one or more users and the SUT (e.g. voice
call, conference call).

An individual interaction path is called a test scenario and describes a possi-
ble interaction determined by the behaviour of the user and other system actors.
The typical questions we have to answer at this point are: which services are go-
ing to be used most, which particular flows are characteristic to a given scenario,
what is most likely to be an issue? Each test scenario is described by its message
flow between the talking entities. A representative workload is realized when the
selection of scenarios cover all possible situations: successful, fail, abandoned and
rejected scenarios.

An example of a test scenario is depicted in Figure 2. This example presents
the interaction between two User Endpoints (UE) and the SUT (all entities of the
SUT are represented as a single box). The interaction is based on Request/Re-
sponse transactions. Each response has to be received within a limit of time.
This time is modeled as a timer which measures the time spend between the



UE1 SUT UE2

X Req 1 transaction1
! T1.1 Res 1.1 Req 1
iT1.2 Res 1
H Res 1.2
Req 2 :
Req 2 transaction2
Res 2 “Z
Res 2 T2

Figure 2. Scenario Flow Example

request and response. If the response is not received within the expected time,
the transaction runs into a fail situation.

4.2 Design Objectives

The performance requirements concern error-rates and delays. They are evalu-
ated separately for each test scenario on top of the collected measurements. For
each performance requirement a design objective (DO) is defined as a threshold
value which is then used to compare the metrics. Examples of DOs are:

— latency design objectives: define the maximal time required to get a message
through the SUT network from a caller UE1 to a callee UE2.

— transaction round-trip time design objectives: define the maximal time re-
quired to complete a transaction (including all messages).

— error rates: defines the threshold for allowed percentage of errors out of the
number of instantiated scenarios.

4.3 Traffic Set Composition

The test system applies a workload to the SUT which consists of the traffic gen-
erated by a large number of individual simulated UEs. A conceptual question is
how to allow testers define compositions of scenarios. The concept to cover this
aspect is called traffic set.

Within the traffic set, each scenario has an associated relative occurrence fre-
quency which is interpreted as its probability of occurring during the execution
of the test. This frequency indicates how often a scenario should be instantiated
during the complete execution of the performance test.

To avoid constant load intensities (in reality the load is random), the sce-
narios are instantiated according to an arrival distribution, which describes the
arrival rate of occurrences of scenarios from the traffic set. The arrival rate char-
acterizes the evolution of the average arrival rate as a function of time over the
duration of the test procedure. An example of such an arrival process is the
Poisson process [16] employed often in simulations of telecommunication traffic.



4.4 Traffic-Time Profile

A further concept is the traffic-time profile used to describe the workload inten-
sity. The traffic-time profile defines the average scenario attempt arrival rate as
a function of elapsed time during a performance test. It should be defined in such
a manner that, for a given scenario attempt arrival rate, sufficient samples are
generated that metrics can be collected with an appropriate confidence bound.
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Figure 3. Stair-Step Traffic-Time Profile

A common traffic-time profile is the stair-step profile which is the one based
on the stairstep shape (see Figure 3). The width of the stairstep is such chosen
to collect sufficient samples at a constant average scenario arrival rate.

4.5 Scenario based Performance Metrics

Based on the design objectives, performance metrics can be defined at scenario
level.

Pass/Fail Metrics. The scenario attempts can be sorted into passed and
failed scenarios. The number of failed versus passed scenarios out of the total at-
tempts, is a metric which can be defined for each scenario. This metric is usually
reported as a time based shape of fails or passes per second.

Transmission Latency. This metric is used to compute the average latency
of the SUT at processing a certain event (transmission latency).

Round Trip Time. This metric is used to compute the average time needed
to execute a transaction (round-trip time).

4.6 Global Performance Metrics

Besides the metrics computed per scenario, we also introduce global metrics to
characterize the overall test execution. We classify them into: resource usage
metrics and troughput metrics.

Resource usage metrics. These metrics capture the resource consumption
of the SUT over time and may help identify when (i.e. at which load, after how
much time) the SUT runs out of resources or starts failing.



Throughput metrics. The throughput metrics are the message rates and
error rates. They are computed globally (or per use-case) for all scenarios. We
propose a minimal set of metrics which any performance test should report.

— SAPS. Scenario Attempts Per Second (SAPS) metric represents the average
rate at which scenarios are attempted.

— SIMS. SIMultaneous Scenarios (SIMS) counts the number of scenarios open
in each second. The duration of one scenario varies from a few seconds to
several minutes, therefore, SIMS metrics is a good indicator of how many
open calls can handle the SUT.

— %IHS. The Inadequately Handled Scenarios(IHS) metric is the ratio of in-
adequately handled scenarios out of the total number of attempted scenarios.
A scenario is considered inadequately handled when it does not respect the
specified call flow.

4.7 Design Objective Capacity Definition

To be able to compare between different versions, hardware, products, etc., a
comparison criterion is needed. In our methodology we define a global perfor-
mance indicator called Design Objective Capacity (DOC) as the number which
characterizes the overall performance of an SUT. This number is defined as the
load rate for which the SUT still can handle the load for certain quality con-
ditions. Increasing this load intensity would automatically affect the SUT to
exceed the design objectives.

5 Performance Test Implementation Patterns

The test behavior is realized as a collection of parallel threads. Most operating
systems provide features enabling a process to contain multiple threads of con-
trol [22]. The performance test systems use lots of threads at execution. There
are threads specific to the testing purpose such as load generator, user state han-
dlers but, within the execution platform, also threads dedicated to non-testing
tasks (e.g. garbage collection thread in a java based platform) may coexist. A
type of a thread may be instantiated for an arbitrary number of times. For each
type of action, more than one threads can be instantiated in order to increase
the parallelism.

The implementation patterns described in the following refer to the way how
different types of threads are interacting with each other, how they share the
data and how to manipulate the number of threads of different scopes for gaining
the best performance.

5.1 Data Repository Representation

The interaction between a test behaviour thread and the user’s data repository is
depicted in Figure 4. The users’ data repository consists of users’ identity infor-
mation and the list of active scenarios in which each user is involved. The thread
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Figure 4. User State Handling within a Thread

Listing 1.1. Repository Access API through external functions

external getAvailable() return userid; 1
external setState(userid u, state s);

external validateState (userid u, newstate ns) return boolean;

external makeAvailable(userid u);

simulates the behaviour of the user which consists, in that example, of the com-
munication operations represented in the figure as send and receive operations.
At any receive or send operation, the thread updates the state of the correspond-
ing scenario. When a scenario finishes, the scenario_id is removed from the list
of active scenarios and the user is made available for a new scenario.

A simple API to manage the user repository is presented in Listing 1.1. It
consists of very simple operations to extract or update the information. Typical
operations are getAvailable() to get an available user to create a new call and
makeAvailable() to release a user. For state management, setState() serves
to set a new state while validateState () is meant to check whether a new state
to get into is valid or not. However, the API can be extended to many needs but
the principle remains the same.

5.2 User State Machine Design Patterns

The behaviour of a user is usually implemented as a state machine that stores
the status of the user at a given time and can operate on input to change the
status and/or cause an action or output to take place for any given change. From
the implementation point of view, the user state machine can be realized either
in a specific way or in a generic way. We discuss these two approaches.

Specific Handler (SM_SpecHd]l). In this pattern the user state machine
is processed entirely by one thread and all data associated to its state machine
is stored locally. At receiving or sending of events, the user data is modified
locally, the thread does not have to interact with an external repository. This
avoids synchronization times with the rest of threads. As far as the implemen-
tation of this design is concerned, the whole logic concerns only one user. The
behaviour does not have to perform complex checks to identify which user has
to be updated for a given message. The timer events can be also simulated lo-
cally within the thread. Additionally, this pattern has the advantage that the
state machine is implemented very efficiently since, at each state, only the valid
choices are allowed. Everything unexpected is considered invalid.



Listing 1.2. Specific Event Handling

function user(id userid) runs on UserComponent { 1
var stateType state := statel;
var requestType req; var responseType resp;
alt {
[state == statel] p.receive(requestTypel (userid))
—> value req { [§
if (match(req. fieldl , expectedValue) {
state := state2;
resp := responseTypeTemplate;
resp.field2:=req.field2; resp.field3:=req.field3+1;
p.send(resp); 11
repeat;

else {state = failureState; makeAvailable(userid); stop;}

[state == state2] p.receive(requestType2(userid)) { 16
state := finalState; makeAvailable(userid); stop; }
[] p.receive {
state = failureState; makeAvailable(userid); stop;}
} //end alt
} // end function 21

Unfortunately, for large number of users, this pattern is not practical since
many threads have to be created [4]. The most used operating systems (based on
Unix and Windows) encounter all serious problems under conditions involving a
tremendous number of threads.

In Listing 1.2, the specific handling mechanism is exemplified in the TTCN-3
language. The function gets a userid as start parameter to personalize it to a
particular user. As long as the function implements a specific user behaviour, the
state variable (representing the state of the user) can be defined in the function
as a local variable. The events are received by the port p and are handled by an
alt block. Each event type is caught by a receive statement. The template must
contain matching constraints for the userid given as parameter to the function.
This is simple to achieve by parameterizing the template with the userid.

In the example, we define three possible branches. The first one defines the
handle of an event of type requestTypel. An event of this type can occur only
when the user is in statel. This condition is specified in the guard of the branch.
In the state handling, particular fields of the received message can be inspected
by using the match function. If the received value matches a valid state for the
user, the state is updated to the state2 and a response message is prepared and
sent back to the SUT. For a non-valid message, the test system has to set the
state of the user to failureState and stop the component.

Generic Handler (SM_GenHdl). The specific event handler approach
suffers of performance problems when too many threads are created. Therefore,
a better solution is to create less threads by using one thread for more than
one user. This way, the platform scales obviously better than in the previous
approach.

This pattern requires a global data management and the state machine is
rather a message processor. The functionality of this pattern is depicted in Fig-
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ure 5. When new messages are received, the message processor identifies the user
to which the new message belongs to and updates its status in the required way.

This pattern has the advantage that a handler can be used to process an
arbitrary number of users in parallel. As long as the user data is stored outside
the thread, the thread does not keep track of the flow of execution, instead, it
executes its actions only when they are triggered by external events. Another
advantage offered by this pattern is that the information of one user can be
managed by more than one thread. Since the thread does not manage the user in-
formation locally, it might be assigned to handle any arbitrary event for any user.

Listing 1.3. Generic Event Handling

function userHandler () runs on UserComponent {
var requestType req; var responseType resp;
alt {
[] p.receive(requestTypel) —> value req 4

if (not validState(req.userid, req)) {
setState (req.userid , failureState);
makeAvailable(req.userid ); repeat;

if (match(req.fieldl , expectedValue)) {
setState (req.userid, state2);
resp := responseTypeTemplate;
resp.field2 := req.field2; resp.field3 := req.field3 + 1;
p.send(resp) to address addressOf(req.userid); repeat; 14

else { setState(req.userid, failureState);
makeAvailable (userld); repeat;

}

[] p.receive(requestType2) —> value req {
if (not validState(req.userid, req)) {
setState (req.userid , failureState);
makeAvailable(req.userid ); repeat;

19

24
setState (req.userid, finalState);
makeAvailable(req.userid ); repeat;

[] p.receive { setState(req.userid, failureState);
makeAvailable (userid ); repeat; 29

}}// end alt
} // end function




Listing 1.3 provides an example of a generic handler in TTCN-3. It basically
rewrites the example from Listing 1.2 in a generic way. In the first example, the
component has one port which is used for the communication with the SUT. In
the second example, the same port is used for all users simulated by the com-
ponent by using the to address statement. This concept optimizes the number
of ports which require a lot of resources.

Next, instead of using the guard conditions, we introduce the validState()
function to check the state of a user in a repository. The validation is realized
upon the userid information extracted from the received message and the mes-
sage itself. If the new state created by the received message is not a valid one,
the test system considers the current call as fail and makes the user available
for a new call. For a valid state, the behaviour looks the same as in the previous
example. The state is updated by the setState() function.

Further on, the receive templates are now generic templates instead of para-
meterized templates per userid. These templates are not so restrictive as the
ones used for the specific pattern but one can compensate by introducing more
checks through match conditions.

5.3 Patterns for Thread Usage in User Handling

In the above section we discussed the two patterns to realize a user state ma-
chine. Both approaches have advantages and disadvantages. We present three
more patterns regarding the thread design and usage. These patterns base on
the fact that not all users have to be active at the same time. This avoids the
existence of inactive threads, by instantiating new threads only when they are
needed.

Single User Behaviour per Thread (UH_SingleUPT). The easiest way
to implement a user is to create an instance of a thread simulating only that
user, i.e. the single user per thread pattern. This pattern is suitable to the state
machine specific handling approach (SM_SpecHdl) but can also be combined
with the generic approach. However, the creation, the start and the termination
of threads are very expensive operations with respect to CPU. Therefore, this
pattern will is not suitable for an efficient design.

Sequential User Behaviours per Thread (UH_SeqUPT). This pattern
considers the reusability of a thread for new users. This method requires that the
user identities are stored outside the thread and are loaded into the thread only
when the user has to become active. The threads are used like a pool of threads
where each thread may take any user identity. During the test, the number of
threads may be increased or decreased according to the load intensity. This way,
the number of active users is maintained and controlled from within the running
threads.

Interleaved User Behaviours per Thread (UH _InterleavedUPT). An
even better approach to use threads is to interleave user behaviours at the same
time on the same thread. This pattern may be seen as an extension of the pre-
vious thread with the addition that users are handled at the same time. In this
way, the thread is able to simulate in parallel an arbitrary number of users.



5.4 Pattern for Timer Implementation

All protocols used nowadays in telecommunication include time constraint spec-
ifications for the maximal response times. Many protocols include also retrans-
missions specification at the protocol level. Additionally, the user interaction
with the SUT involves various user times such as talking time or ringing time
which in performance tests have to be simulated too. All these timing specifica-
tions have been regarded also in our test methodology. The test system has to
validate if these time constraints are fulfilled.

Behavior Thread
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timer.start —
F-’ timer.timeout 1
| 11120 |

Timer Thread

SUT

Figure 6. Use of a Timer Thread for Timer realization

In our approach, a timer thread manages all timers involved in test scenarios.
When an event handler thread comes to the point that a timer has to be started,
it asks the timer thread to create a new timer which will notice it back when
it expires. The timer thread is provided with the user identity information and
the expiration time. The timer thread manages a queue of timers and executes
them in their temporal order. When a new timer is created, the timer thread
schedules the new event in the right place. Since the timer events are ordered
on time base, the timer thread has only to sleep until the next timeout.

When a new timeout occurs, the timer thread notices the events handler
thread responsible for the user which created the timer. This can happen simply
by sending a timeout event for that user. However, if the user receives in the
meantime a valid response from the SUT, the timer thread has to remove the
timeout event out of the scheduling queue.

This approach is compatible with all patterns previously described. It is very
flexible since it allows the event handling threads to process events for an arbi-
trary number of users in parallel or even parallel calls of the same user. Moreover,
the timeout events are handled as normal events, which makes the concept more
generic. However, for even more flexibility, more than one timer thread can be
used in parallel for different kinds of timers.

5.5 Patterns for Sending Messages

Sending and receiving operations are usually requiring long execution times due
to data encoding, queuing and network communication. The threads which exe-



cute them block until the operation is completed. From this perspective, some-
times it is not convenient to let a state machine handling thread spend too much
time for these operations. We propose a concept in which a separate thread is
instantiated for the sending operations when these operations consume too much
time. This pattern has the advantage that the main thread can work in paral-
lel with the sending thread. We distinguish four different ways to realise this
concept.

Thread per Request (S_SepThreadPerRequest). The thread per re-
quest pattern requires that each send request is handled by a separate thread
of control. This pattern is useful for test systems that simulate multiple users
that handle long-duration request/response (such as database queries). It is less
useful for short-duration requests due to the overhead of creating a new thread
for each request.

Thread per Session (S_SepThreadPerSession). This pattern is a vari-
ation of the thread per request pattern that compensates the cost of spawning
the thread across multiple requests. This pattern handles each user simulated
by the test system in a separate thread for the duration of the session. It is
useful for test systems that simulate multiple users that carry on long-duration
conversations.

Send Thread Pool Pattern (S_ThreadPool). A number of threads are
created for all message sending tasks, usually organized in a queue. These threads
are shared between multiple test behaviour threads. As soon as a thread com-
pletes its task, it will request the next task from the queue until all tasks have
been completed. The thread can then terminate, or sleep until new tasks are
available.

5.6 Patterns for Messages Receiving

Similar to sending of messages, there are several patterns to implement the re-
ceiving operations. For receiving of messages, the receive thread creates a mes-
sage queue and reads from it whenever something is enqueued.

Thread per Session (R_SepThreadPerSession). In this pattern, a main
thread deals with the main flow of actions (i.e. user behaviour) and another
thread handles the events from SUT. The second thread only waits for SUT
responses and notifies the main thread in case something is received.

Thread Pool for SUT Responses (R_ThreadPool). To simplify the
thread management, test platforms organize their threads with thread pools.
Since any main behaviour thread requires a second thread for checking SUT
replies, we can share one such thread among several main threads. The shared
thread listens to more sockets in parallel and whenever something is received it
notifies the corresponding main thread.

This approach requires also an identification mechanism, usually called event
demultiplexor, between the received messages and the main threads (see Fig-
ure 7). The event demultiplexor is an object that dispatches events from a lim-
ited number of sources to the appropriate event handlers. The developer registers
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interest in specific events and provides event handlers, or callbacks. The event
demultiplexor delivers the requested events to the event handlers.

5.7 Data Encapsulation Patterns

The content of a message is usually not handled in its raw form but through a
message structure which provides means to access its information. The mecha-
nism is called data encapsulation. The content of a message is accessed via an
interface which provide pointers to the smaller parts of a message. We discuss
three strategies to encapsulate and access the content of a message.

String-Buffer Pattern (D_StringBuffer). The simplest method to encap-
sulate message data is to store it into a string buffer (therefore, this approach is
limited to string based protocols e.g. SIP). The string buffer allows for easy search
and modification operations through regular expressions. Due to its simplicity,
this pattern is easy to integrate in any execution environment. Unfortunately,
the string processing costs a lot of CPU time. Therefore, the pattern should not
be used for big messages.

Structured Representation of Message Content (D_StrContent).
This pattern requires that the content of the message is represented as a tree
structure (based on the protocol message specification). The information is ex-
tracted by a decoder which traverses the whole message and constructs the
tree representation. At send operation, the tree is transformed back into a raw-
message by traversing each node of the tree. These operations may cost a lot of
CPU time but the tree representation offers a lot of flexibility to easily access
every piece of information.

Structured Representation of Pointers to Message Content
(D_StrPointers). In this pattern, a tree structure contains pointers to the lo-
cations where the content can be accessed in the raw-message. This pattern also
requires a codec but it can be implemented efficiently since the only task is to
identify data at given locations in the raw-message. This pattern can be used
even more efficiently when the locations are predefined e.g. by using fixed sizes
for the fields’ lenghts.



6 Case Study

The test patterns have been evaluated throughout a case study on IMS perfor-
mance testing. IMS is a standardised architecture [1] to support a rich set of
services and make them available to end users. The multitude of offered ser-
vices and the complex call flows of the interactions between users and the IMS
network, make IMS an excellent candidate to apply the methodology.
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Figure 8. Test System vs. System under Test

The SUT. The performance tests focus on the Session Control Subsytem
(SCS) (see Figure 8). It consists of the three main (Call Session Control Func-
tion) CSCF elements: Proxy, Serving and Interrogating, and the (User Profile
Server Functions) UPSF. The traffic set consists of scenarios which belong to
the most common IMS use cases that are encountered the most in the real life
deployments: Registration and de-registration, covering five scenarios, Session
set-up or tear-down, covering twelve scenarios, Page-mode messaging, covering
two scenarios.

The Test System Implementation. For the implementation of the test
system we selected the TTCN-3 language. In TTCN-3, a thread corresponds
to a test component and the thread functionality is implemented as a function.
The load is generated by a specialised load generator component. Each call cre-
ated by the load generator is associated to an EventHandler component, which
handles all required transactions for that call. The number of EventHandlers is
arbitrary and depends on the number of simulated users and on the performance
of the hardware running the test system.

Along the case study development we improved step by step the performance
of the test system by combining the patterns described in the paper. We illus-
trate these results in the following. Since the test system and the IMS SUT
implementation were developed almost at the same time, the test system devel-
opers had to come with new solutions to increase the performance in order to
compete the continuously improving performance of the SUT.

At the beginning, the test system was based on the Specific Handler
design pattern (SM_SpecHdl) and on the Single User Behavior per Thread



(UH_SingleUPT). The receiving of the messages was based on the Thread per
Session (R_SepThreadPerSession) pattern while the data encapsulation was
based on the structured representation of the message content (D_StrContent).
This was the first draft of the implementation, the overall performance of
the test system was not amazing, but it was a very easy adaptation from a
functional test suite.

The first improvement was related to the mechanism used for receiving mes-
sages. We changed to a thread pool approach for handling the received messages
(R_ThreadPool) and the performance of the test system increased up to 40%.
The increase occurs in fact due to the reduction of the number of receiving
threads.

Another milestone in the implementation was the switch from Single User Be-
haviour per Thread (UH_SingleUPT) to Sequential User Behaviours per Thread
(UH_SeqUPT) and, later on, to the Interleaved User Behaviours per Thread pat-
tern (UH_InterleavedUPT). That was necessary mainly because the SUT was
capable of supporting more users and we needed to test the maximal capac-
ity of the SUT. By using this approach the test system increased the number
of emulated users from a couple of hundreds up to more than 10.000. Also the
throughput performance increased again up to 30% since we create fewer threads
then before.

In the early stages only 5 scenarios were supported, but in the end the traffic
set consists of 20 different scenarios. This amount on different scenarios made
that the Specific Handler pattern was not suitable anymore, thus we decided to
adopt the Generic Handler pattern. The Generic Handler proved to be more flex-
ible and easier to maintain and also more suitable to satisfy all the requirements
of the workload (e.g. the mix of scenarios, the possibility of a user to handle
more than one scenario at the same time).

A final improvement of the test solution is the switch from a structured repre-
sentation of the message content (D_StrContent) to a structured representation
of pointers to message content (D_StrPointers). From the preliminary experi-
ments we expect a remarkable increase of the performance to more than 300%
out of the current performance.

Table 1. Results comparison of different hardware configurations

’Hardware Configuration \DOC‘
mem=4GB cpu=4x2.00GHz cache=512KB L2| 180
mem=8GB cpu=4x2.00GHz cache=2MB L2 270
mem=8GB cpu=4x2.66GHz cache=4MB L2 450

Experimental Work. The performance test has been applied to different
hardware configurations in order to illustrate how the the test can be used for
performance comparison. The implementation for the IMS architecture used as
SUT within the case study is OpenIMSCore [8], the open source implementation
of Fraunhofer FOKUS.



Table 1 presents a comparison of the DOC numbers for different servers. The
SUT software has been installed with the same configuration on all servers. The
DOC is obviously higher for the last two servers which have more memory. How-
ever, the cache seems to have the biggest impact since the last board (with the
highest DOC) has similar configuration as the second server but more cache.

The experiments revealed that many parameters have a great impact on the
SUT performance. Among these parameters are: traffic set composition, num-
ber of users, duration of the test. Obiviously, changing the traffic composition
will automatically change the demand of resources on SUT side. The duration
is actually influenced by the number of total calls created along the test. For
different loads but same duration, the test system creates different numbers of
calls. With respect to the number of users, another experiment comparing the
SUT performance with 5000 users respectively 10000 users, shown that the SUT
performance is 40% worse when running the test with 10000 users.

7 Conclusions

The performance testing of continuously evolving services is becoming a real
challenge due to the estimated increase of the number of subscribers and ser-
vices demand. This paper presented a methodology for performance testing of
telecommunication systems. The topic embraces the challenges of the nowa-
days telecommunication technologies. The main outcome is the method to create
workloads for performance testing of such systems. It takes into account many
factors: use cases, call flows, test procedures, metrics and performance evalua-
tion. The design method ensures that the workloads are realistic and simulate
the conditions expected to occur in real-live usage.

Within the case study, we designed and developed a performance test suite
capable of evaluating the performance of IMS networks for realistic workloads.
The TTCN-3 language has been selected to allow a more concrete illustration of
the presented concepts. Along implementation of the test framework we pursuit
the efficiency related aspect which determined us to experiment with various
patterns to design and implement performance test systems.
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