
Model-Based Testing Service on the Web

Antti Jääskeläinen1, Mika Katara1, Antti Kervinen1,
Henri Heiskanen1, Mika Maunumaa1, and Tuula Pääkkönen2

1 Tampere University of Technology
Department of Software Systems

P.O.Box 553
FI-33101 Tampere, FINLAND

{antti.m.jaaskelainen,firstname.lastname}@tut.fi
2 Nokia Devices

P.O.Box 68
FI-33721 Tampere, FINLAND

Abstract. Model-based testing (MBT) seems to be technically superior to con-
ventional test automation. However, MBT features some difficulties that can ham-
per its deployment in industrial contexts. We are developing a domain-specific
MBT solution for graphical user interface (GUI) testing of Symbian S60 smart-
phone applications. We believe that such a tailor-made solution can be easier to
deploy than ones that are more generic. In this paper, we present a service con-
cept and an associated web interface that hide the inherent complexity of the test
generation algorithms and large test models. The interface enables an easy-to-use
MBT service based on the well-known keyword concept. With this solution, a
better separation of concerns can be obtained between the test modeling tasks
that often require special expertise, and test execution that can be performed by
testers. We believe that this can significantly speed up the industrial transfer of
model-based testing technologies, at least in this context.

1 Introduction

A widespread problem in software development organizations is how to cut down on the
money, time, and effort spent on testing without compromising the quality. A frequent
solution is to automate the execution of predefined test cases using test automation tools.
Unfortunately, especially in graphical user interface (GUI) testing, test automation often
does not find the bugs that it should and the tools provide a return on the investment
only in regression type of testing. One of the main reasons for this is that the predefined
test cases are linear and static in nature – they do not include the necessary variation to
cover defected areas of the code, and they (almost) never change. Moreover, since GUI
is often very volatile, it takes time to update the test suites to test the new version of the
system under test (SUT). Hence, costly but flexible manual testing is still often chosen
as the primary method to ensure the quality, at least in the context of mass consumer
products, where GUIs are extremely important.

Model-based testing (MBT) practices [1] that generate tests automatically can in-
troduce more variance to the tests, or even generate an infinite number of different tests.
Moreover, maintenance of the testware should become easier when only the models



have to be maintained and new updated tests can be generated automatically. Further-
more, developing the test models may reveal more bugs than the actual test execution
based on those models. Since model development can be started long before the SUT
is mature enough for automatic test execution, detection of bugs early in the product
lifecycle is supported.

Concerning industrial deployment of MBT, it has been reported, for instance, that
several Microsoft product groups use an MBT tool (called Spec Explorer) on a daily ba-
sis [2]. However, it seems that large-scale industrial adoption of the methodology is yet
to be seen. If MBT is technologically superior, why has it not overcome conventional
ways of automating tests? Based on some earlier studies [3, 4] as well as our initial
experience, it seems that there are some non-technological obstacles to large-scale de-
ployment. These include the lack of easy-to-use tools and necessary skills. Moreover,
since the roles of the testing personnel are affected by this paradigm change, the test
organization needs to be adapted as well [5].

In this paper, we tackle the first of these issues, i.e. matching the skills of the testers
with easy-to-use tools. We think that one problem with the first generation MBT tools
was that they were too general in trying to address too many testing contexts at the
same time. We believe that the possibilities of success in MBT deployment will im-
prove with a more domain-specific solution that is adapted to a specific context. In our
case, the context is the GUI testing of Symbian smartphone applications. There have
been cumulatively over 150 million Symbian smartphones shipped [6]. We concentrate
on the devices with the S60 GUI framework [7], which is the most commonly found
application platform in the current phone models. In addition to device manufacturers,
there are a large number of third party software developers making applications on top
of Symbian S60. Compared to a more generic approach, based on UML and profiles,
for instance [8], our tools should effect a higher level of usability and automation in this
particular context.

The background of our approach has been introduced previously in [5, 9–11]. In this
paper, based on earlier work [12, 13], the MBT service interface is presented in detail.
Our approach is based on a simple web GUI that can be used for providing a model-
based testing service. The interface supports setting up MBT sessions. In a session, the
server sends a sequence of keywords to the client, which executes them on the SUT. For
each received keyword, the client returns to the server a Boolean return value: either the
execution of the keyword succeeded or not. This on-line approach enables the server
to generate tests based on the responses of the client, in a way somewhat similar to the
Spec Explorer tool [2].

Our scheme should facilitate industrial deployment by minimizing the tasks of the
testers. In addition to the service interface, this paper presents an overview of the associ-
ated open source tools. The remainder of the paper is structured as follows: In Section 2,
we present the background of this paper, i.e., domain-specific MBT for S60 GUI test-
ing. Sections 3 and 4 describe the modeling formalism and the associated tool set. In
Section 5, the service concept is introduced in detail including the interfaces that we
have defined. Finally, Section 6 concludes the paper with a final discussion including
ideas for future work.



2 Domain-specific MBT

Research on model-based testing (MBT) has been conducted widely in both indus-
try and academia. From the practical perspective, the fundamental difference between
MBT and non-MBT automation is that, in the latter case, the tests are scripted in some
programming or scripting language. In the former case, on the other hand, the tests are
generated based on a formal model of the SUT. The model describes the system from
the perspective of testing at a high level of abstraction. However, the definition of a
“model” varies greatly, depending on the approach [1]. In our approach, a model is a
parallel composition of Labeled State Transition Systems (LSTSs). This formalism en-
ables us to generate tests that introduce variation in the tested behavior, for instance,
by executing different actions in many different orders allowed by the SUT. In some
other MBT approaches, the goal might be to generate all possible data values for some
type of parameters. Thus, there are many different types of MBT solutions that do not
necessarily have much in common. The algorithms for generating tests from the models
may be significantly different, depending on the formalism and the testing context.

However, a common goal in many MBT schemes is to execute high volumes of
different tests. Once the MBT regime has been set up and running, the generation of
new tests based on the models is as easy as running the same old tests again and again.
Obviously, old tests can still be repeated for debugging purposes if necessary.

In spite of these benefits, the industrial adoption of this technology has been slow.
Robinson [3] states that the most common problems in deployment are the managerial
difficulties, the making of easy-to-use tools, and the reorganization of the work with the
tools. Hartman [4] reports problems with the complexity of the provided solution and
counter-intuitive modeling. Our early experiences support these findings. Moreover, it
must be acknowledged that modeling needs a special kind of expertise that may not
be available in a testing organization. However, such expertise might be available as a
service, especially when operating in a specialized domain such as testing smartphone
applications.

We think that a problem with the first generation MBT tools was that they were too
general. These tools tried too much to address many testing contexts at the same time,
for instance by generating tests based on UML models that could describe almost any
type of SUT. We believe that the chances of success in MBT deployment will improve
with more domain-specific solutions that are adapted to specific contexts. In our case,
the context is the GUI testing of Symbian S60 [6, 7] smartphone applications. Symbian
is the most widely spread operating system for smartphones and S60 is a GUI platform
built on the top of it. There are a large number of third party software developers making
applications on top of Symbian S60. One driving force in any automation solution for
this product family setting is the ability to reuse as many tests as possible when a new
product of the family is created. Thus, we have built our test model library to support
the reuse of test models.

In addition, in terms of industrial adoption, MBT needs to be adapted to the ex-
isting testing processes that are shifting towards more agile practices [14] from the
traditional ones based on the V-model [15] and its variations. In agile contexts, on the
one hand, developers are already relying on test automation to support refactoring and
generally understand its benefits as compared to manual testing. On the other hand, it



seems especially important to provide easy-to-use tools and services that do not place
an additional burden, such as that of test modeling, on the project personnel. We have
identified a minimum of three modes [11] to be supported in agile processes: smoke
testing should be performed in each continuous integration cycle; user stories can be
tested in a use-case testing mode; and there should be a bug hunting mode, whose only
purpose is to support finding defects efficiently in long test runs.

Concerning domain-specific issues, the Symbian S60 domain entails the following
problems, among others, from the testing point of view:

– How to make sure the application under test works with pre-installed applications
such as calendar, email, and camera?

– How to test the interactions between the different applications running on the phone?
How to make sure that the phone does not crash if a user installs a third-party appli-
cation? What happens if, for instance, some application attempts to delete an MP3
file that is being played by another application?

– How to test that your software works with different keyboards and screen resolu-
tions?

The domain concepts of Symbian S60 testing can be described using keywords and
action words [16, 17]. Action words describe the tasks of the user, such as opening
the camera application, dialing a specified number, or inserting the number of the re-
cipient to a message. Keywords, on the other hand, correspond to physical interaction
with the device such as the key presses and observations. Each action word needs to be
implemented by at least one sequence of keywords. For example, starting a camera ap-
plication can be performed using a short-cut key or a menu, for instance, and verifying
that a given string is found from the screen. The verification enables checking that the
state of the model and state of the SUT match each other during the test run.

Keywords and similar concepts are commonly used in GUI testing tools. We believe
that using these concepts in conjunction with MBT can help to deploy the approach in
industrial settings. Since testers are already familiar with the keyword concept we just
need to hide the inherent complexity of the solution and provide as simple a user in-
terface as possible. The existing test execution tools that already implement keywords
should be adaptable to receive a sequence of keywords from a server. The role of the
server is to encapsulate the test model library and the associated test generation heuris-
tics. Based on a single keyword execution on the SUT, the client tool returns to the
server a Boolean value based on success or failure of the execution. The server then
selects the next keyword to be sent to the client based on this return value.

3 Modeling Formalism

In this section, the fundamentals of our modeling formalism are presented for the inter-
ested reader. As already mentioned, we use Labeled State Transition Systems (LSTSs)
as our modeling formalism. This is an extension of the Labeled Transition System (LTS)
format with labels added to states as well as to transitions. The formal definition is pre-
sented below. It should be noted that while each transition is associated with exactly
one action, any number of attributes may be in effect in a state.



Definition 1 (LSTS). A labeled state transition system, abbreviated LSTS, is defined
as a sextuple (S,Σ,Δ, ŝ,Π,val) where S is the set of states, Σ is the set of actions
(transition labels), Δ ⊆ S×Σ× S is the set of transitions, ŝ ∈ S is the initial state,
Π is the set of attributes (state labels) and val : S −→ 2Π is the attribute evaluation
function, whose value val(s) is the set of attributes in effect in state s.

In our approach, the models are divided into four categories according to their uses:
action machines, refinement machines, launch machines and initialization machines.
Action machines are used to model the SUTs on the action word level. Thus, they
are the main focus of the modeling work. Keyword implementations for action words
are defined in refinement machines. Together, these machines form most of the model
architecture; the remaining two types are focused on supportive tasks. Launch machines
define keyword sequences required to start up an action machine, such as switching to
a specific application. Initialization machines, on the other hand, define sequences for
setting the SUT into the initial state assumed by action machines and are executed
before the actual test run. They can also be used to return the SUT back to a known
state after the test. Both of these functions have simple default actions. Hence, explicitly
defined launch and initialization machines are rarely needed.

Concerning the keywords, many of them require one or more parameters to define
their function. Sometimes these are fixed to the GUI, such as a parameter that defines
which key to press, but sometimes they represent real-world data: a date or a phone
number, for example. Embedding such information directly into the models is problem-
atic, because they would be limited to a fixed set of data values and possibly tied to
a specific test configuration. Another problem with the use of data is that storing it in
state machines requires duplicate states for each possible value of data, which quickly
results in a state space explosion [18]. To solve these problems, we have developed two
methods of varying the data in models: localization data and data statements.

The basic function of localization data is to hold the text strings of the GUI in dif-
ferent languages, so that the models need not be tied to any specific language variant of
the SUT. The data is incorporated into the model by placing a special identifier in a key-
word. When the keyword is executed, the identifier is replaced with the corresponding
element from the localization tables. More complicated use of data can be accomplished
by placing data statements (Python [19] code) in actions. These statements may be used
in any actions, not just keywords. Data provided by external data tables can be used in
these data statements.

In order to be used in a test run, the models must be combined in parallel compo-
sition. The models involved in this process are action machines, refinement machines,
launch machines (both explicitly defined and automatically generated), and a special
model called the task switcher. The latter is generated to manage some of the synchro-
nizations between the models. In the composition, the models are examined and rules
generated for them according to the domain-specific semantics to determine what ac-
tions can be executed in a given state. As usual, the composition can be used to create
one large test model that combines all the various components, or it can be performed
on the fly during the test run. We have found the latter method to be preferable, since
combining a large number of models can easily result in a serious state explosion prob-



lem. The definition of the parallel composition, extended from [20] for LSTSs, is the
following:

Definition 2 (Parallel composition ‖R). ‖R (L1, . . . ,Ln) is the parallel composition of
LSTSs L1, . . . ,Ln, Li = (Si,Σi,Δi, ŝi,Πi,vali), according to rules R; ∀i, j;1 ≤ i < j ≤
n : Πi ∩Π j = /0. Let ΣR be a set of resulting actions and

√
a “pass” symbol such

that ∀i;1 ≤ i ≤ n :
√

/∈ Σi. The rule set R ⊆ (Σ1 ∪{√})× ·· · × (Σn ∪{√})×ΣR.
Now ‖R (L1, . . . ,Ln) = (S,Σ,Δ, ŝ,Π,val), where

– S = S1 ×·· ·×Sn

– Σ = {a ∈ ΣR | ∃a1, . . . ,an : (a1, . . . ,an,a) ∈ R}
– ((s1, . . . ,sn),a,(s′1, . . . ,s

′
n)) ∈ Δ if and only if there is (a1, . . . ,an,a) ∈ R such

that for every i (1 ≤ i ≤ n) either
• (si,ai,s′i) ∈ Δi or
• ai =

√
and si = s′i

– ŝ = (ŝ1, . . . , ŝn)
– Π = Π1 ∪·· ·∪Πn

– val((s1, . . . ,sn)) = {π ∈ Π | ∃i;1 ≤ i ≤ n : π ∈ vali(si)}
The composition is based on a rule set which explicitly defines the synchronizations

between the actions. An action of the composed LSTS can be executed only if the
corresponding actions can be executed in each component LSTS, or if the component
LSTS is indifferent to the execution of the action. In some, extreme cases an action may
require the cooperation of all the component LSTSs, or a single component LSTS may
execute an action alone. In practice, however, most actions in our models are executed
singly or synchronized between two components, though larger synchronizations also
exist.

An important concept in the models is the division of states into running and sleep-
ing states. In more detail, running states contain the actual functionality of the mod-
els, whereas sleeping states are used to synchronize the models with each other. The
domain-specific semantics ensure that exactly one model is in a running state at any
time, as is the case with Symbian applications. As testing begins, the running model is
always the task switcher. Running and sleeping states are defined implicitly according
to the transitions in the models.

4 Overview of the Tools

In this section, we provide an overview of the toolset supporting our approach. The
toolset is currently under construction. The tool architecture is illustrated in Figure 1.
The toolset can be divided into four parts plus a database. The first is the model design
part, which is used for creating the component models and data tables. The second is
the test control part, where tests are launched and observed. The third is the test gen-
eration part that is responsible for assembling the tests and controlling their execution.
The fourth is the keyword execution part, whose task is to communicate with the SUT
through its GUI.

Concerning the model design part of the toolset, the tools are used to create the
test models and prepare them for execution. There are two primary design tools: Model



Fig. 1. Test tool architecture.

Designer [13] and Recorder [21]. The latter is an event capturing tool designed to cre-
ate keyword sequences out of GUI actions; these sequences can then be formed into
refinement machines. Model Designer, on the other hand, is the main tool for creating
action machines and data tables. It is also responsible for assembling the models into
a working set ready for testing; even refinement machines created with Recorder pass
through Model Designer. The elements of this working set are placed into the model
repository.

After the models with their associated information have been prepared with the
design tools, the focus moves to the test control part. This part contains a web GUI
which is used to launch the test sessions. Once a test session has been set up, the Test
Control tool in the test generation part of the toolset takes over. First, it checks the
coverage requirement (a formal test objective) that it received and determines what



model components are required for the test run. These are given to Model Composer,
which combines them into a single model on the fly. The model is managed by Test
Engine, which determines what to do next, based on the parameters it receives from
Test Control. Both Test Control and Test Engine report the progress of the test run into
a test log, which may be used for observing, debugging, or repeating the test.

As keywords are executed in the model, Test Engine relays them to the keyword
execution part. The purpose of this part is to handle their execution in the SUT. The SUT
responds with the success status (true or false) of the keyword, which is then relayed
back to Test Engine. The first link in the communication between Test Engine and the
SUT is handled by a specific adapter tool, which translates the keywords into a form
understood by the receiver and manages the gradual execution of some more complex
keywords. The next part in the chain is the test tool which directly interacts with the
SUT. The nature of this tool depends on the SUTs in question and is not provided
alongside the toolset. The users of the toolset must provide their own test tool and
use the simple interface offered by the adapter. In our case, we have used commercial
components, namely Mercury Functional Testing for Wireless (MFTW) and Mercury
QuickTest Professional (QTP) [22].

We have designed the architecture to support the plugging-in of different test gen-
eration heuristics. Currently, we have implemented three heuristics which allow us to
experiment with the tools: a purely random heuristics that can be used in bug hunting
mode, and two heuristics based on game-theory [11] to be used in the use case test-
ing mode: a single thread and a two thread version. The difference between the two
is that the latter continues to search an optimal path to a state fulfilling the coverage
requirement, while the other thread waits for a return value from the client executing a
keyword.

It is anticipated that in deploying our approach the testing personnel should consist
of the following roles (see Figure 1): test manager, test modeler, and test model exe-
cution specialist. The test manager defines the entry and exit criteria for the test model
execution, and defines which metrics are gathered. The test manager should also focus
on communicating the testing technology aspects. This includes explaining how model-
based testing compares to conventional testing methods and advocating reasons for and
against using it for management and testing personnel. In these respects, model-based
testing is similar to any new process initiation.

The main goal of the test modeler is to update and maintain the test model library
using the Model Designer and Recorder tools based on product specifications if such
exist. The test modeler can also be responsible for designing the execution of the model
and setting up the environment accordingly.

The test model execution specialist orders the test sessions from the web GUI ac-
cording to the chosen test strategy. He/she also observes the test execution to ensure
that the models are used according the agreed principles and test data. Another focus of
this role is in reporting the results and faults onward. The purpose is to document the
test model usage and testware in a way that enables its reuse.



Coverage
requirements

Model
components

Adapter

ClientAdapter
status

keyword

Client

S
U
T

S
U
T

status

keyword

T
es

t e
ng

in
e

T
es

t e
ng

in
e

test execution interface

MBT server

test setup interface

Test execution specialist

Test modeller

model maintenance interface

Fig. 2. MBT testing server, adapters, clients, and SUTs.

5 Providing a Symbian S60 Test Service

In this section, the service scheme is presented in detail. The following subsections
describe the interfaces provided by our server.

5.1 Server and Clients

The architecture of the toolset described earlier enables a client-server scheme where
the keyword execution and test generation parts are separated. To facilitate the deploy-
ment of model-based GUI testing in the context of Symbian S60 applications, we have
set up a prototype version of the server that implements the test generation part. It pro-
vides testers an easy interface to the MBT tools.

The server is accessed through three interfaces. First, there is an interface through
which test modelers update the test model components on the server. Second, there is a
web interface through which test execution specialists can set up tests. Finally, there is
an interface for sending keywords to adapters which execute the corresponding events
on actual devices. Figure 2 illustrates the scheme.

Although the MBT server could be installed as a local application in the client ma-
chine, there are some practical reasons for dedicating a separate PC for that purpose.
The most important reason is that some of our test generation algorithms, i.e. the ones
based on game heuristics, can produce better results given more processor time and
memory. Fortunately, computing power is very cheap nowadays but it still pays off
to have a dedicated machine. Moreover, the server provides a shared platform for test
modelers to update the model library and test execution specialists to set up tests. Fur-
thermore, all the users of the server do not need to know the details of the SUT, for
instance the physical form or other design issues that may be confidential at the time of
testing. For the purposes of test modeling, it should be enough to know what previously
tested member of the product family this new member resembles the most and what the
differences are concerning the modeled behavior.



5.2 Test Setup Interface

There are a number of parameters that need to be given in order to start a test run. The
most important ones are:

1. SUT types: which phone models will be used in the test run? This affects the auto-
matic selection of test model components.

2. Test model: which applications will be used in the test run? Based on this choice,
the test model components are selected and composed together to form a single test
model that will be used in the test run.

3. Test mode: the test can be executed in smoke test, bug hunt, and use-case testing
mode. In each mode, a coverage criterion should also be given. The criterion defines
when the test run can be stopped, but it can also be used to guide the test generation
as in the case of use-case testing mode.

4. Number of clients: how many clients can be used to execute the test? Using more
than one client can often improve the time in which the test is finished. For example,
a complicated coverage criterion can often be divided into smaller criteria that can
be fulfilled in concurrent test executions.

5. The test generation algorithm, connection parameters, and logging system.

To support different types of testing in the various phases of the testing process, the
server supports the three testing modes mentioned above. In the smoke testing mode
the server generates tests in a breadth-first search fashion until the coverage criterion
has been fulfilled; for instance, 30 minutes have passed or 1000 keywords have been
executed. In the use case mode, the tester inputs a use case (in the form of a sequence
of action words) to the server, which then generates tests to cover that use case using
the game heuristics. As already discussed, the main motivation for this mode is compat-
ibility with the existing testing processes: the tests are usually based on requirements
and the test results can be reported based on the coverage of the requirements. In the
bug-hunting mode, in addition to purely random generation, the server could generate a
much longer sequence of keywords that tries to interleave the behavior of the different
applications as much as possible in order to detect hard-to-find bugs related to mutual
exclusion, memory leaks, etc.

When the test setup is ready, the corresponding test model is automatically built
from components of the model library. After that, the given coverage criterion could be
split so that there is a chunk for every client to cover. Finally, one test engine process
per every client could be launched to listen to a TCP/IP connection. A test engine will
serve a client until its part of the coverage criterion has been covered or it is interrupted.
Now the MBT server is ready for the real test run, during which the clients and the
server communicate through the test execution interface.

5.3 Test Execution Interface

To start a test run, the test execution specialist starts the devices to be used as targets
in the tests as well as the clients and adapters. The adapters are configured so that they
connect to the test engines waiting on the server. Test execution on the client starts
immediately when its adapter has been connected to the test engine.



During the execution, a test engine repeats a loop where it first sends a keyword to
an adapter. The adapter, with the help of the test execution tool it is controlling, converts
the keyword into an input event or an observation on the SUT. As already discussed,
there are different keywords for pushing a button on the phone keypad and verifying
that a given string is found on the screen, for instance. After that, the adapter returns
the status of the keyword execution, i.e. a Boolean value denoting success or failure, to
the test engine. In a normal case, when the status of the keyword execution is allowed
by the test model, the server loops and sends a new keyword to the adapter.

Otherwise, unexpected behavior of the SUT is detected, maybe due to a bug in the
SUT, and the server starts a shutdown or recovering sequence. It informs the adapter
that it has found an anomaly. The adapter may then save screenshots, a memory dump
or other information useful for debugging. It also sends an acknowledgement of having
finished operations to the server. Finally, the test engine may either close the connection,
or try to recover from the error by sending some keywords again, for instance to reboot
the SUT.

Regardless of the mode, during a test session a log of executed keywords is recorded
for debugging purposes. When a failure is noticed, the log can be used for repeating the
same sequence of keywords in order to reproduce the failure.

GUI testing can sometimes be slow, even with the most sophisticated tools. In order
to cope with this, we should extend our solution to support the concurrent testing of
several target phones using one server. Testing a new Symbian S60 application could
be done so that one client is used for testing the application in isolation from other
applications, while other clients are testing some application interactions.

5.4 Using the Web GUI

The testers interact with the server using a web interface. The interface has been im-
plemented in AJAX [23] and it consists of several different views. In the following, we
will introduce the basic usage of the interface step by step.

When the tester wants to start a test session, he or she first logs into the system.
After that, the system offers two alternatives: either to start a session by repeating a
log from some previous session or simply from scratch. In the latter case, a model con-
figuration must next be selected. Such a configuration can consist of models of certain
applications whose interactions should be tested, for instance. Next, a view called the
coverage requirement editor is opened (see Figure 3). In this view, the tester can con-
struct a new coverage requirement from actions of the model components included in
this configuration. Since the number of different actions can be large, there is a possi-
bility to limit the shown actions to those marked “interesting” by the test modelers. The
coverage requirement is composed of actions and operators THEN, AND, and OR, as
well as parentheses. As an example, consider a requirement for sending a multimedia
message (MMS) from one SUT to another with an attachment:

action Messaging1-Main:NewMMS THEN
action Messaging1-MMS:InsertObject THEN
action Messaging1-MMS:Select THEN
action Messaging1-Sender:Send THEN



Fig. 3. Coverage requirement editor.

action Messaging2-Receiver:Show THEN (
action Messaging1-Main:ExitMessaging AND
action Messaging2-Main:ExitMessaging

)

In the example, Messaging1 is the SUT that should send the MMS and Messaging2
the one that should receive it. Once the message has been composed, sent, received and
opened, both SUTs should return to the main menu in a non-specified order. The right
hand side of Figure 3 shows the corresponding coverage requirement in the case of one
SUT. In the one phone configuration, the sender and the receiver are the same device,
while in the two phone configuration they are different. Replacing operator AND with
OR would simply mean that either one of the phones should return to the main menu. If
the requirement under construction if not well-formed, the requirement turns red and an
error message is displayed. The coverage language is presented in more detail in [11].

Since constructing long coverage requirements can take some effort and time, there
is a view where they can be saved and loaded (see Figure 4). Moreover, there is an
option to upload and download coverage requirements if the tester wants to use another
editor.



Fig. 4. Coverage requirement menu.

In the next view, the tester can set the parameters for the test session. First of all,
there are different heuristics corresponding to the different testing modes. Moreover,
there are some other parameters to be selected based on the heuristics used. For in-
stance, using the game heuristics in the requirement coverage mode requires the depth
of the search tree. There are naturally default values available, but based on the model
complexity, better results, i.e. reaching the coverage requirement faster, can be achieved
by carefully selecting the parameters. In addition to these, the tester can specify the seed
for the random number generator.

Another important selection to be made in this view is the data and localization
tables to be used in the test runs. For this purpose, the tester is presented with a list of
predefined files in the server.

Finally, the tester can choose to start the test run in the next view. There is also
a selection on how detailed a log is displayed during the test run. In any case, the
tester can always choose to view all the logged information. The log is automatically
saved so that the test run can be repeated for debugging purposes, for instance. When
the test execution specialist presses the “Start” button, the server starts waiting for a



Fig. 5. Test setup with two SUTs.

connection from a client where the SUTs have been connected using Bluetooth or a
USB connection. An example test setup with two targets is shown in Figure 5. On the
right hand side the test log in the web GUI is shown. The client machine on the left
hand side has two targets connected using a Bluetooth connection.

After the test session is finished, the web interface turns either green or red, based
on success or failure. In the latter case, the tester may want to download the log for
reporting or debugging. In the former case, the tester can report that the requirement in
question has now been tested. The interested reader can view a video of the test session
described in the above example at http://www.cs.tut.fi/~teams.

6 Discussion

In this paper we have described a model-based GUI testing service for Symbian S60
smartphone applications. The approach is based on a test server that is currently in the
prototype stage. We are implementing the tools we have described and are releasing
new versions under the MIT Open Source Licence. A download request can be made
through the URL mentioned above.

In our solution, the server encapsulates the domain-specific test models and the
associated test generation heuristics. The testers, or test execution specialists, order



tests from the server, and the test adapter clients connect to the phone targets under
test. The main benefit of this approach compared to more generic approaches is that it
should be easier to deploy in industrial environments; in practice, the tasks of the tester
are minimized to specifying the coverage requirement as well as some parameters for
heuristics, etc. We are developing the web interface to be as usable as possible and plan
to conduct usability surveys in the future.

How then could the service model be used? The organization of testing services
affects what kind of testing process could be used. This demands a flexible approach
for ease of coordination [24]. In industrial practice, it would be important to get reliable
service based on the current testing needs. This is in line with the current trends of
the software industry [25]. At best, there would be several providers for the service to
fulfill the needs of different end-users. Beside technical competence, communication
skills are emphasized in order to provide transparency to the details of the solution.

Case studies on using the service concept are on the way. We have already used
the web GUI internally for several months. In these experiments, the SUT has been the
S60 Messaging application, including features such as short message service (SMS)
and multimedia messages (MMS). The former supports sending only textual messages,
while the latter supports attaching photos, video and audio clips. So far we have per-
formed testing with configurations of one to two phones. Based on the positive results
of this internal use, we are working towards transferring this technology to our indus-
trial partners. One of the partners has already successfully tried out our test server in
actual test runs without the web GUI. We anticipate that the web GUI will help us in
conducting wider studies in the future.

Acknowledgements

This paper reports the ongoing results of research funded by the Finnish Funding Agency
for Technology and Innovation (TEKES), Nokia, Conformiq Software, F-Secure, and
Plenware, as well as the Academy of Finland (grant number 121012). For details, see
http://practise.cs.tut.fi/project.php?project=tema.

References

1. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan Kauf-
mann (2007)

2. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: Test-
ing concurrent object-oriented systems with Spec Explorer. In: Proceedings of Formal Meth-
ods 2005. Number 3582 in Lecture Notes in Computer Science. Springer (2005) 542–547

3. Robinson, H.: Obstacles and opportunities for model-based testing in an industrial software
environment. In: Proceedings of the 1st European Conference on Model-Driven Software
Engineering, Nuremberg, Germany (2003) 118–127

4. Hartman, A.: AGEDIS project final report. Available at http://www.agedis.de/
documents/FinalPublicReport%28D1.6%29.PDF (2004) Cited March 2008.

5. Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T., Satama, M.: Towards deploying
model-based testing with a domain-specific modeling approach. In: Proceedings of TAIC
PART – Testing: Academic & Industrial Conference, Windsor, UK, IEEE Computer Society
(2006) 81–89



6. Symbian. (http://www.symbian.com/. Cited March 2008.)
7. S60. (http://www.s60.com. Cited March 2008.)
8. OMG: UML testing profile, v 1.0. (http://www.omg.org/technology/documents/

formal/test_profile.htm. Cited March 2008.)
9. Kervinen, A., Maunumaa, M., Pääkkönen, T., Katara, M.: Model-based testing through a

GUI. In: Proceedings of the 5th International Workshop on Formal Approaches to Testing
of Software (FATES 2005). Number 3997 in Lecture Notes in Computer Science, Springer
(2006) 16–31

10. Kervinen, A., Maunumaa, M., Katara, M.: Controlling testing using three-tier model archi-
tecture. In: Proceedings of the Second Workshop on Model Based Testing (MBT 2006).
Volume 164(4) of Electronic Notes in Theoretical Computer Science., Vienna, Austria, El-
sevier (2006) 53–66

11. Katara, M., Kervinen, A.: Making model-based testing more agile: a use case driven ap-
proach. In: Proceedings of the Haifa Verification Conference 2006. Number 4383 in Lecture
Notes in Computer Science. Springer (2007) 219–234

12. Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T., Jääskeläinen, A.: Can I have
some model-based GUI tests please? Providing a model-based testing service through a web
interface. In: Proceedings of the second annual Conference of the Association for Software
Testing (CAST 2007), Bellevue, WA, USA (2007)

13. Jääskeläinen, A.: A domain-specific tool for creation and management of test models. Mas-
ter’s thesis, Tampere University of Technology (2008)

14. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Addi-
son Wesley (2004)

15. Rook, P.: Controlling software projects. Softw. Eng. J. 1 (1986) 7–16
16. Buwalda, H.: Action figures. STQE Magazine, March/April 2003 (2003) 42–47
17. Fewster, M., Graham, D.: Software Test Automation: Effective use of test execution tools.

Addison–Wesley (1999)
18. Valmari, A.: The state explosion problem. In: Lectures on Petri Nets I: Basic Models,

London, UK, Springer-Verlag (1996) 429–528
19. Python: Python Programming Language homepage. (http://python.org/. Cited March

2008.)
20. Karsisto, K.: A new parallel composition operator for verification tools. Doctoral disserta-

tion, Tampere University of Technology (number 420 in publications) (2003)
21. Satama, M.: Event capturing tool for model-based GUI test automation. Master’s the-

sis, Tampere University of Technology (2006) Available at http://practise.cs.tut.fi/
project.php?project=tema&page=publications. Cited March 2008.

22. HP: Mercury Functional Testing homepage. (http://www.mercury.com/us/products/
quality-center/functional-testing/. Cited March 2008.)

23. Zakas, N.C., McPeak, J., Fawcett, J.: Professional Ajax. 2nd edn. Wiley (2007)
24. Taipale, O., Smolander, K.: Improving software testing by observing practice. In: ISESE

’06: Proceedings of the 2006 ACM/IEEE international symposium on empirical software
engineering, New York, NY, USA, ACM Press (2006) 262–271

25. Microsoft: Microsoft unveils vision and road map to simplify SOA, bridge software plus
services, and take composite applications mainstream. (2007-11-28) Available at http://
www.microsoft.com/presspass/press/2007/oct07/10-30OsloPR.mspx. Cited March
2008.


