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Abstract: A method is presented for deriving test suites with the guaranteed 

fault coverage for deterministic possibly partial Timed Finite State Machines 

(TFSMs). TFSMs have integer boundaries for time guards and the time reset 

operation at every transition; for TFSM implementations the upper bound on 

the number of states is known as well as the largest finite boundary and the 

smallest duration of time guards. We consider two fault models and present 

corresponding techniques for deriving complete test suites. In the first fault 

model inputs can be applied at integer time instances while in the second fault 

model time instances can be rational. The derivation method for integer time 

instances is extended to the case when the number of states of an 

implementation under test can be larger than the number of states of the given 

specification.  

1. Introduction 

Many conformance test derivation methods are based on a specification given in 

the form of a Finite State Machine (FSM), such as W [3], [15], partial W (Wp) [6], 

HIS [12], [13], [16] and the H [4] test derivation methods. For surveys see [2], [9]. In 

FSM-based testing, one usually assumes that the specification and an Implementation 

Under Test (IUT) can be modeled as FSMs. An IUT is faulty if it has a behavior 

different than the behavior of the given specification. Two types of implementation 

faults are usually considered, namely output faults and transfer faults. Each test 

derivation method mentioned above provides the following fault coverage guarantee 

under the assumption that the upper bound on the number of states of an IUT is 

known: If an FSM IUT with at most m states and a given (reduced) specification FSM 

has n states, m  n, a test suite can be derived by the method and the IUT will only 

pass this test suite if and only if it conforms to the specification, i.e. it does not 

contain any output nor transfer faults. In many cases, one assumes that m = n.  
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Many systems such as telecommunication systems, plant and traffic controllers and 

others are written using models with time constraints, and thus, a number of papers 

consider test derivation for timed automata and Timed Finite State Machines 

(TFSMs). Almost all proposed methods are based on deriving from a given timed 

automaton (or timed FSM) an untimed FSM and then applying FSM-based test 

derivation methods for the obtained FSM. For example, Springintveld et al. [14] 

proposed a rigorous strategy for deriving a complete test suite for a timed automaton. 

The authors show that under the assumption that the specification and an IUT have 

deterministic behavior and the upper bound on the number of time regions of an IUT 

is known a complete test suite can be derived using the well known W-method [3]. 

The main idea behind the approach is to divide time into very small grids such that to 

assure that each input is applied at some time instance of each time region of each 

IUT. The same grids are used for all states and inputs. The method proposed in [14] is 

not practical since it returns test suites with huge length; however, the method has 

theoretic significance as it demonstrates that there exists an opportunity to derive test 

suites with the guaranteed fault coverage for timed FSMs without explicit 

enumeration of all possible implementations. Many papers inherit the idea proposed 

in [14]; for example the work in [5] extends the method to non-deterministic 

behaviors. Recently, Merayo et al. [8], [10] proposed a timed possibly non-

deterministic FSM model. Time constrains limit a time elapsed when an output has to 

be produced after an input has been applied to the FSM. When an output is produced 

the clock variable is reset to zero. The model also takes into account time-outs; if no 

input is applied at a current state for some time-out period, the (timed) FSM moves 

from current state to another state using a time-out function. Another timed FSM 

model is used in [7]. However, [10] and [7] do not consider test derivation, namely, 

the authors in [8], [10] establish a number of conformance relations and the authors in 

[7] propose methods for distinguishing timed non-deterministic FSMs. Test derivation 

for stochastic non-deterministic timed FSMs is considered in [8]. A method has been 
reported in [18] for generating timed test cases from the model of timed transition 

systems. For a more detailed review of the above papers and other relevant methods 

the reader may refer to [5], [8], [14]. We note that many test derivation methods are 

proposed for timed systems based on simulation relations and thus these methods are 

not considered in this paper.  
In this paper, we consider the TFSM model from [7] and show how a complete test 

suite can be derived under various test assumptions. We use the same idea as in [14] 

about the known number of time regions; however, our TFSMs can be partial and 

thus, time instances when inputs are applied to IUT depend also on the current state of 

the specification. In other words, different grids are used for different states and 

inputs. In particular, we consider deterministic possibly partial timed FSMs (TFSMs) 

where time constraints are used to limit time elapsed at states and we also use one 

clock variable that is reset at every transition. We consider two fault models and 

propose corresponding test derivation methods with the guaranteed fault coverage 

(i.e. methods that derive tests that detect every faulty IUT w.r.t the assumed fault 

model) More precisely, in the first model, we consider TFSMs with integer 

boundaries and implementations with the known upper bound on the number of states, 

known largest finite boundary, and given smallest duration of time guards. In this case 

timed inputs are applied to an IUT at discrete (integer) time instances. In the second 
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fault model, input time instances can be rational (i.e. continuous).  For each 

considered fault model we propose a complete test derivation technique for the case 

when the number m of states of an IUT equals the number n of states of the 

specification TFSM. The technique with integer time instances is adapted to the case 

when m > n. Our methods are based on the HIS method [12], [13], [16] which is an 

adaptation of the W method for partial, possibly non-reduced FSMs. In particular, we 

extend the HIS method by defining appropriate fault models and test derivation 

algorithms for TFSMs. 

 This paper is organized as follows. Section 2 includes relevant definitions and 

notations and Section 3 includes test derivation methods for the cases when m = n and 

m > n for systems with discrete time inputs and a test derivation method for case m = 

n for systems with continuous time inputs. Section 4 concludes the paper. 

2 Preliminaries 

In this section, we introduce the notion of a timed Finite State Machine (TFSM) [7] 

and some other notions and notations used in the paper. 

Definition 1. An FSM S is a 5-tuple (S, I, O, S, s0), where S, I, and O are finite sets 

of states, inputs and outputs, respectively, s0 is the initial state and S  S  I  O  S 

is a transition relation.  

A timed possibly non-deterministic and partial FSM (TFSM) is an FSM annotated 

with a clock, a time reset operation and time guards associated with transitions. The 

clock t is a real number that measures the time delay at a state and the time reset 

operation resets the value of the clock t to zero after the execution of a transition. A 

time guard gi describes the time domain when a transition can be executed and is 

given in the form min, max, where   {(, [},  {), ]} and min and max are non-

negative integers such that min  max. When min = max we consider the interval 

[min, min] = {min}. An output delay describes the time domain when an output has to 

be produced after an input is applied and is also given in the form min, max over 

integer bounds min and max where min  max. Here we assume that the time reset 

operation is specified at every transition of a given TFSM.  

Definition 2.  A timed FSM (TFSM) S often called simply a machine throughout 

the paper, is a 5-tuple (S, I, O, S, s0); the transition relation S  S  I  O  S    

 where  is the set of time guards and  is the set of output delay intervals over [0, 

).  

The behavior of a TFSM S can be described as follows. If (s, i, o, s, gi = min, 

max, go = min, max)  S  I  O  S    , we say that TFSM S when being at 

state s and accepting input i at time t satisfying the time guard t  min, max, 

responds (after the input i has been applied) with output o within the time delay 

specified in go and moves to the state s. The clock is reset to zero and starts 

advancing at s.  

A zero output delay, i.e. go = [0, 0], indicates that the output is produced instantly at 

the time when the input is applied. For simplicity, for a transition with go = [0, 0] and 

input guard gi over [0, ), we omit go and gi from the description of the transition. 
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Thus, a transition (s, i, o, s) indicates that being at state s and accepting input i at any 

time, S responds with output o instantly when i is applied. In this paper, we check 

only functional equivalence [10] between TFSMs and thus, we do not consider output 

delays. In other words, in this paper, the transition relation is a 5-tuple, S  S  I  O 

 S  . 

Given a TFSM S = (S, I, O, S, s0), for every  pair (s, i)  S  I, we use (s, i) to 

denote the collection of the  guards gi over all transitions (s, i, o, s, gi)  S. If there is 

no transition (s, i, o, s, gi)  S then, by definition, (s, i) is the empty set. The notion 

of (s, i) is very close to the notion of time regions [1]; however, these regions are 

different for different states and inputs. The latter allows to check transitions with the 

same input at different states at different time instances. 

Given a transition (s, i, o1, s, min, max)  S, we refer to max – min as to the 

duration of the time guard of the transition. Moreover, the largest finite boundary, 

denoted S or , over all guards of all transitions is called the largest boundary of the 

TFSM.  

The machine S is (time) deterministic if for each two transitions (s, i, o, s, min1, 

max1), (s, i, o, s, min2, max2)  S, it holds that min1, max1  min2, max2 = ; 

otherwise, the machine S is (time) non-deterministic.  

The TFSM S is input enabled if the underlying FSM is complete, i.e., if for each 

pair (s, i)  S  I, S has a transition (s, i, o, s, min, max). 

The TFSM S is complete if the underlying FSM is complete and for each pair (s, i) 

 S  I of TFSM S, the union of time guards over all transitions (s, i, o, s, min, 

max)  S equals to [0, ); otherwise, the machine is called partial. Given a 

complete TFSM, the behavior of the TFSM is defined at each state for each input that 

can be applied at any time instance in [0, ). In this paper, we consider only 

deterministic but possibly partial TFSMs. 

Definition 3.  Given a TFSM S = (S, I, O, S, s0), a pair (i, t), i  I and t is a non-

negative rational, is a timed input that states that an input i is applied at time t.  

Definition 4.  Given a TFSM S, a sequence over the input (output) alphabet is 

called an input (output) sequence. A sequence (i1, t1) … (il, tl) of timed inputs is a 

timed input sequence. A timed input sequence  = (i1, t1) … (il, tl) is defined for 

TFSM S at state s if the TFSM has a sequence of transitions (sj, ij, oj, sj+1, gj) such that 

s1 = s and for each j = 1, …, l, it holds that tj  gj. The set of all defined timed 

sequences at state s is denoted S(s) while denoting S the set of defined timed input 

sequences at the initial state, for short. The corresponding output sequence o1 … ol is 

denoted as outS(s, ). As usual, we say that the pair (, outS(s, )) takes the machine 

S from state s to state sl+1. A pair “timed_input_sequence_/output_sequence_ outS(s, 

)” is a timed I/O sequence or a timed trace of S at state s. For a deterministic TFSM, 

given state s and a timed input sequence   S(s), s is the state in the TFSM 

reached by the sequence . We also say that  takes the TFSM to state s. Given a 

state s of a deterministic TFSM and a timed input (i, t) defined at s, the (i, t) successor 

of state s is the state reached by applying (i, t) at state s. 

By the above definition, given a defined timed input sequence  = (i1, t1) … (il, tl), 

we assume that the sequence  is applied to the FSM in the following way. The input 

i1 is applied at the time instance t1; for each j, 1 < j  l, the input ij is applied at the 
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time instance tj while time starts advancing from 0 after the output has been produced 

to the input ij-1.   

Consider TFSM S shown in Fig. 1 shown below with three states named 1 (initial 

state), 2, and 3, and defined over the input alphabet {i1, i2} and over the output 

alphabet {o1, o2, o3}. TFSM S is partial and deterministic. The collection of guards 

(1, i1) equals {[0,5), [5, 10]}, (1, i2) = { [0, )}, (2, i1) = {[0, 5), [5, )}, (2, i2) = { 

[0, 5], (5, )}, (3, i1) = {[0, )}, and (3, i2) = {[6, )}. The largest finite boundary B 

= 10. 

 

1 2

3

i1 ( t < 5 ) / o1

i2 (  t  5 ) / o1

i1 ( t < 5 ) / o2

i1 ( 5  t  10 ) / o2

i2  / o1

i1  / o2

i 1 
(  
t 

 5
 ) 

/ o
2

i2 ( t > 5 ) / o2

i2 ( t   6 )/ o1

   

Fig. 1. TFSM S 

The set of all timed traces of S at state s is denoted TTrS(s), also denoted TTrS for 

short if s is the initial state of S. As usual, the TFSM S is initially connected if for 

each state s, there exists a timed trace that can take the machine from the initial state 

to state s. 

As usual, the behavior of two TFSMs can be compared using their intersection. The 

intersection of two TFSMs S and P is not defined at state sp for a timed input (i, t) 

when S and P at states s and p produce disjoint sets of outputs to this timed input. 

Definition 5.  Given TFSMs S and P, the intersection S  P is the largest 

connected submachine of the TFSM (S  P, I, O, SP, s0p0) where (sp, i, o, sp, 

min1, max1 )  SP if there are transitions (s, i, o, s, min2, max2) S and (p, i, o, 

p, min3, max3  P s.t. min2, max2   min3, max3    and min1, max1 = min2, 

max2   min3, max3. 

Definition 6. State s of TFSM S and p of TFSM P are f-distinguishable [10], 

denoted s 
f
  p, if there exists a timed input sequence   S(s)  P(p) such that 

outS(s, )  outP(p, ); the sequence  is said to f-distinguish states s and p. If states s 

and p are not f-distinguishable then they are f-compatible (functionally compatible), 

denoted s 
f
  p.  In the same way, f-distinguishable states can be introduced for states 

of a single TFSM. If each two different states of deterministic TFSM S are f-

distinguishable then S is a reduced TFSM. TFSMs S and P are f-compatible, denoted 

S 
f
  P, if their initial states are f-compatible; otherwise, the machines are f-
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distinguishable, denoted S 
f
 P.  Timed input sequence  that f-distinguishes the 

initial states of S and P is an f-distinguishing sequence of S and P.  Given a set W of 

defined timed input sequences at states s and p, states s and p are f-compatible with 

respect to the set W, written s 
Wf
 p, if s and p are not f-distinguishable for every 

sequence in the set W. 

Proposition 1.  Given two deterministic TFSMs S and P, the TFSMs S and P are f-

distinguishable iff there exists a state (s, p) and an input i such that the behavior of the 

intersection S  P is not defined at state (s, p) for a timed input (i, t) while the 

behavior of S at state s and the behavior of P at state p are defined under (i, t). In this 

case, each defined timed input sequence .(i, t) where  takes the intersection S  P 

to state (s, p), f-distinguishes TFSMs S and P.  

Corollary. Given complete TFSMs S and P, if the intersection S  P is completely 

specified then the TFSMs S and P are not f-distinguishable. 

A set of timed input sequences V  S is called a state cover set of TFSM S if for 

each state si of S, there is an input sequence i  V that takes S to state si.  

Since the specification TFSM can be partial, the W-method and many of its 

derivatives cannot be used for deriving test suites with the guaranteed fault coverage. 

The reason is that, similar to untimed FSMs, a characterization set may not exist for a 

partial reduced TFSM. The HIS method can be applied when the specification FSM is 

partial and not reduced. In this paper, we adapt the HIS method for deriving a test 

suite with the guaranteed fault coverage; correspondingly, we define and use a 

separating family [17] of state identifiers, also known as a family of harmonized state 

identifiers [11], [13] for untimed FSMs.  

Definition 7. Given state sj  S of TFSM S, a set Wj  S(sj) of timed input 

sequences is called a state identifier of state sj if for any other state si  S there exists 

  S(si)  Wj that f-distinguishes sj and si, i.e. outS(si, )  outS(sj, ). A separating 

family  or a family of harmonized identifiers is a collection of state identifiers Wj, sj  

S, which satisfy the condition: for any two different states sj and si, there exist   Wj  

and    Wi which have common prefix  such that outS(si, )  outS(sj, ). 

In this paper, we consider a Fault Model (FM) <S, 
f
 , >, where S is the 

specification TFSM that is deterministic and reduced, 
f
  is the f-compatibility 

relation and  is the fault domain, i.e.,  is a finite set of deterministic complete 

TFSMs with the same input alphabet as the specification TFSM S. A test suite (w.r.t. 

the FM) is a finite set of finite defined timed input sequences of the specification. A 

test suite is complete w.r.t. the FM if for each TFSM P   s.t. S 
f
 P the test suite 

has a sequence that f-distinguishes P and S.  

Given the FM <S, 
f
 , > where  is a finite set of TFSMs, a complete test suite can 

be derived by explicit enumeration of TFSMs of the set  using Proposition 1. 

However, the set  can be huge and for this reason, we would like to develop a test 
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derivation method without the explicit enumeration of the machines in . As usual, 

we impose some restrictions on the specification TFSM and on the fault domain.  

3 Deriving Complete Test Suites for Timed FSMs 

The main problem when deriving a test suite with the guaranteed fault coverage for 

the specification TFSM S is that the number of defined timed inputs at each state of S 

can be infinite. For this reason, for deriving a test suite with the guaranteed fault 

coverage it is not enough to limit, i.e. have the upper bound, the number of states of 

an IUT but also it is necessary to limit the number of time regions. Therefore, we 

limit the finite boundary BP of transition guards in an IUT. If we assume that each 

input can be applied only at integer time instances then it is enough to check at each 

state transitions under all the timed inputs (i, t), i  I, t  {0, …, BP + 1}. However, 

the number of such inputs can also be huge and as usual, we further minimize the 

number of such timed inputs when the low bound on time interval of guards of an 

IUT is known.  

3.1 Separating Family 

A separating family for a given reduced TFSM S can be derived in the same way 

as it is done for untimed FSMs: for every state si a of S, consider every other state sj, i 

 j, then derive and add into Wi a timed input sequence  defined at si and sj, i.e.   

S(si) and   S(sj), that f-distinguishes the states si and sj. The family of all sets Wi 

over all states si of S is a separating family of TFSM S. A timed input sequence that f-

distinguishes two states can be derived using the intersection of the TFSM S with the 

initial states si and sj, denoted S/si and S/sj (Proposition 1).  

As an example, consider the TFSM S shown in Fig. 1 and states 1 and 2 of S. The 

initial state of the intersection of S/1 and S/2 is undefined under the timed input (i1, 

2), thus, the sequence (i1, 2) f-distinguishes states 1 and 2 of S. Thus, we add (i1, 2) 

into W1 and W2. In this example, the sequence (i1, 2) also f-distinguishes states 1 and 

3. Thus, we add (i1, 2) into W1 and W3. For states 2 and 3, we derive the intersection 

of S/1 and S/3 and find that the sequence (i1, 3).(i1, 2) of timed inputs f-distinguishes 

the states. Thus, we add (i1, 3).(i1, 2) into W2 and W3 and obtain the set F = {W1, W2, 

W3} = {{(i1, 2), }, {(i1, 2), (i1, 3).(i1, 2)}, {(i1, 2), (i1, 3).(i1, 2) }} that is a separating 

family of TFSM S. 

Here we note that two TFSMs can be f-compatible or f-distinguishable depending if 

a timed input can be applied only at integer time instances. For example, if an input 

can be applied only at integer time instances, then TFSMs cannot be distinguished 

with an input that is in the intersection (a, a + 2) and (a - 1, a + 1). In other words, in 

this case, two deterministic TFSMs S and P are f-distinguishable iff there exist a state 

(s, p) and an input i such that the behavior of S at state s and the behavior of P at state 

p are defined under (i, t) and the behavior of the intersection S  P is not defined at 

state (s, p) for the timed input (i, t) where t is an integer. In fact in this case, each 
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defined timed input sequence .(i, t) where t is an integer,  takes the intersection S 

 P to state (s, p) and inputs of the sequence  are applied at integer time instances, f-

distinguishes TFSMs S and P. We further establish a statement (Proposition 2) that 

takes into account such distinguishability. 

3.2 On Test Derivation for Integer Time Instances  

Consider a fault model where the guard boundaries of the specification TFSM 

specification S and of each implementation TFSM P are integers, an implementation 

TFSM P has at most n states, where n is the number of states of the specification 

TFSM S, the upper bound  on the largest finite boundary of an implementation 

TFSM is known and only timed inputs (i, t) where t is a nonnegative integer can be 

applied to an IUT.  

In this case, each TFSM can be represented as an untimed FSM that for each state s 

has as defined inputs the finite set of timed inputs (i, t), i  S(s), t  {0, …, B + 1} 

intersected with the union of all guards in (s, i). Then the classical HIS method and its 

derivatives  can be applied to the obtained FSM for deriving a complete test suite 

w.r.t. to the assumed fault model. However, this test suite will be huge. Similar to [14] 

it can be shown that it is not enough to apply inputs at finite boundaries of time 

guards of the specification. Thus, more rigorous analysis is needed to assess the 

limitations on time guards of an IUT and propose related test suite derivation with the 

guaranteed fault coverage. These issues will be addressed in the following section. 

When interested in TFSMs with up to m states, we use m(, w) to denote the finite 

set of deterministic complete TFSMs with at most m states, which have the same 

input alphabet as the specification TFSM S, the upper bound  on the largest finite 

boundary and the minimal duration w of a time guard of an implementation TFSM. 

When we want to emphasize that inputs can be applied only at integer time instances 

then we use 
in

m(, w) to denote such a set of IUTs. 

3.3 Test Derivation for TFSMs with Integer Time Instances when m = n  

In this subsection, we define a fault model, denoted FM_1, and then present an 

algorithm that returns a complete test suite w.r.t. this model. Consider the fault model 

FM_1 = <S, 
f
 , 

in
n(, w)>, where: 

1) The minimal (integer) duration w of a finite time guard of an IUT is known. 

2) An implementation TFSM P  
in

n(, w) is a deterministic complete FSM 

that has at most n states, where n is the number of states of the specification 

TFSM S; 

3) The upper (integer) bound  > 0 on the largest finite boundary of an 

implementation TFSM is known. 

4) Only timed inputs (i, t) where t is a nonnegative integer can be applied to an 

IUT. 
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Proposition 2. If only timed inputs (i, t) where t is a nonnegative integer can be 

applied to TFSM S then guards of the TFSM S can be described in the form [a, b] or 

in the form [a, ) where a and b are integers. 

According to Proposition 2, for the example in Fig. 1, we can rewrite (1, i1) = 

{[0,5), [5, 10]} as {[0,4], [5, 10]}, (2, i1) = { [0, 5), [5, )} as { [0, 4], [5, )}, and 

(2, i2) = { [0, 5], (5, )} as { [0, 5], [6, )}. We also note that according to 

Proposition 2, if the specification TFSM has a guard (a, a + 1) then after the 

transformation this guard is deleted from the transformed TFSM. If the specification 

TFSM has a guard (a, a + k), k > 1, then this guard is transformed to [a + 1, a + k – 1].    

 

Algorithm 1. Deriving a complete test suite w.r.t. the fault model 

<S,
f
 ,

in
n(,w)>  

Input:   Deterministic, possibly partial, reduced specification TFSM S = (S, I, O, S, 

s0) in the form of Proposition 2, |S| = n, a state cover set V and a separating 

family F of S, upper bound  on the largest finite boundary of an IUT and 

the smallest duration w of a time guard in a TFSM implementation of S. 

Output: A Complete test suite TS with respect to FM_1 = <S, 
f
 , 

in
n(, w)> 

Step 1.  

Append every sequence   V with a corresponding state identifier. Denote 

TS1 the obtained set. That is for each   V which takes S to state s, TS1 

has sequences .W, where W  F is a state identifier of state s; 

If w = 0 or w = 1 then assign integer u = 1;  

Else assign integer u = w - 1; 

Step 2.   

For every pair (s, i)  S  I such that there exists a transition under i at 

state s: 

For each subset g =  [a, b] (s, i) do: 

Derive a set Tg = g  {a, a + 1u, …, a + (k-1)u, b}, a + (k-1)u < b    

and a + ku  b;  

Endfor  

For each subset g =  [a, )  (s, i) do: 

                                    Derive a set Tg = g  {a, a + 1u, …, a + (k-1)u, B}, a + (k-1)u < B 

and a + ku  B;  

                  Endfor  

Denote T(s, i) the union of obtained sets of time instances Tg; 

Endfor 

Step 3. For every sequence   V that takes the specification FSM to state s and for 

each input i such that there exists a transition under i at state s:  

  Append  with timed input (i, t).Wk for every t  T(s, i) where Wk is 

a state identifier in F of the (i, t)-successor sk of state s. Denote TS2 

the obtained set.  

        Endfor 

Step 4. Return TS: = TS1  TS2 
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 

Example: As an application example for Algorithm 1, consider TFSM S shown in 

Fig. 1. The set V = {, (i1, 2), (i1, 2).(i1, 6)} is state cover set of S. We recall that the 

set of state identifiers of states 1, 2, and 3 are W1 = {(i1, 2)}, W2 = {(i1, 2), (i1, 3).(i1, 

2)}, and W3 = {(i1, 2), (i1, 3).(i1, 2)}, respectively. The set F = {W1, W2, W3} is 

separating family of S. Assume that an IUT P of S has up to 3 states (as n = 3), length 

of each time interval w of S and P is at least 4, highest bound  of IUT equals and u = 

w - 1 = 3.  

We apply Step-1 and obtain the sequences TS1 =   .W1 + (i1, 2).W2 + (i1, 6).W3 =  

.(i1, 2)  + (i1, 2).(i1, 2) + (i1, 2).(i1, 3)(i1, 2) + (i1, 6).(i1, 2) + (i1, 6).(i1, 3)(i1, 2). Then 

in Step-2, we consider the collection of guards of S,  (1, i1) = {[0, 4], [5, 10]}, (1, i2) 

= { [0, )}, (2, i1) = { [0, 4], [5, )}, (2, i2) = { [0, 5], [6, )}, (3, i1) = {[0, )}, and 

(3, i2) = {[6, )}. For the pair (1, i1), we have (1, i1)  =  {[0, 4], [5, 10]} and 

correspondingly the set of time instances T[0,4] = {0, 3, 4} and T[5,10] = {5, 8, 10}. 

Thus, T(1, i1) = {0, 3, 4, 5, 8, 10}. For the pair (1, i2), the collection (1, i2) = { [0, )} 

and consequently T(1, i2) = {0, 3, 6, 9, 12}. For the pair (2, i1), (2, i1) = {[0, 4], [5, )}, 

and consequently, T(2, i1) = {0, 3, 4, 5, 8, 11}. For (2,  i2), (2, i2)   {[0, 5], [6, )} and 

T(2, i2)  = {0, 3, 5, 6, 9, 12} and for (3, i1), (3, i1) = {[0, )} and T(3, i1) = {0, 3, 6, 9, 

12}, and finally for the pair (3,  i1), (3, i2) = {[6, )} and  T(3, i2) = {6, 9, 12}.  

Then at Step-3, consider  =   V and T(s, i1) = T(1, i1)  = {0, 3, 4, 5, 8, 10}. For 

instance t = 0  T(1, i1), the sequence .(0, i1) reaches state 2, thus form and add into 

TS2 the sequences .(i1, 0).W2. Similarly consider every other instance t  T(1, i1) and 

add into TS2 the sequences  .(i1, 3).W2; .(i1, 4).W2; .(i1, 5).W1; .(i1, 8).W1; .(i1, 

10).W1.  Then, consider T(1, i2)  = {0, 3, 6, 9, 12} and add into TS2 the sequences .(i2, 

0).W1; .(i2, 3).W1; .(i2, 3).W1; .(i2, 9).W1; .(i2, 12).W1. For  = (i1, 2)  V, T(s, i1) = 

T(2, i1)  = {0, 3, 4, 5, 8, 11}. Consider every t  T(2, i1) form and add into TS2 the 

sequences (i1, 2).(i1, 0).W1;  (i1, 2).(i1, 3).W1; (i1, 2).(i1, 4).W1; (i1, 2).(i1, 5).W3; (i1, 

2).(i1, 8).W3; (i1, 2).(i1, 11).W3. Then consider T(s, i2) = T(2, i2)  = {0, 3,  5, 6, 9 12} and 

add into TS2 the sequences (i1, 2).(i2, 0).W1; (i1, 2).(i2, 3).W1; (i1, 2).(i2, 5).W1; (i1, 

2).(i2, 6).W3; (i1, 2).(i2, 9).W3; (i1, 2).(i2, 12).W3. Finally, for  = (i1, 2) (i1, 6)  V, 

form and add into TS2 corresponding sequences and return TS1  TS2 . 

Proposition 3. Given the fault model <S, 
f
 , 

in
n(, w) >, Algorithm 1 returns a 

test suite TS that is complete with respect to this fault model.  

Proof. Let P = (P, I, O, P, p0)  
in

n(, w) be an implementation TFSM that has 

the expected output response to each input sequence of the set TS1. In this case, TFSM 

has exactly n states and moreover, we can establish the one-to-one correspondence h 

between states of S and P: h(s) = p iff sj 
jWf

  pj.   

Suppose now that output responses of S and P at states s and h(s) to some defined 

timed input (i, t)  S(s) are different or the (i, t)-successor of state h(s) does not 

equal h(s) where s is the (i, t)-successor of state h(s) then the implementation TFSM 

does not have the expected output response to each input sequence of the set TS2. 
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Let w = 0 or w = 1. In this case, for every input and state, each boundary of S and P 

is in the form [a, a], [a, a+1], [B, B], or [B, B+1], respectively, each timed input (i, t), 

t is an integer and t =  a, {a, a+1}, B, {B, B+1}, such that the specification behavior is 

defined at state s for the timed input (i, t) is applied to an IUT at state h(s). Thus, if the 

IUT has the expected behavior for all sequences of the set TS then the IUT is f-

compatible with the specification.  

Assume now that w > 1, i.e., u = w – 1. It is sufficient to show that for each non-

empty intersection that contains at least one integer t of two guards [a, b]   (s, i) and 

[a1, b1]  (h(s), i) it holds that the intersection of [a1, b1] and the set T(s, i) is not empty. 

Consider guards [a, b]  (s, i), b – a  w, and [a1, b1]  (h(s), i), b1 – a1  w, s.t. the 

intersection g of [a1, b1] and the T(s, i) has at least one integer. A number of cases are 

possible. 

1)  [a1, b1]  [a, b]  then since b1 – a1  w and u = w – 1, there exists l s.t. a + lu  

 [a1, b1]. In this case a + lu  T(s, i) and thus, a  [a1, b1]  T(s, i).  

2)  [a1, b1]  [a, b] and a  [a1, b1]. In this case, a  T(s, i) and thus, a  [a1, b1] 

 T(s, i). 

3)  [a1, b1  [a, b] and a  [a1, b1], i.e., b  [a1, b1] and thus, b  T(s, i). 

In the same way, we can prove that for each non-empty intersection of the guards 

[a, b]  (s, i) and [a1, )  (h(s), i),  [a, )  (s, i) and [a1, b1]  (h(s), i), [a, )  (s, 

i) and [a1, )  (h(s), i) it holds that the intersection of [a1, b1] (or correspondingly of 

[a1, )) and T(s, i) is not empty.     

3.4 Test Derivation for TFSMs with Integer Instances when m > n  

As other FSM-based test derivation methods with the guaranteed fault coverage, 

the method presented in this paper can be adapted for the case when the number m of 

states of an IUT can be larger than the number n of states of the specification FSM, 

i.e. m > n. In this case, the fault domain of the fault model contains all TFSM 

implementations up to m states, i.e. m(, w). In this paper we show how Algorithm 1 

can be adapted for deriving a complete test suite for the fault model <S, 
f
 , 

in
m(, 

w)>. In this case we derive not only a state cover V but the set V
m-n+1

 in order to cover 

each timed transition of an IUT and then as usual append sequences of the set V
m-n+1

 

with corresponding state identifiers. 

 

Algorithm 2. Deriving a complete test suite w.r.t. the fault model 

 <S, 
f
 , 

in
m(,w)>  

Input:   Deterministic, possibly partial, reduced specification TFSM S = (S, I, O, S, 

s0), |S| = n, a state cover set V and a separating family F of S, upper bound  

on the largest finite boundary of an IUT, integer m  n, and the smallest 

duration w of a time guard in a TFSM implementation of S. 

Output: A Complete test suite TS with respect to FM_2 = <S, 
f
 , 

in
m(, w)> 
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Step 1. TS:  = ;. 

        If w = 0 or w = 1 then assign u = 1;  

        Else assign u = w - 1; 

Step 2.   

For every pair (s, i)  S  I such that there exists a transition under i at 

state s: 

For each subset g =  [a, b] (s, i) do: 

                               Derive a set Tg = g  {a, a + 1u, …, a + (k-1)u, b}, a + (k-1)u < b   

                                 and a + ku  b;  

Endfor  

For each subset g = [a, )  (s, i) do: 

                             Derive a set Tg = g  {a, a + 1u, …, a + (k-1)u, B}, a + (k-1)u < B   

                              and a + ku  B;  

                  Endfor  

Endfor 

Step 3. Assign l: = 1 and V
l
: = V 

               While l  m –n + 1  

  For every sequence   V
l
 that takes the specification FSM to state  

   s and each timed input (i, t) that is defined at state s: 

Include into V
l+1

 a sequence (i, t) for every t  T(s, i);  

  Endfor 

               Increment l by 1; 

Endwhile  

Step 4.  

For every   V
1
  V

2
 … V

m-n+1
 

Append  with a corresponding state identifier. That is for  where 

 takes S to state s, add to TS the sequences .W, where W  F 

is a state identifier of state s; 

Endfor 

Return TS. 

 

Similar to the statement of Proposition 3 we can prove the following statement. 

Proposition 4. Given the fault model <S, 
f
 , 

in
m(, w)> the above described 

algorithm returns a test suite TS that is complete with respect to <S, 
f
 , 

in
m(, w)>.  

3.5 Test derivation for TFSM with Rational Time Instances 

Here we use the same fault model FM_1 defined above, in addition, we assume 

that time instances t of timed inputs (i , t) can be applied to an IUT at rational rather 

than only at integer time instances. In this case, we cannot transform TFSMs 

according to Proposition 2 and as the following example shows, it is not enough to 

apply inputs at integer time instances. Suppose that the specification TFSM has a 

guard (a, b), b > a + 1 for input i while the implementation TFSM has a guard (a - 1, 
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a + 1) for this input. The intersection of these guards is (a - 1, a + 1) and in order to 

check the behavior of the implementation TFSM at a defined time instance we should 

apply a timed input (i, t), t  (a, a + 1), i.e. t is a rational. Correspondingly such 

rational time instances have to be considered in Step 2 of Algorithm 1. 

 

Algorithm 3. Deriving a complete test suite w.r.t. FM_1 when time instances are 

rational 

Input:   Deterministic complete reduced specification TFSM S = (S, I, O, S, s0), a 

state cover set V and a separating family F of S, upper (integer) bound  on 

the largest boundary of an implementation under test, and the minimal 

(integer) duration of w of a time guard in a TFSM implementation of S. 

Output: A Complete test suite TS with respect to <S, 
f
 , n(, w)> 

Step 1. Append every sequence   V with a corresponding state identifier. Denote 

TS1 the obtained set. That is for each   V, let s be the state reached by 

, TS1 has sequences .W, W  F; 

             If w = 0 or w = 1 assign u : = 1; 

             Else u : = w-1; 

             Select Δ, 0 < Δ < 1; 

Step 2.   

For every pair (s, i)  S  I such that there exists a transition under i at 

state s: 

For each subset g =  a, b   (s, i) do: 

 Derive a set Tg = g  {a, a + Δ, a + 1u, a + 1u + Δ, …, a + (k-1)u, a 

+ (k-1)u + Δ, b, b - Δ}, a + (k-1)u < b and a + ku  b;  

Endfor  

For each subset g =  a, )  (s, i) do: 

                                         Derive a set Tg = g  { a, a + Δ, a + 1u, a + 1u + Δ, …, a + (k-1)u, a   

                                           + (k-1)u + Δ, B, B + Δ}, a + (k-1)u < B and a + ku  B;  

         Endfor    

        Denote T(s, i) the union of obtained sets of time instances Tg; 

    Endfor 

 

Step 3. For every sequence   V that takes the specification FSM to state s and for 

each input i such that there exists a transition under i at state s:  

  Append  with timed input (i, t).Wk for every t  T(s, i) where Wk is 

a state identifier in F of the (i, t)-successor sk of state s. Denote TS2 

the obtained set.  

             Endfor 

Step 4. Return TS: = TS1  TS2 

 

Proposition 4. Given the fault model <S, 
f
 , n(, w) >, Algorithm 3 returns a test 

suite TS that is complete with respect to this fault model.  
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Proof. Let FM = <S, 
f
 , n(, w)> and P = (P, I, O, P, p0)  n(, w) be an 

implementation TFSM that has the expected output response to each input sequence 

of the set TS1. In this case, TFSM has exactly n states and moreover, we can establish 

the one-to-one correspondence h between states of S and P: h(s) = p iff sj 
jWf

  pj.   

Suppose now that output responses of S and P at states s and h(s) to some defined 

timed input (i, t)  S(s) are different or the (i, t)-successor of state h(s) is not equal 

h(s) where s is the (i, t)-successor of state h(s) then the implementation TFSM does 

not have the expected output response to each input sequence of the set TS2. Similar 

to the proof of Proposition 3, it is sufficient to show that for each non-empty 

intersection that contains at least one integer t, of two guards a, b  (s, i) and a1, 

b1  (h(s), i) it holds that the intersection of  a1, b1 and T(s, i) is not empty. 

Let w = 0. Consider a guard  a1, b1 of an IUT s.t. g  a1, b1   . If the guard 

a1, b1 has at least one integer then {0, Δ, 1, 1 + Δ , …, B, B + Δ}   a1, b1   . 

Here we note that since a1, b1 can be [a1] for each a1  {0, 1, …, B}, we have to 

include all these integers into the set intersected with a1, b1. If a1, b1 = (a1, b1) and 

b1 - a1 = 1 then there are no integers inside (a1, b1). In this case, we have to apply an 

input at the time instance (a1 + Δ), a1  {0, 1, …, B}. 

Let w = 1. Consider a guard a1, b1 of an IUT s.t. g  a1, b1   . If the guard 

a1, b1 has at least one integer t  B then since b1 - a1  1, it holds that {0, Δ , 1, 1 + Δ 

, …, B, B + Δ}   a1, b1   . 

Let w > 1 and g  (s, i), i.e., u = w – 1. Consider a guard  a1, b1 of an IUT s.t. g  

a1, b1   .  

Consider guards a, b  (s, i), b – a  w, and a1, b1  (h(s), i), b1 – a1  w. 

Similar to the proof of Statement 3, a number of cases are possible. 

1) a1, b1  a, b  then since b1 – a1  w and u = w – 1 > 0, there exists t  [a1, b1] 

s.t. t = a + lu. If a1= a + lu and a1, b1 = (a1, b1 then a1 + lu +   T(s, i).     

2) a1, b1  a, b and a  a1, b1. If a, b = [a, b then a  T(s, i) and thus, a  

a1, b1  T(s, i). If a, b = (a, b then (a + )  T(s, i).  

3) a1,b1  [a, b and a  a1, b1, then b  a1, b1. If a, b = a, b] then b  T(s, i) 

and thus, b  a1, b1  T(s, i). If a, b = a, b) then (b - )  T(s, i). 

In the same way, we prove that for each non-empty intersection of the guards a, b 

 (s, i) and a1, )  (h(s), i),  a, )  (s, i) and a1, b1  (h(s), i), a, )  (s, i) and 

a1, )  (h(s), i) it holds that the intersection of a1, b1 (or correspondingly of a1, 

)) and T(s, i) is not empty.  

    

4. Conclusion and Future Work 

Two fault models and corresponding test derivation methods are presented for 

deriving tests with the guaranteed fault coverage from a deterministic possibly partial 

specification Timed Finite State Machine (TFSM). In the first model (timed) inputs 



TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT 

COVERAGE      15 

can be applied at integer (or discrete) time instances and in the second at rational (or 

continuous) time instances. The test derivation method with integer time instances is 

extended to the case when an implementation under test can have more states that the 

given specification. 

The considered TFSM model assumes a reset operation is employed at every 

transition. We think that the methods presented in the paper can be adapted to 

consider timed FSMs where there is no reset at every transition. Another possible 

extension of the proposed work is to adapt test derivation with the guaranteed fault 

coverage for non-deterministic TFSMs.  
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