
TESTING TIMED FINITE STATE MACHINES

WITH GUARANTEED FAULT COVERAGE

Khaled El-Fakih
1
, Nina Yevtushenko

2*, Hacene Fouchal
3

1American University of Sharjah, PO Box 26666, UAE

kelfakih@aus.edu
2Tomsk State University, 36 Lenin Str.. Tomsk, 634050, Russia

ninayevtushenko@yahoo.com
3Univ. Antilles Guyane, Guadeloupe, France

Hacene.Fouchal@univ-ag.fr

Abstract: A method is presented for deriving test suites with the guaranteed

fault coverage for deterministic possibly partial Timed Finite State Machines

(TFSMs). TFSMs have integer boundaries for time guards and the time reset

operation at every transition; for TFSM implementations the upper bound on

the number of states is known as well as the largest finite boundary and the

smallest duration of time guards. We consider two fault models and present

corresponding techniques for deriving complete test suites. In the first fault

model inputs can be applied at integer time instances while in the second fault

model time instances can be rational. The derivation method for integer time

instances is extended to the case when the number of states of an

implementation under test can be larger than the number of states of the given

specification.

1. Introduction

Many conformance test derivation methods are based on a specification given in

the form of a Finite State Machine (FSM), such as W [3], [15], partial W (Wp) [6],

HIS [12], [13], [16] and the H [4] test derivation methods. For surveys see [2], [9]. In

FSM-based testing, one usually assumes that the specification and an Implementation

Under Test (IUT) can be modeled as FSMs. An IUT is faulty if it has a behavior

different than the behavior of the given specification. Two types of implementation

faults are usually considered, namely output faults and transfer faults. Each test

derivation method mentioned above provides the following fault coverage guarantee

under the assumption that the upper bound on the number of states of an IUT is

known: If an FSM IUT with at most m states and a given (reduced) specification FSM

has n states, m  n, a test suite can be derived by the method and the IUT will only

pass this test suite if and only if it conforms to the specification, i.e. it does not

contain any output nor transfer faults. In many cases, one assumes that m = n.

* The second author acknowledges a partial support by the FCP Russian Program, contract

02.514.12.4002

mailto:kelfakih@aus.edu
mailto:ninayevtushenko@yahoo.com
mailto:Hacene.Fouchal@univ-ag.fr

2 Khaled El-Fakih1, Nina Yevtushenko2*, Hacene Fouchal3

Many systems such as telecommunication systems, plant and traffic controllers and

others are written using models with time constraints, and thus, a number of papers

consider test derivation for timed automata and Timed Finite State Machines

(TFSMs). Almost all proposed methods are based on deriving from a given timed

automaton (or timed FSM) an untimed FSM and then applying FSM-based test

derivation methods for the obtained FSM. For example, Springintveld et al. [14]

proposed a rigorous strategy for deriving a complete test suite for a timed automaton.

The authors show that under the assumption that the specification and an IUT have

deterministic behavior and the upper bound on the number of time regions of an IUT

is known a complete test suite can be derived using the well known W-method [3].

The main idea behind the approach is to divide time into very small grids such that to

assure that each input is applied at some time instance of each time region of each

IUT. The same grids are used for all states and inputs. The method proposed in [14] is

not practical since it returns test suites with huge length; however, the method has

theoretic significance as it demonstrates that there exists an opportunity to derive test

suites with the guaranteed fault coverage for timed FSMs without explicit

enumeration of all possible implementations. Many papers inherit the idea proposed

in [14]; for example the work in [5] extends the method to non-deterministic

behaviors. Recently, Merayo et al. [8], [10] proposed a timed possibly non-

deterministic FSM model. Time constrains limit a time elapsed when an output has to

be produced after an input has been applied to the FSM. When an output is produced

the clock variable is reset to zero. The model also takes into account time-outs; if no

input is applied at a current state for some time-out period, the (timed) FSM moves

from current state to another state using a time-out function. Another timed FSM

model is used in [7]. However, [10] and [7] do not consider test derivation, namely,

the authors in [8], [10] establish a number of conformance relations and the authors in

[7] propose methods for distinguishing timed non-deterministic FSMs. Test derivation

for stochastic non-deterministic timed FSMs is considered in [8]. A method has been
reported in [18] for generating timed test cases from the model of timed transition

systems. For a more detailed review of the above papers and other relevant methods

the reader may refer to [5], [8], [14]. We note that many test derivation methods are

proposed for timed systems based on simulation relations and thus these methods are

not considered in this paper.
In this paper, we consider the TFSM model from [7] and show how a complete test

suite can be derived under various test assumptions. We use the same idea as in [14]

about the known number of time regions; however, our TFSMs can be partial and

thus, time instances when inputs are applied to IUT depend also on the current state of

the specification. In other words, different grids are used for different states and

inputs. In particular, we consider deterministic possibly partial timed FSMs (TFSMs)

where time constraints are used to limit time elapsed at states and we also use one

clock variable that is reset at every transition. We consider two fault models and

propose corresponding test derivation methods with the guaranteed fault coverage

(i.e. methods that derive tests that detect every faulty IUT w.r.t the assumed fault

model) More precisely, in the first model, we consider TFSMs with integer

boundaries and implementations with the known upper bound on the number of states,

known largest finite boundary, and given smallest duration of time guards. In this case

timed inputs are applied to an IUT at discrete (integer) time instances. In the second

TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT

COVERAGE 3

fault model, input time instances can be rational (i.e. continuous). For each

considered fault model we propose a complete test derivation technique for the case

when the number m of states of an IUT equals the number n of states of the

specification TFSM. The technique with integer time instances is adapted to the case

when m > n. Our methods are based on the HIS method [12], [13], [16] which is an

adaptation of the W method for partial, possibly non-reduced FSMs. In particular, we

extend the HIS method by defining appropriate fault models and test derivation

algorithms for TFSMs.

 This paper is organized as follows. Section 2 includes relevant definitions and

notations and Section 3 includes test derivation methods for the cases when m = n and

m > n for systems with discrete time inputs and a test derivation method for case m =

n for systems with continuous time inputs. Section 4 concludes the paper.

2 Preliminaries

In this section, we introduce the notion of a timed Finite State Machine (TFSM) [7]

and some other notions and notations used in the paper.

Definition 1. An FSM S is a 5-tuple (S, I, O, S, s0), where S, I, and O are finite sets

of states, inputs and outputs, respectively, s0 is the initial state and S  S  I  O  S

is a transition relation.

A timed possibly non-deterministic and partial FSM (TFSM) is an FSM annotated

with a clock, a time reset operation and time guards associated with transitions. The

clock t is a real number that measures the time delay at a state and the time reset

operation resets the value of the clock t to zero after the execution of a transition. A

time guard gi describes the time domain when a transition can be executed and is

given in the form min, max, where   {(, [},  {),]} and min and max are non-

negative integers such that min  max. When min = max we consider the interval

[min, min] = {min}. An output delay describes the time domain when an output has to

be produced after an input is applied and is also given in the form min, max over

integer bounds min and max where min  max. Here we assume that the time reset

operation is specified at every transition of a given TFSM.

Definition 2. A timed FSM (TFSM) S often called simply a machine throughout

the paper, is a 5-tuple (S, I, O, S, s0); the transition relation S  S  I  O  S   

 where  is the set of time guards and  is the set of output delay intervals over [0,

).

The behavior of a TFSM S can be described as follows. If (s, i, o, s, gi = min,

max, go = min, max)  S  I  O  S    , we say that TFSM S when being at

state s and accepting input i at time t satisfying the time guard t  min, max,

responds (after the input i has been applied) with output o within the time delay

specified in go and moves to the state s. The clock is reset to zero and starts

advancing at s.

A zero output delay, i.e. go = [0, 0], indicates that the output is produced instantly at

the time when the input is applied. For simplicity, for a transition with go = [0, 0] and

input guard gi over [0, ), we omit go and gi from the description of the transition.

4 Khaled El-Fakih1, Nina Yevtushenko2*, Hacene Fouchal3

Thus, a transition (s, i, o, s) indicates that being at state s and accepting input i at any

time, S responds with output o instantly when i is applied. In this paper, we check

only functional equivalence [10] between TFSMs and thus, we do not consider output

delays. In other words, in this paper, the transition relation is a 5-tuple, S  S  I  O

 S  .

Given a TFSM S = (S, I, O, S, s0), for every pair (s, i)  S  I, we use (s, i) to

denote the collection of the guards gi over all transitions (s, i, o, s, gi)  S. If there is

no transition (s, i, o, s, gi)  S then, by definition, (s, i) is the empty set. The notion

of (s, i) is very close to the notion of time regions [1]; however, these regions are

different for different states and inputs. The latter allows to check transitions with the

same input at different states at different time instances.

Given a transition (s, i, o1, s, min, max)  S, we refer to max – min as to the

duration of the time guard of the transition. Moreover, the largest finite boundary,

denoted S or , over all guards of all transitions is called the largest boundary of the

TFSM.

The machine S is (time) deterministic if for each two transitions (s, i, o, s, min1,

max1), (s, i, o, s, min2, max2)  S, it holds that min1, max1  min2, max2 = ;

otherwise, the machine S is (time) non-deterministic.

The TFSM S is input enabled if the underlying FSM is complete, i.e., if for each

pair (s, i)  S  I, S has a transition (s, i, o, s, min, max).

The TFSM S is complete if the underlying FSM is complete and for each pair (s, i)

 S  I of TFSM S, the union of time guards over all transitions (s, i, o, s, min,

max)  S equals to [0, ); otherwise, the machine is called partial. Given a

complete TFSM, the behavior of the TFSM is defined at each state for each input that

can be applied at any time instance in [0, ). In this paper, we consider only

deterministic but possibly partial TFSMs.

Definition 3. Given a TFSM S = (S, I, O, S, s0), a pair (i, t), i  I and t is a non-

negative rational, is a timed input that states that an input i is applied at time t.

Definition 4. Given a TFSM S, a sequence over the input (output) alphabet is

called an input (output) sequence. A sequence (i1, t1) … (il, tl) of timed inputs is a

timed input sequence. A timed input sequence  = (i1, t1) … (il, tl) is defined for

TFSM S at state s if the TFSM has a sequence of transitions (sj, ij, oj, sj+1, gj) such that

s1 = s and for each j = 1, …, l, it holds that tj  gj. The set of all defined timed

sequences at state s is denoted S(s) while denoting S the set of defined timed input

sequences at the initial state, for short. The corresponding output sequence o1 … ol is

denoted as outS(s, ). As usual, we say that the pair (, outS(s, )) takes the machine

S from state s to state sl+1. A pair “timed_input_sequence_/output_sequence_ outS(s,

)” is a timed I/O sequence or a timed trace of S at state s. For a deterministic TFSM,

given state s and a timed input sequence   S(s), s is the state in the TFSM

reached by the sequence . We also say that  takes the TFSM to state s. Given a

state s of a deterministic TFSM and a timed input (i, t) defined at s, the (i, t) successor

of state s is the state reached by applying (i, t) at state s.

By the above definition, given a defined timed input sequence  = (i1, t1) … (il, tl),

we assume that the sequence  is applied to the FSM in the following way. The input

i1 is applied at the time instance t1; for each j, 1 < j  l, the input ij is applied at the

TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT

COVERAGE 5

time instance tj while time starts advancing from 0 after the output has been produced

to the input ij-1.

Consider TFSM S shown in Fig. 1 shown below with three states named 1 (initial

state), 2, and 3, and defined over the input alphabet {i1, i2} and over the output

alphabet {o1, o2, o3}. TFSM S is partial and deterministic. The collection of guards

(1, i1) equals {[0,5), [5, 10]}, (1, i2) = { [0, )}, (2, i1) = {[0, 5), [5, )}, (2, i2) = {

[0, 5], (5, )}, (3, i1) = {[0, )}, and (3, i2) = {[6, )}. The largest finite boundary B

= 10.

1 2

3

i1 (t < 5) / o1

i2 (t  5) / o1

i1 (t < 5) / o2

i1 (5  t  10) / o2

i2 / o1

i1 / o2

i 1
(
t 

 5
)

/ o
2

i2 (t > 5) / o2

i2 (t  6)/ o1

Fig. 1. TFSM S

The set of all timed traces of S at state s is denoted TTrS(s), also denoted TTrS for

short if s is the initial state of S. As usual, the TFSM S is initially connected if for

each state s, there exists a timed trace that can take the machine from the initial state

to state s.

As usual, the behavior of two TFSMs can be compared using their intersection. The

intersection of two TFSMs S and P is not defined at state sp for a timed input (i, t)

when S and P at states s and p produce disjoint sets of outputs to this timed input.

Definition 5. Given TFSMs S and P, the intersection S  P is the largest

connected submachine of the TFSM (S  P, I, O, SP, s0p0) where (sp, i, o, sp,

min1, max1)  SP if there are transitions (s, i, o, s, min2, max2) S and (p, i, o,

p, min3, max3  P s.t. min2, max2  min3, max3   and min1, max1 = min2,

max2  min3, max3.

Definition 6. State s of TFSM S and p of TFSM P are f-distinguishable [10],

denoted s
f
 p, if there exists a timed input sequence   S(s)  P(p) such that

outS(s, )  outP(p, ); the sequence  is said to f-distinguish states s and p. If states s

and p are not f-distinguishable then they are f-compatible (functionally compatible),

denoted s
f
 p. In the same way, f-distinguishable states can be introduced for states

of a single TFSM. If each two different states of deterministic TFSM S are f-

distinguishable then S is a reduced TFSM. TFSMs S and P are f-compatible, denoted

S
f
 P, if their initial states are f-compatible; otherwise, the machines are f-

6 Khaled El-Fakih1, Nina Yevtushenko2*, Hacene Fouchal3

distinguishable, denoted S
f
 P. Timed input sequence  that f-distinguishes the

initial states of S and P is an f-distinguishing sequence of S and P. Given a set W of

defined timed input sequences at states s and p, states s and p are f-compatible with

respect to the set W, written s
Wf
 p, if s and p are not f-distinguishable for every

sequence in the set W.

Proposition 1. Given two deterministic TFSMs S and P, the TFSMs S and P are f-

distinguishable iff there exists a state (s, p) and an input i such that the behavior of the

intersection S  P is not defined at state (s, p) for a timed input (i, t) while the

behavior of S at state s and the behavior of P at state p are defined under (i, t). In this

case, each defined timed input sequence .(i, t) where  takes the intersection S  P

to state (s, p), f-distinguishes TFSMs S and P.

Corollary. Given complete TFSMs S and P, if the intersection S  P is completely

specified then the TFSMs S and P are not f-distinguishable.

A set of timed input sequences V  S is called a state cover set of TFSM S if for

each state si of S, there is an input sequence i  V that takes S to state si.

Since the specification TFSM can be partial, the W-method and many of its

derivatives cannot be used for deriving test suites with the guaranteed fault coverage.

The reason is that, similar to untimed FSMs, a characterization set may not exist for a

partial reduced TFSM. The HIS method can be applied when the specification FSM is

partial and not reduced. In this paper, we adapt the HIS method for deriving a test

suite with the guaranteed fault coverage; correspondingly, we define and use a

separating family [17] of state identifiers, also known as a family of harmonized state

identifiers [11], [13] for untimed FSMs.

Definition 7. Given state sj  S of TFSM S, a set Wj  S(sj) of timed input

sequences is called a state identifier of state sj if for any other state si  S there exists

  S(si)  Wj that f-distinguishes sj and si, i.e. outS(si, )  outS(sj, ). A separating

family or a family of harmonized identifiers is a collection of state identifiers Wj, sj 

S, which satisfy the condition: for any two different states sj and si, there exist   Wj

and   Wi which have common prefix  such that outS(si, )  outS(sj, ).

In this paper, we consider a Fault Model (FM) <S,
f
 , >, where S is the

specification TFSM that is deterministic and reduced,
f
 is the f-compatibility

relation and  is the fault domain, i.e.,  is a finite set of deterministic complete

TFSMs with the same input alphabet as the specification TFSM S. A test suite (w.r.t.

the FM) is a finite set of finite defined timed input sequences of the specification. A

test suite is complete w.r.t. the FM if for each TFSM P   s.t. S
f
 P the test suite

has a sequence that f-distinguishes P and S.

Given the FM <S,
f
 , > where  is a finite set of TFSMs, a complete test suite can

be derived by explicit enumeration of TFSMs of the set  using Proposition 1.

However, the set  can be huge and for this reason, we would like to develop a test

TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT

COVERAGE 7

derivation method without the explicit enumeration of the machines in . As usual,

we impose some restrictions on the specification TFSM and on the fault domain.

3 Deriving Complete Test Suites for Timed FSMs

The main problem when deriving a test suite with the guaranteed fault coverage for

the specification TFSM S is that the number of defined timed inputs at each state of S

can be infinite. For this reason, for deriving a test suite with the guaranteed fault

coverage it is not enough to limit, i.e. have the upper bound, the number of states of

an IUT but also it is necessary to limit the number of time regions. Therefore, we

limit the finite boundary BP of transition guards in an IUT. If we assume that each

input can be applied only at integer time instances then it is enough to check at each

state transitions under all the timed inputs (i, t), i  I, t  {0, …, BP + 1}. However,

the number of such inputs can also be huge and as usual, we further minimize the

number of such timed inputs when the low bound on time interval of guards of an

IUT is known.

3.1 Separating Family

A separating family for a given reduced TFSM S can be derived in the same way

as it is done for untimed FSMs: for every state si a of S, consider every other state sj, i

 j, then derive and add into Wi a timed input sequence  defined at si and sj, i.e.  

S(si) and   S(sj), that f-distinguishes the states si and sj. The family of all sets Wi

over all states si of S is a separating family of TFSM S. A timed input sequence that f-

distinguishes two states can be derived using the intersection of the TFSM S with the

initial states si and sj, denoted S/si and S/sj (Proposition 1).

As an example, consider the TFSM S shown in Fig. 1 and states 1 and 2 of S. The

initial state of the intersection of S/1 and S/2 is undefined under the timed input (i1,

2), thus, the sequence (i1, 2) f-distinguishes states 1 and 2 of S. Thus, we add (i1, 2)

into W1 and W2. In this example, the sequence (i1, 2) also f-distinguishes states 1 and

3. Thus, we add (i1, 2) into W1 and W3. For states 2 and 3, we derive the intersection

of S/1 and S/3 and find that the sequence (i1, 3).(i1, 2) of timed inputs f-distinguishes

the states. Thus, we add (i1, 3).(i1, 2) into W2 and W3 and obtain the set F = {W1, W2,

W3} = {{(i1, 2), }, {(i1, 2), (i1, 3).(i1, 2)}, {(i1, 2), (i1, 3).(i1, 2) }} that is a separating

family of TFSM S.

Here we note that two TFSMs can be f-compatible or f-distinguishable depending if

a timed input can be applied only at integer time instances. For example, if an input

can be applied only at integer time instances, then TFSMs cannot be distinguished

with an input that is in the intersection (a, a + 2) and (a - 1, a + 1). In other words, in

this case, two deterministic TFSMs S and P are f-distinguishable iff there exist a state

(s, p) and an input i such that the behavior of S at state s and the behavior of P at state

p are defined under (i, t) and the behavior of the intersection S  P is not defined at

state (s, p) for the timed input (i, t) where t is an integer. In fact in this case, each

8 Khaled El-Fakih1, Nina Yevtushenko2*, Hacene Fouchal3

defined timed input sequence .(i, t) where t is an integer,  takes the intersection S

 P to state (s, p) and inputs of the sequence  are applied at integer time instances, f-

distinguishes TFSMs S and P. We further establish a statement (Proposition 2) that

takes into account such distinguishability.

3.2 On Test Derivation for Integer Time Instances

Consider a fault model where the guard boundaries of the specification TFSM

specification S and of each implementation TFSM P are integers, an implementation

TFSM P has at most n states, where n is the number of states of the specification

TFSM S, the upper bound  on the largest finite boundary of an implementation

TFSM is known and only timed inputs (i, t) where t is a nonnegative integer can be

applied to an IUT.

In this case, each TFSM can be represented as an untimed FSM that for each state s

has as defined inputs the finite set of timed inputs (i, t), i  S(s), t  {0, …, B + 1}

intersected with the union of all guards in (s, i). Then the classical HIS method and its

derivatives can be applied to the obtained FSM for deriving a complete test suite

w.r.t. to the assumed fault model. However, this test suite will be huge. Similar to [14]

it can be shown that it is not enough to apply inputs at finite boundaries of time

guards of the specification. Thus, more rigorous analysis is needed to assess the

limitations on time guards of an IUT and propose related test suite derivation with the

guaranteed fault coverage. These issues will be addressed in the following section.

When interested in TFSMs with up to m states, we use m(, w) to denote the finite

set of deterministic complete TFSMs with at most m states, which have the same

input alphabet as the specification TFSM S, the upper bound  on the largest finite

boundary and the minimal duration w of a time guard of an implementation TFSM.

When we want to emphasize that inputs can be applied only at integer time instances

then we use 
in

m(, w) to denote such a set of IUTs.

3.3 Test Derivation for TFSMs with Integer Time Instances when m = n

In this subsection, we define a fault model, denoted FM_1, and then present an

algorithm that returns a complete test suite w.r.t. this model. Consider the fault model

FM_1 = <S,
f
 , 

in
n(, w)>, where:

1) The minimal (integer) duration w of a finite time guard of an IUT is known.

2) An implementation TFSM P  
in

n(, w) is a deterministic complete FSM

that has at most n states, where n is the number of states of the specification

TFSM S;

3) The upper (integer) bound  > 0 on the largest finite boundary of an

implementation TFSM is known.

4) Only timed inputs (i, t) where t is a nonnegative integer can be applied to an

IUT.

TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT

COVERAGE 9

Proposition 2. If only timed inputs (i, t) where t is a nonnegative integer can be

applied to TFSM S then guards of the TFSM S can be described in the form [a, b] or

in the form [a, ) where a and b are integers.

According to Proposition 2, for the example in Fig. 1, we can rewrite (1, i1) =

{[0,5), [5, 10]} as {[0,4], [5, 10]}, (2, i1) = { [0, 5), [5, )} as { [0, 4], [5, )}, and

(2, i2) = { [0, 5], (5, )} as { [0, 5], [6, )}. We also note that according to

Proposition 2, if the specification TFSM has a guard (a, a + 1) then after the

transformation this guard is deleted from the transformed TFSM. If the specification

TFSM has a guard (a, a + k), k > 1, then this guard is transformed to [a + 1, a + k – 1].

Algorithm 1. Deriving a complete test suite w.r.t. the fault model

<S,
f
 ,

in
n(,w)>

Input: Deterministic, possibly partial, reduced specification TFSM S = (S, I, O, S,

s0) in the form of Proposition 2, |S| = n, a state cover set V and a separating

family F of S, upper bound  on the largest finite boundary of an IUT and

the smallest duration w of a time guard in a TFSM implementation of S.

Output: A Complete test suite TS with respect to FM_1 = <S,
f
 , 

in
n(, w)>

Step 1.

Append every sequence   V with a corresponding state identifier. Denote

TS1 the obtained set. That is for each   V which takes S to state s, TS1

has sequences .W, where W  F is a state identifier of state s;

If w = 0 or w = 1 then assign integer u = 1;

Else assign integer u = w - 1;

Step 2.

For every pair (s, i)  S  I such that there exists a transition under i at

state s:

For each subset g = [a, b] (s, i) do:

Derive a set Tg = g  {a, a + 1u, …, a + (k-1)u, b}, a + (k-1)u < b

and a + ku  b;

Endfor

For each subset g = [a, )  (s, i) do:

 Derive a set Tg = g  {a, a + 1u, …, a + (k-1)u, B}, a + (k-1)u < B

and a + ku  B;

 Endfor

Denote T(s, i) the union of obtained sets of time instances Tg;

Endfor

Step 3. For every sequence   V that takes the specification FSM to state s and for

each input i such that there exists a transition under i at state s:

 Append  with timed input (i, t).Wk for every t  T(s, i) where Wk is

a state identifier in F of the (i, t)-successor sk of state s. Denote TS2

the obtained set.

 Endfor

Step 4. Return TS: = TS1  TS2

10 Khaled El-Fakih1, Nina Yevtushenko2*, Hacene Fouchal3



Example: As an application example for Algorithm 1, consider TFSM S shown in

Fig. 1. The set V = {, (i1, 2), (i1, 2).(i1, 6)} is state cover set of S. We recall that the

set of state identifiers of states 1, 2, and 3 are W1 = {(i1, 2)}, W2 = {(i1, 2), (i1, 3).(i1,

2)}, and W3 = {(i1, 2), (i1, 3).(i1, 2)}, respectively. The set F = {W1, W2, W3} is

separating family of S. Assume that an IUT P of S has up to 3 states (as n = 3), length

of each time interval w of S and P is at least 4, highest bound  of IUT equals and u =

w - 1 = 3.

We apply Step-1 and obtain the sequences TS1 = .W1 + (i1, 2).W2 + (i1, 6).W3 =

.(i1, 2) + (i1, 2).(i1, 2) + (i1, 2).(i1, 3)(i1, 2) + (i1, 6).(i1, 2) + (i1, 6).(i1, 3)(i1, 2). Then

in Step-2, we consider the collection of guards of S, (1, i1) = {[0, 4], [5, 10]}, (1, i2)

= { [0, )}, (2, i1) = { [0, 4], [5, )}, (2, i2) = { [0, 5], [6, )}, (3, i1) = {[0, )}, and

(3, i2) = {[6, )}. For the pair (1, i1), we have (1, i1) = {[0, 4], [5, 10]} and

correspondingly the set of time instances T[0,4] = {0, 3, 4} and T[5,10] = {5, 8, 10}.

Thus, T(1, i1) = {0, 3, 4, 5, 8, 10}. For the pair (1, i2), the collection (1, i2) = { [0, )}

and consequently T(1, i2) = {0, 3, 6, 9, 12}. For the pair (2, i1), (2, i1) = {[0, 4], [5, )},

and consequently, T(2, i1) = {0, 3, 4, 5, 8, 11}. For (2, i2), (2, i2) {[0, 5], [6, )} and

T(2, i2) = {0, 3, 5, 6, 9, 12} and for (3, i1), (3, i1) = {[0, )} and T(3, i1) = {0, 3, 6, 9,

12}, and finally for the pair (3, i1), (3, i2) = {[6, )} and T(3, i2) = {6, 9, 12}.

Then at Step-3, consider  =   V and T(s, i1) = T(1, i1) = {0, 3, 4, 5, 8, 10}. For

instance t = 0  T(1, i1), the sequence .(0, i1) reaches state 2, thus form and add into

TS2 the sequences .(i1, 0).W2. Similarly consider every other instance t  T(1, i1) and

add into TS2 the sequences .(i1, 3).W2; .(i1, 4).W2; .(i1, 5).W1; .(i1, 8).W1; .(i1,

10).W1. Then, consider T(1, i2) = {0, 3, 6, 9, 12} and add into TS2 the sequences .(i2,

0).W1; .(i2, 3).W1; .(i2, 3).W1; .(i2, 9).W1; .(i2, 12).W1. For  = (i1, 2)  V, T(s, i1) =

T(2, i1) = {0, 3, 4, 5, 8, 11}. Consider every t  T(2, i1) form and add into TS2 the

sequences (i1, 2).(i1, 0).W1; (i1, 2).(i1, 3).W1; (i1, 2).(i1, 4).W1; (i1, 2).(i1, 5).W3; (i1,

2).(i1, 8).W3; (i1, 2).(i1, 11).W3. Then consider T(s, i2) = T(2, i2) = {0, 3, 5, 6, 9 12} and

add into TS2 the sequences (i1, 2).(i2, 0).W1; (i1, 2).(i2, 3).W1; (i1, 2).(i2, 5).W1; (i1,

2).(i2, 6).W3; (i1, 2).(i2, 9).W3; (i1, 2).(i2, 12).W3. Finally, for  = (i1, 2) (i1, 6)  V,

form and add into TS2 corresponding sequences and return TS1  TS2 .

Proposition 3. Given the fault model <S,
f
 , 

in
n(, w) >, Algorithm 1 returns a

test suite TS that is complete with respect to this fault model.

Proof. Let P = (P, I, O, P, p0)  
in

n(, w) be an implementation TFSM that has

the expected output response to each input sequence of the set TS1. In this case, TFSM

has exactly n states and moreover, we can establish the one-to-one correspondence h

between states of S and P: h(s) = p iff sj
jWf

 pj.

Suppose now that output responses of S and P at states s and h(s) to some defined

timed input (i, t)  S(s) are different or the (i, t)-successor of state h(s) does not

equal h(s) where s is the (i, t)-successor of state h(s) then the implementation TFSM

does not have the expected output response to each input sequence of the set TS2.

TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT

COVERAGE 11

Let w = 0 or w = 1. In this case, for every input and state, each boundary of S and P

is in the form [a, a], [a, a+1], [B, B], or [B, B+1], respectively, each timed input (i, t),

t is an integer and t = a, {a, a+1}, B, {B, B+1}, such that the specification behavior is

defined at state s for the timed input (i, t) is applied to an IUT at state h(s). Thus, if the

IUT has the expected behavior for all sequences of the set TS then the IUT is f-

compatible with the specification.

Assume now that w > 1, i.e., u = w – 1. It is sufficient to show that for each non-

empty intersection that contains at least one integer t of two guards [a, b]  (s, i) and

[a1, b1]  (h(s), i) it holds that the intersection of [a1, b1] and the set T(s, i) is not empty.

Consider guards [a, b]  (s, i), b – a  w, and [a1, b1]  (h(s), i), b1 – a1  w, s.t. the

intersection g of [a1, b1] and the T(s, i) has at least one integer. A number of cases are

possible.

1) [a1, b1]  [a, b] then since b1 – a1  w and u = w – 1, there exists l s.t. a + lu

 [a1, b1]. In this case a + lu  T(s, i) and thus, a  [a1, b1]  T(s, i).

2) [a1, b1]  [a, b] and a  [a1, b1]. In this case, a  T(s, i) and thus, a  [a1, b1]

 T(s, i).

3) [a1, b1  [a, b] and a  [a1, b1], i.e., b  [a1, b1] and thus, b  T(s, i).

In the same way, we can prove that for each non-empty intersection of the guards

[a, b]  (s, i) and [a1, )  (h(s), i), [a, )  (s, i) and [a1, b1]  (h(s), i), [a, )  (s,

i) and [a1, )  (h(s), i) it holds that the intersection of [a1, b1] (or correspondingly of

[a1, )) and T(s, i) is not empty. 

3.4 Test Derivation for TFSMs with Integer Instances when m > n

As other FSM-based test derivation methods with the guaranteed fault coverage,

the method presented in this paper can be adapted for the case when the number m of

states of an IUT can be larger than the number n of states of the specification FSM,

i.e. m > n. In this case, the fault domain of the fault model contains all TFSM

implementations up to m states, i.e. m(, w). In this paper we show how Algorithm 1

can be adapted for deriving a complete test suite for the fault model <S,
f
 , 

in
m(,

w)>. In this case we derive not only a state cover V but the set V
m-n+1

 in order to cover

each timed transition of an IUT and then as usual append sequences of the set V
m-n+1

with corresponding state identifiers.

Algorithm 2. Deriving a complete test suite w.r.t. the fault model

 <S,
f
 , 

in
m(,w)>

Input: Deterministic, possibly partial, reduced specification TFSM S = (S, I, O, S,

s0), |S| = n, a state cover set V and a separating family F of S, upper bound 

on the largest finite boundary of an IUT, integer m  n, and the smallest

duration w of a time guard in a TFSM implementation of S.

Output: A Complete test suite TS with respect to FM_2 = <S,
f
 , 

in
m(, w)>

12 Khaled El-Fakih1, Nina Yevtushenko2*, Hacene Fouchal3

Step 1. TS: = ;.

 If w = 0 or w = 1 then assign u = 1;

 Else assign u = w - 1;

Step 2.

For every pair (s, i)  S  I such that there exists a transition under i at

state s:

For each subset g = [a, b] (s, i) do:

 Derive a set Tg = g  {a, a + 1u, …, a + (k-1)u, b}, a + (k-1)u < b

 and a + ku  b;

Endfor

For each subset g = [a, )  (s, i) do:

 Derive a set Tg = g  {a, a + 1u, …, a + (k-1)u, B}, a + (k-1)u < B

 and a + ku  B;

 Endfor

Endfor

Step 3. Assign l: = 1 and V
l
: = V

 While l  m –n + 1

 For every sequence   V
l
 that takes the specification FSM to state

 s and each timed input (i, t) that is defined at state s:

Include into V
l+1

 a sequence (i, t) for every t  T(s, i);

 Endfor

 Increment l by 1;

Endwhile

Step 4.

For every   V
1
  V

2
 … V

m-n+1

Append  with a corresponding state identifier. That is for  where

 takes S to state s, add to TS the sequences .W, where W  F

is a state identifier of state s;

Endfor

Return TS.



Similar to the statement of Proposition 3 we can prove the following statement.

Proposition 4. Given the fault model <S,
f
 , 

in
m(, w)> the above described

algorithm returns a test suite TS that is complete with respect to <S,
f
 , 

in
m(, w)>.

3.5 Test derivation for TFSM with Rational Time Instances

Here we use the same fault model FM_1 defined above, in addition, we assume

that time instances t of timed inputs (i , t) can be applied to an IUT at rational rather

than only at integer time instances. In this case, we cannot transform TFSMs

according to Proposition 2 and as the following example shows, it is not enough to

apply inputs at integer time instances. Suppose that the specification TFSM has a

guard (a, b), b > a + 1 for input i while the implementation TFSM has a guard (a - 1,

TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT

COVERAGE 13

a + 1) for this input. The intersection of these guards is (a - 1, a + 1) and in order to

check the behavior of the implementation TFSM at a defined time instance we should

apply a timed input (i, t), t  (a, a + 1), i.e. t is a rational. Correspondingly such

rational time instances have to be considered in Step 2 of Algorithm 1.

Algorithm 3. Deriving a complete test suite w.r.t. FM_1 when time instances are

rational

Input: Deterministic complete reduced specification TFSM S = (S, I, O, S, s0), a

state cover set V and a separating family F of S, upper (integer) bound  on

the largest boundary of an implementation under test, and the minimal

(integer) duration of w of a time guard in a TFSM implementation of S.

Output: A Complete test suite TS with respect to <S,
f
 , n(, w)>

Step 1. Append every sequence   V with a corresponding state identifier. Denote

TS1 the obtained set. That is for each   V, let s be the state reached by

, TS1 has sequences .W, W  F;

 If w = 0 or w = 1 assign u : = 1;

 Else u : = w-1;

 Select Δ, 0 < Δ < 1;

Step 2.

For every pair (s, i)  S  I such that there exists a transition under i at

state s:

For each subset g = a, b   (s, i) do:

 Derive a set Tg = g  {a, a + Δ, a + 1u, a + 1u + Δ, …, a + (k-1)u, a

+ (k-1)u + Δ, b, b - Δ}, a + (k-1)u < b and a + ku  b;

Endfor

For each subset g = a, )  (s, i) do:

 Derive a set Tg = g  { a, a + Δ, a + 1u, a + 1u + Δ, …, a + (k-1)u, a

 + (k-1)u + Δ, B, B + Δ}, a + (k-1)u < B and a + ku  B;

 Endfor

 Denote T(s, i) the union of obtained sets of time instances Tg;

 Endfor

Step 3. For every sequence   V that takes the specification FSM to state s and for

each input i such that there exists a transition under i at state s:

 Append  with timed input (i, t).Wk for every t  T(s, i) where Wk is

a state identifier in F of the (i, t)-successor sk of state s. Denote TS2

the obtained set.

 Endfor

Step 4. Return TS: = TS1  TS2



Proposition 4. Given the fault model <S,
f
 , n(, w) >, Algorithm 3 returns a test

suite TS that is complete with respect to this fault model.

14 Khaled El-Fakih1, Nina Yevtushenko2*, Hacene Fouchal3

Proof. Let FM = <S,
f
 , n(, w)> and P = (P, I, O, P, p0)  n(, w) be an

implementation TFSM that has the expected output response to each input sequence

of the set TS1. In this case, TFSM has exactly n states and moreover, we can establish

the one-to-one correspondence h between states of S and P: h(s) = p iff sj
jWf

 pj.

Suppose now that output responses of S and P at states s and h(s) to some defined

timed input (i, t)  S(s) are different or the (i, t)-successor of state h(s) is not equal

h(s) where s is the (i, t)-successor of state h(s) then the implementation TFSM does

not have the expected output response to each input sequence of the set TS2. Similar

to the proof of Proposition 3, it is sufficient to show that for each non-empty

intersection that contains at least one integer t, of two guards a, b  (s, i) and a1,

b1  (h(s), i) it holds that the intersection of a1, b1 and T(s, i) is not empty.

Let w = 0. Consider a guard a1, b1 of an IUT s.t. g  a1, b1  . If the guard

a1, b1 has at least one integer then {0, Δ, 1, 1 + Δ , …, B, B + Δ}  a1, b1  .

Here we note that since a1, b1 can be [a1] for each a1  {0, 1, …, B}, we have to

include all these integers into the set intersected with a1, b1. If a1, b1 = (a1, b1) and

b1 - a1 = 1 then there are no integers inside (a1, b1). In this case, we have to apply an

input at the time instance (a1 + Δ), a1  {0, 1, …, B}.

Let w = 1. Consider a guard a1, b1 of an IUT s.t. g  a1, b1  . If the guard

a1, b1 has at least one integer t  B then since b1 - a1  1, it holds that {0, Δ , 1, 1 + Δ

, …, B, B + Δ}  a1, b1  .

Let w > 1 and g  (s, i), i.e., u = w – 1. Consider a guard a1, b1 of an IUT s.t. g 

a1, b1  .

Consider guards a, b  (s, i), b – a  w, and a1, b1  (h(s), i), b1 – a1  w.

Similar to the proof of Statement 3, a number of cases are possible.

1) a1, b1  a, b then since b1 – a1  w and u = w – 1 > 0, there exists t  [a1, b1]

s.t. t = a + lu. If a1= a + lu and a1, b1 = (a1, b1 then a1 + lu +   T(s, i).

2) a1, b1  a, b and a  a1, b1. If a, b = [a, b then a  T(s, i) and thus, a 

a1, b1  T(s, i). If a, b = (a, b then (a + )  T(s, i).

3) a1,b1  [a, b and a  a1, b1, then b  a1, b1. If a, b = a, b] then b  T(s, i)

and thus, b  a1, b1  T(s, i). If a, b = a, b) then (b - )  T(s, i).

In the same way, we prove that for each non-empty intersection of the guards a, b

 (s, i) and a1, )  (h(s), i), a, )  (s, i) and a1, b1  (h(s), i), a, )  (s, i) and

a1, )  (h(s), i) it holds that the intersection of a1, b1 (or correspondingly of a1,

)) and T(s, i) is not empty.

 

4. Conclusion and Future Work

Two fault models and corresponding test derivation methods are presented for

deriving tests with the guaranteed fault coverage from a deterministic possibly partial

specification Timed Finite State Machine (TFSM). In the first model (timed) inputs

TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT

COVERAGE 15

can be applied at integer (or discrete) time instances and in the second at rational (or

continuous) time instances. The test derivation method with integer time instances is

extended to the case when an implementation under test can have more states that the

given specification.

The considered TFSM model assumes a reset operation is employed at every

transition. We think that the methods presented in the paper can be adapted to

consider timed FSMs where there is no reset at every transition. Another possible

extension of the proposed work is to adapt test derivation with the guaranteed fault

coverage for non-deterministic TFSMs.

References

1. Alur, R, and Dill. D. L.: A Theory of Timed automata. Theoretical Computer Science,

126(2),183--235 (1994)

2. Bochmann G. v., Petrenko, A.: Protocol Testing: Review of Methods and Relevance for

Software Testing. In International Symposium on Software Testing and Analysis, Seattle,

pp. 109--123 (1994)

3. T. S. Chow.: Test Design Modeled by Finite-state Machines. IEEE TSE, 4(3), pp. 178-187

(1978)

4. Dorofeeva, R., El-Fakih, K., Yevtushenko, N.: An Improved Conformance Testing Method.

In Proc. of the IFIP 25th International Conference on Formal Techniques for Networked and

Distributed Systems, LNCS 3731, pp. 204-218 (2005)

5. En-Nouaary, A., Dssouli, R., Khendek, F.: Timed Wp-Method: Testing Real-Time Systems,

IEEE TSE 28(11), 1023--1038 (2002)

6. Fujiwara, S., Bochmann, G. v., Khendek, F., Amalou, M., Ghedamsi A.: Test Selection

Based on Finite State Models. IEEE Trans. SE, 17(6), pp. 591-603 (1991)

7. Gromov, M., El-Fakih, K., Shabaldina, N., Yevtushenko, N.: Distinguishing Non-

deterministic Timed Finite State Machines, 11th Formal Methods for Open Object-Based

Distributed Systems and 29th Formal Techniques for Networked and Distributed Systems,

FMOODS/FORTE, LNCS 5522, pp. 137–151 (2009)

8. [HMN09] Hierons, R. M, Merayo M. G., Nunez: Testing from a Stochastic Timed System

with a Fault Model. Journal of Logic and Algebraic Programming, 72(8), 98-115 (2009)

9. Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines-A

Survey. In Proc. of the IEEE, 84(8), 1090--1123 (1996)

10. Merayo M. G., Nunez, M., Rodriguez I.: Formal Testing from Timed Finite State Machines.

Computer Networks, 52(2), 432--460 (2008)

11. Petrenko, A.: Checking Experiments with Protocol Machines. Proc. 4th Int. Workshop on

Protocol Test Systems (IWPTS), pp. 83-94 (1991)

12. Petrenko, A., Yevtushenko, N.: Testing from Partial Deterministic FSM Specifications.

IEEE Trans. Computers 54(9): 1154-1165 (2005)

13. Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A.: Nondeterministic State Machines in

Protocol Conformance Testing. Proc. of the IFIP 6th IWPTS, France, pp. 363-378 (1993)

14. Springintveld, J., Vaandrager, F., D'Argenio, P.: Testing Timed Automata. Theoretical

Computer Science, 254(1-2), 225–257 (2001)

15. Vasilevskii, M. P.: Failure Diagnosis of Automata. translated from Kibernetika, 4, pp. 98-

108 (1973)

16. Yevtushenko, N., Petrenko, A.: Test derivation method for an arbitrary deterministic

automaton. Automatic Control and Computer Sciences, Allerton Press Inc., USA, 5 (1990)

16 Khaled El-Fakih1, Nina Yevtushenko2*, Hacene Fouchal3

17. Yannakakis, M., Lee, D.: Testing Finite State Machines: Fault Detection. Journal of

Computer and System Sciences, 50, pp. 209-227 (1995)

18. Cardell-Oliver R., Glover, T.: A Practical and Complete Algorithm for Testing Real-Time

Systems. Formal Techniques for Real-Time Fault Tolerant Systems (1998)

