
Test Purpose Concretization through Symbolic

Action Refinement

Alain Faivre1, Christophe Gaston1, Pascale Le Gall2, and Assia Touil3�

1 CEA LIST Saclay
F-91191 Gif sur Yvette Cedex

2 Ecole Centrale Paris - Laboratoire MAS
F-92295 Chatenay Malabry

3 Supelec - Computer Science Department
F-91192 Gif sur Yvette Cedex

Abstract. In a Model Driven Design process, model refinement method-
ologies allow one to denote system behaviors at several levels of abstrac-
tion. In the frame of a model-based testing process, benefits can be taken
from such refinement processes by extracting test cases from the differ-
ent intermediate models. As a consequence, test cases extracted from
abstract models often have to be concretized in order to be executable
on the System Under Test. In order to properly define a test concretiza-
tion process, a notion of conformance relating SUTs and abstract models
has to be defined. We define such a relation for models described in a
symbolic manner as so-called IOSTSs (Input Output Symbolic Transi-
tion Systems) and for a particular kind of refinement, namely action re-
finement, which consists in replacing communication actions of abstract
models with sets of sequences of more concrete communication actions.
Our relation is defined as an extension of the ioco-conformance relation
which relates SUTs and models whose communication actions are defined
at the same level of abstraction. Finally we show from an example how a
test purpose resulting from an abstract IOSTS-model can be concretized
in a test purpose defined at the abstraction level of the SUT.
Keywords. Model Based Testing, Action Refinement, Symbolic Confor-
mance Testing, Test Purpose, Test Purpose Concretisation.

1 Introduction

Model Driven Design approaches allow one to describe systems at several ab-
straction levels. In an usual software development top-down approach, require-
ments are expressed at a very high abstraction level in a given model and refined
into several more concrete models which successively detail more an more the
implementation choices: this process is also called the refinement process. When
dealing with reactive systems, automata based languages including input and
output mechanisms can be used as modeling languages: models denote behaviors
� This work was partially supported by the RNTL French project EDEN2 and by the

Action Marie Curie TAROT.

in term of so-called traces which are sequences of inputs and outputs exchanged
with the environment through interfaces. In the context of automata-based lan-
guages, such interfaces are often denoted by symbols representing communication
channels. The ability to describe interfaces at different levels of abstraction is
important in a refinement process: it allows one to denote behaviors while ab-
stracting from implementation details concerning interfaces. Let us illustrate on
a simple example of an ATM application: in an abstract model, expressing that
a PIN -code is entered and compared to the actual PIN -code does not require
to detail the concrete mechanisms to enter it: the corresponding interface can
be denoted by an abstract channel PIN through which the number represent-
ing the PIN -code transits. At a more concrete level, one may specify that the
abstract input sent through the channel PIN is in fact refined into a sequence
of four inputs through a channel DIGIT corresponding to the four digits com-
posing the PIN-code. Traces from the abstract model are concretized into new
ones, built over concrete interface elements which are directly compatible with
the real system. Defining how an abstract interface is mapped to a concrete one
and how abstract inputs and outputs are refined is a key point in a refinement
process and is usually called action refinement [3].

The paper presents an approach to take benefits from action refinement in
a model-based testing process. In a previous contribution [2], we have proposed
a method to extract test cases from models given in the form of Input-Output
Symbolic Transition Systems (IOSTS). IOSTSs are automata based models in-
volving data and communication actions (input and output actions) denoted in
a symbolic manner: those input (resp. output) actions denote sets of actual input
(resp. output) values received (resp. emitted) through channels. Test cases are
traces of an IOSTS-model, characterizing sequences of stimulations (i.e. input
values) to be sent to the System Under Test (SUT) and of intended reactions (i.e.
outputs values) of the SUT. In [2], we have built test cases from test purposes de-
scribed as tree-like structures obtained by symbolically executing IOSTS-models.
Defining a test purpose amounts to choosing a finite number of finite paths in the
symbolic execution tree as behaviors to be tested. Symbolic execution has been
first defined for programs ([4]) and mainly consists in replacing concrete input
values of variables by symbolic ones in order to compute constraints induced on
these variables by the execution of the program. Symbolic execution applied to
IOSTS follows the same intuition considering guards of transitions as conditions
and assignment together with communication actions as instructions. Symbolic
execution of an IOSTS results in a so-called symbolic execution tree in which
each path characterizes a set of behaviors constituted by all traces obtained by
solving the constraints associated to the path. A test case associated to the test
purpose will interact with the SUT in order to make it perform at least one
trace per chosen finite path. Moreover, such test purposes may be automatically
defined [2]: this is useful to generate test purposes with no human intervention
while ensuring a coverage of the IOSTS-model behaviors. Applying such cov-
erage criteria on the different models of a refinement process strengthens even
more the coverage of all specified behaviors. However, when dealing with test

purposes extracted from abstract models, due to the action refinement steps, it
is not possible to directly define test cases interacting with the SUT: they have
to be concretized at the description level of the SUT interface.

In this paper we extend the symbolic model-based testing framework defined
in [2] to deal with action refinement, following the approach proposed in [9]. We
adapt the notion of refinement pairs as defined in [9] in a non-symbolic context.
Intuitively, refinement pairs associate abstract communication actions to some
concrete communication action sequences. Concrete IOSTS can be derived from
an abstract one by replacing abstract communication actions by their associated
concrete communication action sequences. As in [9] we focus on input action re-
finement, but since in our framework, a symbolic input action is an abstraction of
a set of input values, a symbolic refinement pair denotes a (possibly infinite) set
of refinement pairs as defined in [9]. Moreover, in [9], the authors consider linear
atomic input-inputs refinement: an abstract input is refined as one sequence of
concrete inputs (regardless of particular intermediate action sequences denoting
the quiescence of the SUT). We also consider atomic input-inputs refinement,
but we do not require linearity: an abstract symbolic input can be refined by a
set of possible input sequences. This is useful to define complex refinements in
which an abstract input is refined in a non deterministic manner (e.g. an amount
of money to be sent to an ATM may be concretely entered in different ways de-
pending on the chosen coins). As in [9], conformance between an abstract model
and a SUT is defined by means of a dedicated conformance relation derived from
the ioco-conformance relation [7]. The usual ioco-conformance is adapted to cope
with sets of symbolic input action refinements. We then establish a result which
can be seen as an extension of the one given in [9], stating that ioco-conformance
to a concrete model is equivalent to the extended notion of ioco-conformance to
an abstract model provided that concrete and abstract considered models are
related by the refinement pair set used to define the extended ioco-conformance
relation. Finally, we illustrate with the help of an example how an abstract test
purpose can be concretized through refinement pairs.

Paper organization. In Section 2, we introduce IOSTS and define symbolic
action refinement pairs. In Section 3, we extend symbolic model based testing to
take into account refinement of actions. Section 4 contains our example of test
purpose concretization.

2 Symbolic action refinement for IOSTS

2.1 Input/Output Symbolic Transition Systems(IOSTS)

We assume the reader familiar with basic notions of many sorted first-order
equational logic [5]. We recall notations about IOSTS as given in [2], [6] and [1].
Let us first introduce the data part specified with a many sorted first-order equa-
tional logic. A data signature is a couple Ω = (S, Op) where S is a set of types,
Op is a set of operations, each one being provided with a profile s1 · · · sn−1 → sn

(for i ≤ n, si ∈ S). The set TΩ(V) =
⋃
s∈S

TΩ(V)s of terms with typed variables

in V =
⋃
s∈S

Vs is inductively defined as usual over Op and V . For any term t in

TΩ(V), V ar(t) denotes the set of all variables of V occurring in t. A variable
renaming is any injective mapping μV : V → V ′ and can be canonically extended
to the set of terms TΩ(V). A substitution is a function σ : V → TΩ(V) preserving
types which can also be canonically extended to TΩ(V). TΩ(V)V denotes the set
of all substitutions defined on V . The definition domain Dom(σ) of a substitu-
tion σ is the set {x|x ∈ V, x �= σ(x)}. The set SenΩ(V) of all typed equational
formulas contains the truth values true and false and all formulas built using
the equality predicates t = t′ for t, t′ ∈ TΩ(V)s, and the usual connectives ¬,∨
and ∧.

A model is a family M = {Ms}s∈S with, for each f : s1 · · · sn → s ∈ Op, a
function fM : Ms1 × · · · × Msn → Ms. Interpretations are applications ν from
V to M preserving types, extended to terms in TΩ(V). A model M satisfies a
formula ϕ, denoted by M |= ϕ, iff, for all interpretations ν, M |=ν ϕ, where
M |=ν t = t′ is defined by ν(t) = ν(t′), and where the truth values and the
connectives are handled as usual. MV is the set of all interpretations from V to
M . In the sequel, we only use integers, booleans, enumerated types and character
strings as data types. Thus, data types are interpreted in a fixed model denoted
M and defined for a given data signature Ω = (S, Op) dedicated to specify those
data types.

IOSTS-signatures are couples (A, C) where A =
⋃
s∈S

As is a set of attribute

variables and where C is a set of communication channels. Sig is the set of all
IOSTS-signatures. For two signatures Σ1 = (A1, C1) and Σ2 = (A2, C2), usual
set operators can be extended: Σ1 ⊆ Σ2, iff C1 ⊆ C2 and A1 ⊆ A2; Σ1 ∪ Σ2 =
(A1∪A2, C1∪C2); Σ1∩Σ2 = (A1∩A2, C1∩C2); finally Σ1\Σ2 = (A1\A2, C1\C2).

The set Act(Σ) of communication actions over an IOSTS-signature Σ con-
tains the unobservable action τ , the set Input(Σ) = {c?y | c ∈ C, y ∈ A}
whose elements are called receptions or input actions and the set Output(Σ) =
{c!t | c ∈ C, t ∈ TΣ(A)} whose elements are called emissions or output actions.

Definition 1 (IOSTS). An IOSTS over a signature Σ = (A, C) is a tuple
G = (Q, q0, T rans) where Q is a set of states, q0 ∈ Q is the initial state and
Trans ⊆ Q × Act(Σ) × SenΩ(A) × TΩ(A)A × Q is a set of transitions.

A transition tr = (q, act, ϕ, ρ, q′) of Trans is composed of a source state
source(tr) = q, an action act(tr) = act, a guard guard(tr) = ϕ, a substitution
of variables subs(tr) = ρ and a target state target(tr) = q′.

STS(Σ) denotes the set of all IOSTS over the signature Σ.

For a transition tr with act(tr) = c?x, rec(tr) denotes the variable x and for
an IOSTS G = (Q, q0, T rans), Tc?(G) is the subset of Trans of all transitions
tr such that act(tr) is of the form of c?x. We also denote Att(G) for A, init(G)
for q0, Trans(G) for Trans, Interface(G) for C and Sig(G) for Σ.

Example 1. Fig. 1 depicts a model of a very simple drink vending machine,
called Abstract Vending Machine, or AVM for short. This machine allows the

q0

q1

q2

q3

money?x
m := m + x

[m ≥ 2]

screen!“a drink?”
m := m − 2

drink?B

[B = true]

drink!“coffee′′
[m < 2]

screen!“more money′′[B = false]

drink!“tea′′

Fig. 1. AVM: an example of IOSTS

user to order a coffee or a tea. First, the user introduces some money. If the
amount is greater than or equal to the cost of drinks (here 2) the user can choose
a tea or a coffee, else he has to introduce more money. At last, the machine serves
the user the asked drink.

The set Obs(Σ) of observations over Σ is (C × {?, !} × M). An observation
of the form c!m (resp. c?m) is called an output (resp. input) value. The set
Run(tr) ⊆ MA × (Obs(Σ) ∪ {τ})×MA of runs of tr = (q, act, ϕ, ρ, q′) ∈ Trans
is s.t. (νi, actM , νf) ∈ Run(tr) iff: (1) if act is of the form c!t (resp. τ) then
M |=νi ϕ, νf = νi ◦ ρ and actM = c!νi(t) (resp. actM = τ), (2) if act is of the
form c?y then M |=νi ϕ, there exists νa such that νa(z) = νi(z) for all z �= y,
νf = νa ◦ ρ and actM = c?νa(y).

For a run r = (νi, actM , νf), we denote source(r), act(r) and target(r) re-
spectively νi, actM and νf .

As in [7, 8], we will use δ! to denote quiescence: quiescence refers to situations
for which it is not possible to execute an output action.

For an IOSTS G, the set of its finite paths, denoted FP (G) contains all finite
sequences p = tr1 . . . trn of transitions in Trans(G) such that source(tr1) =
init(G) and for all i < n, target(tri) = source(tri+1). The set of runs of p
denoted Run(p) is the set of sequences r = r1 . . . rn such that for all i ≤ n, ri ∈
Run(tri) and for all i < n, target(ri) = source(ri+1). Following the approach
of [8] and with the notation Tr(r) = act(r1) . . . act(rn) for r ∈ Run(p), the set
STr(p, r) of suspension traces of a run r of p is the least set s. t.:

– If p can be decomposed as p′.tr with tr ∈ Trans(G) and with r of the form
r′.rtr with rtr ∈ Run(tr), then {m.act(rtr)|m ∈ STr(p′, r′)} ⊆ STr(p, r)
with the convention that τ is the neutral element for action concatenation.

– If there exists no finite path p.p′ for which there exists r.r1 · · · rk ∈ Run(p.p′)
with for all i ≤ k − 1, act(ri) = τ and act(rk) = c!m for some c and m, then
for any1 δm ∈ {δ!}∗, Tr(r).δm ∈ STr(p, r).

1 A∗ denotes the set of finite sequences of elements of A

The set of suspension traces of a path p is STr(p) =
⋃

r∈Run(p) STr(p, r) and
semantics of G are STr(G) =

⋃
p∈FP (G) STr(p).

We note STr(Σ) =
⋃

G∈STS(Σ) STr(G) and STr =
⋃

Σ∈Sig STr(Σ). Moreover,
for any observation trace st ∈ STr, Interface(st) is the set of channel names
occurring in at least one observation of st.

For a finite path p, we define the set Def(p) of its defined variables. It con-
tains all attribute variables which are defined along p. Intuitively, a variable z is
defined either if there is a reception on the variable z for one of the transitions
occuring in p or if there exists a variable substitution ρ associated to a transition
of p such that z ∈ Dom(ρ) and all variables in ρ(z) are already defined in the
sub-path preceding the considered transition. On the contrary, when a variable z
is assigned by a transition substitution to a term containing undefined variables,
then z becomes undefined and should be removed from the set of defined vari-
ables. More formally, the set of defined variables for a path may be characterized
inductively as follows:

Definition 2 (Set of defined variables). Let G = (Q, q0, T rans) be an IOSTS
over Σ. Let p be a finite path of FP (G). The set Def(p) of defined variables of
p is defined as follows:
(1) if p is of the form ε, Def(p) = ∅
(2) if p is of the form p′.tr with tr = (q, act, ϕ, ρ, q′)

Def(p) = (Def tr(p′) ∪ {z|z ∈ Dom(ρ) ∧ V ar(ρ(z)) ⊆ Def tr(p′)})
\ {z|z ∈ Dom(ρ) ∧ V ar(ρ(z)) �⊆ Def tr(p′)}

with Def tr(p′) =
{

Def(p′) ∪ {x} if act is of the form c?x
Def(p′) otherwise

Finally, a System Under Test SUT is defined by a set STr(SUT) ⊆ STr. We
note Interface(SUT) =

⋃
st∈STr(SUT) Interface(st). STr(SUT) is required to

be stable by prefix2, and to be input-complete, that is: ∀st ∈ STr(SUT), ∀c ∈
Interface(SUT), ∀m ∈ M, st.c?m ∈ STr(SUT).

2.2 Symbolic action refinement for IOSTS

An action refinement indicates which concrete action sequences implement an
abstract action and possibly concretize the data handled in the abstract action
by decomposing it into several concrete data. For instance, one can refine the
abstract input action money?x as many successive concrete input actions coin?yi

as necessary to cope with the required money amount. Intuitively the abstract
variable x is related to the concrete variables yi by the equality x = y1 + . . .+yn

with n denoting the number of successive input actions coin?yi. In the sequel,
we focus on the refinement of symbolic input actions as in [9]. In fact, the case of

2 STr(SUT) is stable by prefix if any prefix of traces in STr(SUT) belongs to
STr(SUT).

output actions is simpler than the one of input actions3 and it can be treated in
a similar way. We simply do not treat it because we want to limit the complexity
of definitions.

We characterize a refinement pair R as a couple associating a channel name
c which defines the class of abstract input actions to be refined to an input
refinement describing all the associated intended behaviors: an input refinement
is a tuple composed of an IOSTS G = (Q, q0, T rans), an exit (or final) state s
belonging to Q and a variable χ. Intuitively, an input action c?x can be refined
in any of the finite paths starting from the entry state q0 and ending at the
exit state s. We now discuss about the usefulness of χ. As we are in a symbolic
framework, the input action to be refined can be any input action through the
channel c on any attribute variable of the abstract IOSTS. For generality sake,
our refinement mechanism is independent of the attribute variable introduced
in the input action to be refined. The variable χ allows us to link the symbolic
input action and the refining IOSTS G by applying some renaming mechanisms
on G substituting χ by the targeted abstract attribute variable (this is done in
Definition 4).

Definition 3 (Input Refinement/Refinement pair). An input refinement
is a triple (G, s, χ) with G = (Q, q0, T rans) an IOSTS, s ∈ Q with s �= q0 called
the final state and denoted by final(G), and χ a variable satisfying χ �∈ Att(G)
such that:

– ∀p ∈ FP (G), there exists p′ with p.p′ ∈ FP (G) and target(p.p′) = s.
– ∀tr ∈ Trans, act(tr) /∈ Output(Σ).
– ∀p ∈ FP (G), target(p) = s ⇒ χ ∈ Def(p).

For any c ∈ C, the couple (c, (G, s, χ)) is called a refinement pair.
We note RP (Σ) the set of all refinement pairs (c, (G, s, χ)) with Sig(G) = Σ.

By abuse, G will be called the input refinement or the refining IOSTS.
Intuitively, a refinement pair (c, (G, s, χ)) denotes the capacity of refining any

action of the form c?x by all the paths of G from q0 to s, provided that within
the IOSTS G, the variable χ has been first substituted by x.

Let us point out that actions used in refining IOSTS are required to be either
input actions or internal actions. This restriction has already been made in [9]
and corresponds to a simplification motivated by testing issues: imposing that
restriction ensures the ability to define the variable χ only in relation to the
refining input actions. If refinement of input actions would authorize output
actions, the SUT might have different ways to answer and this would make the
testing process more difficult. By requiring that refinement actions of abstract
input actions are only made of input actions, we can compute a priori a sequence
of refining input actions matching the targeted abstract one. Such a restriction,
also known as input-inputs refinement, is thus of particular interest for testing
since the level of controllability is maintained by action refinement.
3 Indeed, contrarily to input actions, output actions do not impact values assigned to

attribute variables.

e

s

coin?y
χ := y

coin?y
χ := χ + y

Fig. 2. Refining IOSTS G

Example 2. In Fig. 2, we show an IOSTS, denoted G in the sequel, which is
used to build an input refinement R = (G, s, χ). A refinement pair (money, (G, s, χ))
is then constituted of an abstract channel money and the input refinement
R = (G, s, χ) built over G. In order to put money in the drink vending ma-
chine (the AVM of Example 1), we have to put coins whose sum corresponds to
the total amount sent on the channel money. The refinement consists in decom-
posing that amount into repetitive receptions of coins whose accumulated sum
corresponds to the abstract amount. For example, if the price of a drink is 2,
the customer can put either a coin of 2 or two coins of 1. Let us remark that
all paths in G clearly define the variable χ, whose value exactly corresponds to
the sum of introduced coins. Indeed, let us point out that for any path p of G
starting from e, Def(p) = {χ, y}.

We now define the function refining an abstract model Ga into a concrete
model w.r.t. a refinement pair (c, (G, s, χ)). Intuitively, all input actions of the
form c?x of Ga are replaced by the IOSTS G in which χ is renamed by x. All
possible paths of G starting at q0 and ending at s concretize c?x.

Definition 4 (Refinement Function). Let Σ = (A, C) and ΣR = (AR, CR)
be two IOSTS-signatures, such that A ∩ AR = ∅.

We define the refinement function
ref : RP (ΣR) × STS(Σ) → STS(Σ ∪ ΣR)

R = (c, ((Q, q0, T rans), s, χ)) Ga = (Qa, qa0, T ransa) �→ (Q′, qa0, T rans′)
and the family of attribute renaming μA,rec(tr) indexed by the variable rec(tr)
such that μA,rec(tr)(χ) = rec(tr) and for all variables y of ΣR, verifying y �= χ,
μA,rec(tr)(y) = y.
ref(R, Ga) = (Q′, qa0, T rans′) is the IOSTS s.t.4:

Q′ = Qa ∪ {(q, tr) | q ∈ Q, tr ∈ Tc?(Ga)}

Trans′ = (Transa \ Tc?(Ga))⋃
tr∈Tc?(Ga) ({((q, tr), μA,rec(tr)(act), μA,rec(tr)(ϕ), μA,rec(tr)(ρ), (q′, tr))

| (q, act, ϕ, ρ, q′) ∈ Trans}
∪{(source(tr), τ, guard(tr), idA, (q0, tr)),

((s, tr), τ, true, subs(tr), target(tr))})
ref(R, Ga) is the concretization of Ga w.r.t. the refinement pair R.

4 idA is the identity function on A and μA,rec(tr) is extended to communication chan-
nels and formulae in a canonical way.

The refinement function has the following two interesting properties. (1) Since
the refining IOSTS are such that the variable under refinement, denoted χ in
Definition 3, is defined, the refinement of a symbolic input action c?x ensures that
in ref(R, Ga), the attribute variable x receives a value controlled by the input
refinement (this value is the result of a function only depending on the concrete
sequence of input values). Such variables are sometimes referred as controllable.
(2) The refinement of a symbolic input action can restrict the set of reachable
values for the targeted attribute variable x since concrete input actions can be
specialized as much as wished according to the designer choices.

q0

(e, tr)

(s, tr)

q1

q2

q3

τ

coin?y
x := y

coin?y
x := x + y

m := m + x

[m < 2]

screen!“more money′′

[m ≥ 2]

screen!“a drink?”
m := m − 2

drink?B

[B = true]

drink!′′coffee“

[B = false]

drink!′′tea′′

Fig. 3. CVM IOSTS

Example 3. We refine the AVM of Example 1 using the refinement pair
(money, (G, s, χ)) of Example 2. The transition tr of source q0 and target q1,
carrying the abstract action money?x is replaced by concrete behaviors. For this
purpose, we rename each state st of G by (st, tr). Here we obtain two new states
(e, tr) and (s, tr). The variable χ is replaced by the variable x that corresponds
to the reception of the amount in the abstract specification. The refinement func-
tion connects then the states (e, tr) and (s, tr) respectively to q0 and q1 with τ
transitions and adds the substitution m := m + x on an exit transition. Finally,
we obtain a concrete model Concrete Vending Machine, or CVM for short, that
specifies how to introduce coins to order some drink.

We may use several refinement pairs to refine a given abstract model. It
suffices to iteratively apply the refinement function ref with the considered
refinement pairs. In order to ensure that refining an abstract IOSTS Ga according
to a refinement pair RP1 defined for a channel c1 then refining according to
another refinement pair RP2 for a channel c2 (with c1 �= c2) leads to the same
model than refining Ga according to RP2 and then to RP1, it suffices to require

that for any considered refinement pair (c, (G, s, χ)), c is an abstract channel
of Ga and the refining IOSTS G does not share a channel with the abstract
specification Ga under consideration. Thus, the channels occurring in the refining
IOSTS which appear in the intermediate refined specifications from Ga cannot
be refined later in the next refinement steps. Under this condition, the order
of refinement steps does not matter. Indeed, let us recall that a refinement pair
ensures that the abstract reception variable occurring in the abstract action to be
refined is defined within the input refinement (up to the variable renaming). This
means that for each path of the input refinement, the resulting value associated
to the abstract reception variable is uniquely defined in function of the concrete
input actions. In other words, the value of the abstract reception variable cannot
depend either on the attribute variables of the abstract IOSTS to be refined or
on the attribute variables of the input refinements. So, it does not depend on the
context of use of the refinement pairs. Let us also remark that different input
refinements may share some concrete channels or attributes.

In the sequel, for any abstract specification Ga and for any family of re-
finement pairs R verifying the above hypotheses (not the same abstract chan-
nel for two refinement pairs, no abstract channel in refining IOSTS), then we
note ref(R, Ga) the resulting specification obtained by applying the refine-
ment function on Ga for all refinement pairs in R. We note ΣR (resp. CR)
the union of all signatures ΣR (interfaces Interface(GR)) for the refinement
pairs (cR, (GR, sR, χR)) belonging to R with Sig(GR) = ΣR.

3 IOCO conformance up to refinement

Testing a system w.r.t. a specification requires the definition of a conformance
relation. Our approach is based on the ioco-conformance relation [7].

Definition 5. (ioco) Let G be an IOSTS and SUT be a system under test5 such
that Interface(G) = Interface(SUT). SUT is ioco-conform to G, iff for any
str ∈ STr(G) ∩ STr(SUT), if there exists act of the form c!v or δ! such that
str.act ∈ STr(SUT), then str.act ∈ STr(G). In such a case, we also say that
str is ioco-conform to G.

We extend Definition 5 in order to reason about conformance of a SUT to
an IOSTS-model Ga up to a set of refinement pairs. This extension requires
to define abstractions of traces of the SUT. Those abstractions are traces only
involving channels of Interface(Ga). For a refinement pair RP and a trace str,
we define the set of inputs that can be concretized in the form of str through
RP .

Definition 6. Let RP = (c, (G, s, χ)) be a refinement pair. Let str be a sus-
pension trace of STr. Let p be a finite path of G with target(p) = s such that
str ∈ STr(p). Such a path p is called a complete path of str.
5 Let us recall that by hypothesis, a system under test is such that its set of traces is

stable by prefix and input-complete.

We note Run(str, p) ⊆ {r | r ∈ Run(p), str ∈ STr(p, r)}, and CP (str) the
set of all complete paths of str.

For any run r = r1 · · · rn of Run(str, p), target(rn)(χ) is called the value
assigned by str to χ through p and r. One notes (str, p)(χ) the set of all values
assigned by str to χ through p and r for any r ∈ Run(str, p).

The set Abs(str, RP) of abstractions of str associated to RP is the set:

{c?v | ∃p ∈ CP (str), v ∈ (str, p)(χ)}

Note that Abs(str, RP) is necessarily empty if str is not a trace only made
up of observations which are either inputs whose associated channels are in
Interface(G) or δ!.

A refinement process generally involves a family of refinement pairs. There-
fore we generalize Definition 6 to define the set of inputs that can be concretized
in the form of str through at least one refinement pair of the family.

Definition 7. Let R be a family of refinement pairs and str ∈ STr. The set of
abstractions of str associated to R is the set Abs(str,R) =

⋃
RP∈R Abs(str, RP).

Note that we do not require that several IOSTSs defined in different refine-
ment pairs of R do not share channels (i.e. have disjoint interfaces). Therefore,
there may exist RP1 �= RP2 ∈ R s.t. Abs(str, RP1) �= ∅ and Abs(str, RP2) �= ∅:
a concrete trace may be abstracted through several refinement pairs.

Suspension traces of STr(SUT) can only be composed of: inputs and outputs
defined over channels of Interface(Ga), the action δ!, and inputs defined over
channels introduced by refinement pairs of R. Thus we generalize Definition 7
to define abstractions of any trace of STr(SUT).

Definition 8. With notations of Definition 7, the set of abstract suspension
traces of str associated to R is the set AbsC(str,R) defined as follows:

– if str is of the form ε then

AbsC(str,R) = {ε}

– if str is of the form a.str′ where a is an observation s.t. a /∈ Obs(ΣR) then

AbsC(str,R) = {a.str′′ | str′′ ∈ AbsC(str′,R)}

– if str is of the form strr.str
′ where strr ∈ STr(ΣR), strr �= ∅, and str′

is the empty trace or a trace beginning by an observation not in Obs(ΣR),
let us consider Dec(strr) the set of all decompositions (pr, sf) of strr (i.e
strr = pr.sf and pr �= ε), then AbsC(str,R) is the set6:

⋃
(pr,sf)∈Dec(strr)

Abs(pr,R).AbsC(sf.str′,R)

6 For two sets E and F , E.F = {e.f | e ∈ E, f ∈ F}. If E = ∅ or F = ∅ then E.F = ∅.

Roughly speaking, AbsC(str,R) denotes the set of all suspension traces com-
posed of abstract observations that are abstractions of str w.r.t. R. Let us ob-
serve that if the trace str cannot be correctly abstracted then its associated set
of abstract suspension traces is empty.

Let us point out that for any Gc obtained by applying iteratively Definition
4 for all refinement pairs of R on an IOSTS Ga, the two following lemmas hold:

Lemma 1. With Gc = ref(R, Ga), for all stra ∈ STr(Ga) s.t. there exists strc

with stra ∈ AbsC(strc,R) then strc ∈ STr(Gc).

Intuitively, Lemma 1 holds because by construction, Definition 4 ensures that
for all stra ∈ STr(Ga), STr(Gc) contains all suspension traces strc such that
stra ∈ AbsC(strc,R).

Lemma 2. With Gc = ref(R, Ga) , for any strc ∈ STr(Gc) such that AbsC(strc,R) �=
∅, there exists stra ∈ STr(Ga) s.t. stra ∈ AbsC(strc,R).

By Definition 4 any suspension trace strc of Gc such that AbsC(strc,R) �= ∅
is either also a suspension trace of Ga, and in that case strc ∈ AbsC(strc,R),
or a suspension trace of a path pc of Gc which can be built from a path pa of
Ga by replacing in pa transitions involving input actions to be refined by a com-
plete path (of some suspension trace) of the IOSTS defined in the corresponding
refinement pairs RP . For each such complete path p appearing in the definition
of pc and associated suspension trace σ, one can build a suspension trace stra of
pa by replacing σ by any input action c?v where c is the refined channel of RP
and v belongs to (σ, p)(χ). This ensures that stra ∈ AbsC(strc,R). Lemmas 1
and 2 are useful to prove Theorem 1.

We now define conformance up to a family of refinement pairs.

Definition 9 (Conformance up to refinement). Let SUT be a system under
test s. t. Interface(SUT) ⊆ Interface(Ga)∪CR. SUT is iocoR-conform to Ga

iff for any str ∈ STr(SUT):

– if AbsC(str,R) ∩ STr(Ga) �= ∅ then there exists stra ∈ AbsC(str,R) ∩
STr(Ga) s.t. if there exists act of the form c!v or δ! with str.act ∈ STr(SUT),
then stra.act ∈ STr(Ga),

– if AbsC(str,R) = ∅ and there exists str.str′ ∈ STr(SUT) s.t. AbsC(str.str′,R)∩
STr(Ga) �= ∅ then for any suspension trace str.str′′ ∈ STr(SUT), str′′ has
no prefix of the form δm.act where δm ∈ {δ!}∗ and act is of the form c!v.

The first item corresponds to situations in which str can be abstracted in
the form of some suspension traces of Ga. In such a case at least one of them
can be extended in Ga by any output that extends str in SUT . The second item
corresponds intuitively to situations in which str ends by a sequence of concrete
inputs which does not concretize an abstract one but it is possible to extend str
in SUT by concrete inputs in order to form a trace that can be abstracted. In
such a case, it is required that no output can occur until str is completed.

We now state the following theorem which relates ioco-conformance and
iocoR-conformance.

Theorem 1. SUT is ioco-conform to ref(R, Ga) iff SUT is iocoR-conform to
Ga.

4 Test purpose concretization

We illustrate by means of an example how to adapt our testing framework ([2],
[1]) to take into account concretization through action refinement. In [2], test
cases are extracted from so-called test purposes which are tree-like structures
from the so-called symbolic execution tree of the IOSTS-model. The symbolic
execution tree is composed of symbolic extended states and transitions between
symbolic extended states. Paths in the symbolic execution tree denote executions
of the model. A symbolic extended state is a triple (q, π, σ) structuring three
pieces of information relatively to the path (i.e. execution) leading to it: (1) the
reached state q of the model; (2) values assigned to attributes at this step of the
execution (in the form of a substitution σ : A → TΩ(Vfroz) 7); (3) constraints
over symbolic terms assigned to attributes in the form of a formula π called
the path condition 8. Each transition st of the symbolic execution tree (symbolic
transition for short) corresponds to the execution of a transition tr of the model
whose source (resp. target) is the state introduced in the symbolic extended
state at the source (resp. target) of the symbolic transition. Moreover, st is
labeled by a symbolic action obtained by replacing terms occurring in act(tr) by
their symbolic values. Characterizing a test purpose simply consists in choosing
behaviors to be tested (i.e. paths) in the symbolic execution tree by labeling
their final symbolic extended states with the ’accept’ flag.

Example 4. Fig. 4 contains a test purpose TPa extracted from the AVM of
Example 1. Symbolic extended states labeled by � are targets of paths which are
outside of the behavior to be tested. The path to be tested denotes the following
behavior:

pay at least 2 units9; the AVM requires a choice for the drink to be served;
ask for a coffee; receive the coffee.

In [2], we have proposed an algorithm to extract test cases from such test
purposes. The appliance of that algorithm requires that the IOSTS-model and
the SUT share a common interface. If we consider as SUT an actual vending
machine whose associated Interface is the one of the CVM of Example 2, the
abstract test purpose TPa cannot obviously be used directly: it has to be refined.

Intuitively, in order to define a test purpose at the good level of abstraction
from TPa, our goal is to characterize a test purpose in which paths to be tested
concretize those characterized in TPa. In TPa there is only one path to be tested.

7 Values assigned to variables by σ are denoted by terms over frozen variables (chosen
in a set of frozen variables Vfroz) whose assignments result either from inputs or
from execution of substitutions introduced in transitions of the IOSTS-model.

8 Those constraints are deduced from guards of transitions executed to reach the
symbolic extended state.

9 provided that m is initialized to 0

init = (q0, true, σ0)

η0 = (q1, true, σ1)

η1 = (q2, π0, σ2)
η′
1 = (q0, π1, σ1)

�

η2 = (q3, π0, σ3)

η3 = (q0, π2, σ3)
�

η4 = (q0, π3, σ3)
accept

money?x1

screen!“a drink?“
screen!“more money“

drink?B1

drink!′′tea′′ drink!“coffee′′

σ0 = {m → m0, x → x0, B → B0}
σ1 = {m → m0 + x1, x → x1, B → B0}
σ2 = {m → m0 + x1 − 2, x → x1, B → B0}
σ3 = {m → m0 + x1 − 2, x → x1, B → B1}

π0 = (m0 + x1) ≥ 2
π1 = (m0 + x1) < 2
π2 = π0 ∧ (B1 = false)
π3 = π0 ∧ (B1 = true)

Fig. 4. Abstract test purpose TPa

We extract from TPa the sequence of consecutive transitions of AVM of Fig. 1
which have to be executed in order to reach the symbolic extended state labeled
by accept. This sequence is a path p of AVM which relates states q0, q1, q2, q3,
q0 and whose transition from q3 to q0 is the one associated to the output action
drink!”coffee”. In the following we need to differentiate several occurrences of a
state or of a transition in p. To reach this purpose we construct a set of transitions
Tp containing possibly several copies of transitions of AVM used to define p (one
copy per occurrence). Practically, the source state and target state of a transition
tr of p are named in a different manner than the one used in AVM of Fig. 1: this is
done by using symbolic extended states as source and target states. For example
to represent the occurrence of the transition (q0, money?x, true, [m := m+x], q1)
in p, the transition (init, money?x, true, [m := m + x], η0) belongs to Tp.

The following phase consists in defining an IOSTS whose associated set of
transitions is Tp. We define the IOSTS GTPa = (Qp, q0, Tp) where Qp is the set
of all source and target states of all transitions of Tp.

Example 5. The IOSTS GTPa associated to TPa is depicted in Fig. 5.

init η0 η1 η2 η4

money?x1

m := m + x

[m ≥ 2]

screen!“a drink?′′

m := m − 2

drink?B

[B = true]

drink!“coffee′′

Fig. 5. GTPa for the test purpose of Fig. 4

A set of distinguished symbolic extended states are those labeled by accept in
the test purpose. In Fig. 4 there is only one such state: η4. We note final(TPa) =
{η4} this set. Now let us note RP the refinement pair described in Example 2
and used to define the CV M = (AV M, {RP}). We note GSUT the IOSTS
(GTPa , {RP}). GSUT characterizes all finite paths that concretize p through re-
finement pairs of RPs. The interface of GSUT is the one of the actual vending

machine. Therefore it can be used to define test purposes for testing the actual
vending machine by means of our algorithm. The set of concrete test purposes
associated to TPa contains all test purposes defined by symbolically execut-
ing Gc and labeling only symbolic extended states whose associated state is in
final(TPa).

(init, true, σ0)

((e, tr), true, σ0)

((s, tr), y1 ∈ {1, 2}, σ1)

(η0, y1 ∈ {1, 2}, σ2)

(η1, y1 ∈ {1, 2} ∧ m0 + y1 ≥ 2, σ5)

(η2, y1 ∈ {1, 2} ∧ m0 + y1 ≥ 2, σ7)

(η4, y1 ∈ {1, 2} ∧ m0 + y1 ≥ 2 ∧ B1 = true, σ7)
accept

((s, tr), y1 ∈ {1, 2} ∧ y2 ∈ {1, 2}, σ3)

(η0, y1 ∈ {1, 2} ∧ y2 ∈ {1, 2}, σ4)

(η1, y1 ∈ {1, 2} ∧ y2 ∈ {1, 2} ∧ m0 + y1 + y2 ≥ 2, σ6)

(η2, y1 ∈ {1, 2} ∧ y2 ∈ {1, 2} ∧ m0 + y1 + y2 ≥ 2, σ8)

(η4, y1 ∈ {1, 2} ∧ y2 ∈ {1, 2} ∧ m0 + y1 + y2 ≥ 2 ∧ B1 = true, σ8)
accept

τ

coin?y1

m := m0 + y1

screen!′′a drink?“

drink?B1

drink!“coffee′′

coin?y2

m := m0 + y1 + y2

screen!′′a drink?“

drink?B1

drink!′′coffee′′

σ0 = {m → m0, x → x0, y → y0, B → B0} σ1 = {m → m0, x → y1, y → y1, B → B0}
σ2 = {m → m0 + y1, x → y1, y → y1, B → B0} σ3 = {m → m0 + y1, x → y2, y → y2, B → B0}
σ4 = {m → m0 + y1 + y2, x → y2, y → y2, B → B0} σ5 = {m → m0 + y1 − 2, x → y1, y → y1, B → B0}
σ6 = {m → m0 + y1 + y2 − 2, x → y2, y → y2, B → B0} σ7 = {m → m0 + y1 − 2, x → y1, y → y1, B → B1}
σ8 = {m → m0 + y1 + y2 − 2, x → y2, y → y2, B → B1}

Fig. 6. Concrete test purpose

Example 6. In Fig. 6 we show a concrete test purpose associated to the
abstract test purpose of Example 4. The variable y can take two values to denote
the two possible coins that can be entered in the CVM: 1 for coins of 1 unit and
2 for coins of 2 units. It refines the behavior characterized in the test purpose of
Fig. 4 by two concrete behaviors which correspond both to enter 2 units in the
form of either one coin of two units (left) or two coins of one unit (right).

5 Conclusion

We have defined a model-based testing framework incorporating symbolic action
refinement. Our framework is built as an extension of the symbolic conformance
testing theory given in [2]. A refinement pair is made of a channel name c and
an IOSTS with a final state and a frozen variable χ to be substituted by the

targeted attribute variable. This denotes the capacity of refining any reception
on a variable x through c by any behavior of the refining IOSTS leading to the
final state provided that the variable χ has been first substituted by the variable
x. These concrete behaviors are composed of input actions on concrete channels
or of internal actions and must define the variable χ. Under theses hypotheses,
we have defined the concretization of an abstract IOSTS w.r.t. a family of re-
finement pairs. The classical ioco-relation underlying most conformance testing
frameworks has been relaxed by associating to each concrete observable trace of
an implementation all possible abstract observable traces which are compatible
with the given family of refinement pairs. Thus, the conformance relation has
been parameterized by the considered family of refinement pairs. We have then
explained on an example how we can derive from test purposes extracted from
the abstract specification some concrete test purposes sharing with the imple-
mentation the same interface and unfolding the abstract behaviors selected in
the abstract test purpose w.r.t. refining IOSTS.

We are currently implementing this approach in the AGATHA tool devel-
oped at CEA LIST. This integration will be used in the frame of the RNTL
French project EDEN2.

References

1. A. Faivre, C. Gaston, and P. Le Gall, Symbolic model based testing for compo-
nent oriented systems, Testing of Software and Communicating Systems TestCom
/ FATES 2007 (Springer Berlin / Heidelberg, ed.), Lecture Notes in Computer Sci-
ence, vol. 4581/2007, 2007, pp. 90–106.

2. C. Gaston, P. Le Gall, N. Rapin, and A. Touil, Symbolic execution techniques for
test purpose definition, Testing of Communicating Systems: 18th IFIP TC 6/WG
6.1 International Conference, TestCom 2006. Lecture Notes in Computer Science
(New York, NY, USA), Springer, May 16-18 2006.

3. R. Gorrieri and A. Rensink, Handbook of process algebra, ch. Action refinement,
pp. 1047–1147, Elsevier, 2001.

4. J.-C. King, A new approach to program testing, Proceedings of the international
conference on Reliable software, Los Angeles, California 21-23 (1975), 228–233.

5. Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf, Specification of abstract
data types, John Wiley & Sons, Inc., New York, NY, USA, 1997.

6. N. Rapin, P. Le Gall, and A. Touil, Symbolic execution techniques for refinement
testing, Tests and Proofs 07 (Springer Berlin / Heidelberg, ed.), Lecture Notes in
Computer Science, vol. 4454/2007, 2007, pp. 131–148.

7. J. Tretmans, Test generation with inputs, outputs, and quiescence, Second Int.
Workshop on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’96) (T. Margaria and B. Steffen, eds.), Lecture Notes in Computer Science,
vol. 1055, Springer-Verlag, 1996, pp. 127–146.

8. Jan Tretmans, Test generation with inputs, outputs and repetitive quiescence, Soft-
ware - Concepts and Tools 17 (1996), no. 3, 103–120.

9. H. M. van der Bijl, A. Rensink, and G. J. Tretmans, Action refinement in confor-
mance testing, Testing of Communicating Systems (TESTCOM) (Berlin) (F. Khen-
dek and R. Dssouli, eds.), Lecture Notes in Computer Science, Springer Verlag,
2005, pp. 81–96.

