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Abstract. An intrusion detection system usually infers the status of an unknown be-
havior from limited available ones via model generalization, but the generalization is
not perfect. Most existing techniques use it blindly (or only based on specific datasets
at least) without considering the difference among various application scenarios. For
example, signature-based ones use signatures generated from specific occurrence en-
vironments, anomaly-based ones are usually evaluated by a specific dataset. To make
matters worse, various techniques have been introduced recently to exploit too stingy
or too generous generalization that causes intrusion detection invalid, for example,
mimicry attacks, automatic signature variation generation etc. Therefore, a critical
task in intrusion detection is to evaluate the effects of model generalization.

In this paper, we try to meet the task. First, we divide model generalization

into several levels, which are evaluated one by one to identify their significance on

intrusion detection. Among our experimental results, the significance of different levels

is much different. Under-generalization will sacrifice the detection performance, but

over-generalization will not lead to any benefit. Moreover, model generalization is

necessary to identify more behaviors in detection, but its implications for normal

behaviors are different from those for intrusive ones.

1 Introduction

There exist two general approaches for detecting intrusions: signature-based in-
trusion detection (SID, a.k.a. misuse detection), where an intrusion is detected
if its behavior matches existing intrusion signatures, and anomaly-based intru-
sion detection (AID), where an intrusion is detected if the resource behavior
deviates from normal behaviors significantly. From another aspect, there are
two behavior spaces for intrusion detection (Figure 1): normal behavior space
and intrusive behavior space, and they are complementary to each other. Con-
ceptually, SID is based on knowledge in intrusive behavior space, and AID is
based on knowledge in normal behavior space [2]. Perfect detection of intrusions
can be achieved only if we have a complete model of any one of the two behavior
spaces, because what is not bad is good and vice versa ideally. Figure 1 (a) and
(b) illustrate the behavior models for SID (i.e., intrusive behavior model) and
for AID (i.e., normal behavior model) in the real applications.

A critical problem. There are two quality factors within the behavior models:
inaccuracy and incompleteness. For example, a part of the intrusive behavior
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Fig. 1. Behavior spaces and models.

model falling into the normal behavior space leads to the inaccuracy. Due to
incompleteness, the intrusive behavior model cannot cover all intrusive behav-
ior space, and the normal behavior model cannot cover all the normal behavior
space either. In SID (Figure 1.a), model inaccuracy will lead to false positives
(FP) and model incompleteness in it will lead to false negatives (FN). In con-
trast, model inaccuracy in the normal behavior model will lead to FNs and
model incompleteness in it will cause FPs (Figure 1.b). To build a practical
intrusion detection system, it is critical to reduce the model inaccuracy and
incompleteness, and thus to lower FPs and FNs in the detection phase.

Past addressings. To make up for the incompleteness, most existing ‘model
building ’ techniques try to infer the unknown behaviors via model generalization
(defined in Section 3), which is able to eliminate FNs in SID and to reduce
FPs in AID. However, as indicated in Figure 1, it can also lead to more FPs
in SID and more FNs in AID. In other words, model generalization is two-
edged for intrusion detection in principle [9]. Various techniques have been
introduced recently to exploit too stingy or too generous model generalization
(Section 2), for example, mimicry attacks[11], mutate exploits[10], automatic
signature variation generation[7] etc.

Evaluation. Thus, it is very useful to identify the utility of model generaliza-
tion. We can envision at least four of its applications.

– Determine deployment conditions for an intrusion detection technique, as well
as proper techniques to detect intrusions into a specific environment.

– Guide the development of an adaptive intrusion detection technique by ad-
justing the generalization extent.

– Alleviate concept drifting. Intrusion and application evolution patterns can
determine the extent of generalization in an ad hoc deployment.

– Perform intrusion detection evaluation. According to different generalization
extents, we can generate appropriate artificial datasets, which can identify
the generic detection capability of a SID/AID technique.

Our contributions. We believe that our evaluation advances the research on
intrusion detection in two perspectives. First, we design a framework to evaluate
the effect of model generalization, in which model generalization is achieved at
different levels according to the reasonableness of the underlying assumptions.
Secondly, on a typical dataset, our experiments are performed to verify the
evaluation framework, and to identify the utility of model generalization.
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Evaluating the Effects of Model Generalization 3

The remaining parts are organized as follows. Section 2 reviews the related
work on model generalization. In section 3, an evaluation framework for model
generalization is designed. As a case study, experiments in section 4 reveal the
implications of model generalization on intrusion detection. Lastly, we draw
conclusions and lay out the future work in section 5.

2 Related Work

To our knowledge, we are the first to evaluate model generalization for intrusion
detection while there are two existing implicit applications of model generaliza-
tion: extending behavior models and evade detection.

First, the intrusion signatures can be generalized to cover more intrusion
variations. Anchor et al. [1] applied the evolutionary programming to optimize
the generalization in an intrusion signature, and thus to detect more intrusion
variants. Rubin et al. [8] presented a method to construct more robust signatures
from existing intrusion signatures. Secondly, the normal behavior model of AID
can be generalized as well. In [5, 12], existing audit trails are modeled inexactly
to accommodate more behaviors, and thus to achieve model generalization.

Several work is proposed to utilize the false negatives introduced by model
generalization. In AID techniques, mimicry attacks [11] are designed to misuse
the generalization by mimicking its normal behaviors, and thus to avoid being
detected. In SID techniques, model generalization is also exploited [10, 7] to
generate intrusion variations, which cannot be detected either.

In summary, too generous generalization in AID will make mimicry attacks
successful [11], while too stingy generalization in SID will make some attack
variations undetectable [8, 10]. In our research, we try to identify the relations
between the extent of generalization and detection performance.

3 An Evaluation Framework for Model Generalization

In this section, we proposed the evaluation framework for model generalization
based on a theoretical basis for intrusion detection [6].

3.1 Theoretical Basis for Intrusion Detection

In a nutshell, the basis introduces three new concepts to formalize the process of
intrusion detection: feature range, NSA label and compound feature. Every
instance in a training audit trail can be represented as a feature range of a high-
order compound feature, and every feature range has a NSA label, which is used
to detect behaviors in test audit trails. In detail, the value of every feature in
an instance can be replaced with a feature range, which is gotten by extending
its value so that the extension does not conflict with other existing values. The
feature ranges of all features are compounded using cartesian products to build
a (training or test) behavior signature for intrusion detection.

In this framework, it is supposed that there is a training audit trail and a
feature vector FV = {F1, F2, . . . , Fn}. For every feature Fi, a series of feature
ranges R1

Fi
, R2

Fi
, . . . , Rm

Fi
is first mined from the training audit trails. Using

feature ranges of all features, the behavior signatures Sig1, Sig2 . . . , Sigl are
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constructed for intrusion detection. In the detection phase, a test instance is
formalized as a signature Sigt, and it is detected in accordance with whether it
matches any existing behavior signature.

3.2 Model Generalization

We first define model generalization within the context of intrusion detection.

Definition 1 (Model Generalization). Suppose that there exists a set of
behaviors associated with a resource. Model generalization is an operation
that tries to identify a new behavior associated with the same resource based on
the existing set of behavior instances.

Model generalization can improve the detection rate by identifying more novel
behaviors (e.g., normal behaviors) but may also degrade the detection perfor-
mance by mis-identifying novel behaviors because of generalization errors [9].
This influence of model generalization on detection performance is generally
determined by its underlying assumptions per se. In our evaluation, we first
pinpoint three phases of our framework where we can use various assumptions
to apply three levels of generalization, and then evaluate them one by one for
model generalization. We also include a level without any generalization in
which the behaviors in the training audit trails are represented precisely.

In the follow-up subsections, we describe the methods to evaluate the three
levels of generalizations which moves the model from most specialized to most
generalized as we move down the level (from L0 to L3).

3.3 L0 Without Generalization

Suppose that for a feature F , there exists a series of feature values, v1, v2, . . . , vl.
Without generalization, every feature value vi is regarded as a feature range
with its upper and lower bounds equal to vi. In this way, the instances in the
training audit trails are represented precisely by the signatures generated from
these feature ranges. Note that, for F , we have not inferred the NSA label of
unknown feature subspace between any two feature values.

3.4 L1 Model Generalization

For every feature, to achieve L1 generalization, we assume that the unknown
parts in its feature space have the same NSA label as its neighboring feature val-
ues. Obviously, inherent in this assumption is a concept of distance. Therefore,
due to the lack of distance concept in nominal features, we will only discuss the
L1 generalization on numerical (discrete and continuous) features, and regard
every feature value of a nominal feature as a feature range. For convenience,
we use two more notations on a feature range Ri

F : Upp(Ri
F ) is its upper bound

and Low(Ri
F ) is its lower bound. With respect to a feature value vi, an initial

feature range Ri
F will be formed with Upp(Ri

F ) = Low(Ri
F ) = vi.

L1 generalization is described in algorithm 1. In this generalization, one crit-
ical step is to split the unknown subspace (vi, vi+1) = (Upp(Ri

F ), Low(Ri+1
F ))

(i + 1 ≤ l), and allocate the two parts to existing neighboring ranges Ri
F and

Ri+1
F . We use several strategies and evaluate them in our framework. These are:
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Evaluating the Effects of Model Generalization 5

Algorithm 1 L1 model generalization for a discrete/continuous feature F .

Require: (1) R1
F , R2

F ,. . . Rl
F . (2)ε (εd for discrete features and εc for continuous features).

1: for i = 1 to l − 1 do

2: Determine a splitting border S within (Upp(Ri
F ), Low(Ri+1

F
));

3: Split (Upp(Ri
F ), Low(Ri+1

F
)) into two parts (Upp(Ri

F ), S] and (S, Low(Ri+1
F

));

4: Ri
F = (Low(Ri

F ), S]; R
i+1
F

= (S, Upp(Ri+1
F

));

5: end for

6: i=1;
7: while i < l do

8: if Low(Ri+1
F

) − Upp(Ri
F ) ≤ ε, and L(Ri

F ) = L(Ri+1
F

) then

9: Merge R
i+1
F

into Ri
F ; Delete R

i+1
F

; l = l − 1;

10: else

11: i = i + 1;
12: end if

13: end while

(1) no splitting (2) equal splitting, (3) frequency-based splitting, (4) intrusion-
specific splitting. Note that, in Algorithm 1, the merging step for feature ranges
(i.e., lines 6-12) is selective after the splitting step (i.e., lines 1-5). This step for
merging range is also a generalization operation in L1 generalization.

1. L1.1: No splitting. If we do not conduct the merging step either, the L1.1
generalization actually becomes same as L0, i.e., no generalization.

2. L1.2: Splitting it equally. The unknown interval between vi and vi+1 is
split at the midpoint S = vi+vi+1

2 . That is, (vi, S] is assigned the same NSA
label as vi, and (S, vi+1) is assigned the same NSA label as vi+1.

3. L1.3: Frequency-based Splitting. Let the frequency of vi in the training

audit trails be fvi
. Then, the splitting point is S = vi+(vi+1−vi)∗

fvi

fvi
+fvi+1

.

(vi, S] is assigned as L(vi), and (S, vi+1) is assigned as L(vi+1).
4. L1.4: Intrusion specific splitting. Given a predefined generalization pa-

rameter Gin for intrusions. For a pair of neighboring values vi and vi+1, if
L(vi) = N and L(vi+1) = A, S = vi+1 − Gin. If L(vi) = A and L(vi+1) = N,
S = vi + Gin. Otherwise, S = vi+vi+1

2 . (vi, S] is assigned as L(vi), and
(S, vi+1) is assigned as L(vi+1).

In addition, we also evaluate the merging step for every splitting strategy.
In the detection phase, every instance is formalized as Sigt by replacing every

value with its feature range. Finally, we evaluate whether Sigt matches any
signature in Ω(F1...n). If matched, it is identified by that signature. Otherwise,
Sigt will further be evaluated by L2 generalization evaluation processes.

3.5 L2 Model Generalization
After the L1 model generalization, all the (nominal, discrete, and/or continuous)
features are uniformly represented by a series of feature ranges. In L2 model
generalization, we will utilize the relations between feature ranges rather than
values, which are measured by the distance of two signatures. To this end, let
us first define a distance function of two signatures in the behavior models.

Signature distance. Let R(Sig1, Fi) denote the feature range of Fi in a sig-
nature Sig1. For any two signatures, Sig1 and Sig2, their distance is:
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D(Sig1, Sig2) =
n

∑

i=1

δ(Sig1, Sig2, Fi)

Where, δ(Sig1, Sig2, Fi) =

{

0, if R(Sig1, Fi) = R(Sig2, Fi);
1, otherwise.

Evaluating L2 generalization. L2 generalization is achieved by the follow-
ing two generalization operations. L2.1: grouping feature ranges. If several
feature ranges of a feature are interchangeable in Ω(F1...n) without loss of sig-
nature distinguishability, they will be combined into a group. L2.2: mutating

feature ranges. For a feature, its feature range in a signature can be mutated
to any of its other feature ranges without loss of signature distinguishability.

Grouping feature ranges. For a feature Fi, if a feature range in Ω(F1...n)
is interchangeable with another feature range without loss of signature distin-
guishability (i.e. without changing its NSA label), their significance is equal to
each other. We can group these feature ranges in constructing behavior models.
As a special case, a feature range can form a group by itself. In this way, we can
form a series of groups for Fi, GFi

= {G1
Fi

, G2
Fi

, . . . } such that for any feature

range R
j
Fi

, there is a group Gk
Fi

, R
j
Fi

∈ Gk
Fi

. Finally, we achieve a grouping
scheme for all features in the feature vector: GFV = 〈GF1 , GF2 , . . . , GFn

〉.
For two signatures Sig1 and Sig2 in Ω(F1...n), they are equivalent to each

other with respect to GFV based on the following rule.

Sig1
GF V= Sig2 ⇔ ∃i(δ(Sig1, Sig2, Fi) = 1) (1)

∧(∃j{R(Sig1, Fi), R(Sig2, Fi)} ⊂ G
j
Fi

)

For any two equivalent signatures, they are compatible if they have the same
NSA label. Otherwise, they are conflict to each other in the behavior models.

The behavior models can be generalized by grouping feature ranges. For
example, for signatures “〈a, 1, E〉” and “〈b, 2, F 〉”, if ‘a’ and ‘b’ are grouped, the
behavior models can be enlarged by two additional signatures “〈b, 1, E〉” and
“〈a, 2, F 〉”. Essentially, like in Genetic Algorithm [4] we are allowing crossover
operation between signatures by interchanging the feature ranges in a group.

Algorithm 2 Evaluating a test signature via grouping.

Require: (1) Ω(F1...n); (2) Sigt; and (3) npg .
1: Initialization, StatusList = ∅
2: for every signature Sig1 ∈ Ω(F1...n) do

3: calculate D(Sigt, Sig1)
4: if D(Sigt, Sig1) ≤ npg then

5: /* if R(Sig1, Fi) �= R(Sigt, Fi), P = {R(Sig1, Fi), R(Sigt, Fi)} */
6: Enumerate all feature range pairs P1, . . . , Pk (k ≤ npg);
7: if no conflicting signatures w.r.t. P1, P2, . . . , Pk then

8: Append status(es) of Sig1 into StatusList; /*Lemma 3*/
9: end if

10: end if

11: end for

12: determine the detection results based on StatusList;

Moreover, to measure the diversity in GFV , the number of grouping points
npg is utilized in the detection phase. In other words, if the grouping scheme
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Evaluating the Effects of Model Generalization 7

does not exist, there are at least n − npg equivalent feature ranges between
Sigt and any signature Sigi in the behavior models. The larger the parameter
npg is, the more diverse the group operation is. Given npg and Ω(F1...n), a test
instance is evaluated as in Algorithm 2.

If the output is an anomaly, we will evaluate Sigt using mutation operation.

Mutating feature ranges. Neglecting some features will cause a signature to
identify more behaviors. For example, suppose that there is a signature “height
∈ (156cm, 189cm], weight ∈ (45kg, 75kg], and Nationality = USA”. If all three
features are used, it cannot identify the instance ‘height = 174cm, weight =
65kg, and Nationality = China’ will not be identified. But if ‘Nationality ’ is
ignored, the signature will identify the instance. Essentially, ignoring features
is equal to the mutation operation in Genetic Algorithms[4]. One condition of
the mutation is that it should not lead to any contradiction in the existing
signatures. For example, if we let F1 and F2 mutate, signatures “〈a, b, c, d〉” in
N(F1...4) and “〈x, y, c, d〉” in A(F1...4) will contradict to each other.

Furthermore, we use a mutation point number npm to measure the diversity
of the mutation process. In the detection phase, given npm and Ω(F1...n), the
unidentified test signature Sigt will be evaluated as in Algorithm 3.

Algorithm 3 Evaluating a test signature via mutation.

Require: (1) Ω(F1...n); (2) Sigt; and (3) npm.
1: Initialization, StatusList = ∅
2: for every signature Sig1 ∈ Ω(F1...n) do

3: calculate D(Sigt, Sig1)
4: if D(Sigt, Sig1) ≤ npm then

5: /*if R(Sig1, Fi) �= R(Sigt, Fi), Fi will be mutated*/
6: Enumerate all mutated features Fm1

, . . . , Fmk
(k ≤ npm);

7: if no conflicting signatures w.r.t. Fm1
, Fm2

, . . . , Fmk
then

8: Append the status(es) of Sig1 into StatusList;
9: end if

10: end if

11: end for

12: Determine the detection results based on StatusList;

3.6 L3 Model Generalization

If the test signature Sigt cannot be identified by L1 and L2 generalization, it
will be identified by the signature(s) with the minimum distance to it.

Nearest signatures. We assume that the test signature has the same NSA
label as its nearest signature(s) in the behavior models, which is measured by
its minimum distance to all signatures in ΩF1...n

,

Dmin(Sigt, Ω(F1...n)) = min
Sigi∈Ω(F1...n)

D(Sigi, Sigt)

3.7 Measuring the Detection Performance

We assign a cost scheme as in Table 1 to quantify the detection performance,
and calculate the average detection cost of an instance in the test audit trails.
If the behavior is identified correctly, the cost is 0. Otherwise, we can as-
sign some penalty for the detection result. In our cost scheme, we assume
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8 Zhuowei Li, Amitabha Das and Jianying Zhou

that the detection of an intrusion as an anomaly is useful but it is less use-
ful than identifying an intrusion. Specifically, suppose that there are T in-
stances in the test audit trails. The number of false positives is #NA, and
for false negatives, it is #IN . The average cost of a test instance is defined

Index Notations Original Class Detection Results Cost

1 #NN normal normal 0
2 #NA normal anomaly 3
3 #II intrusion original intrusion 0
4 #IA intrusion anomaly 1
5 #IN intrusion normal 3

Table 1. Detection results and their costs.

as: cost = #NA × 3 + #IN × 3 + #IA × 1 × 1
T

. In addition, the average cost
in absence of any generalization gives the reference baseline, costbase, of the
detection performance. In practice, the usefulness of model generalization is re-
flected in the relation between its average cost and costbase. If cost > costbase,
its performance has been degraded by such model generalization. Otherwise,
the model generalization can be assumed to be useful for intrusion detection.

4 Experiments: A Case Study

We have chosen a typical dataset from KDD CUP 1999 contest [3], which meets
the requirements of our framework: labeled audit trails and an intrusion-specific
feature vector, in which εd = 1 and εc = 0.01. In order to keep the computation
within reasonable limits, we sample instances from the datasets: 10000 instances
from the total 4898431 training instances and 500 instances from 311029 test
instances randomly. For convincing, we give three pairs of such training and
test samples. We have performed our experiments on larger samples, but the
experimental results on our larger samples have the same characteristics to the
results on the current samples.

4.1 Without Model Generalization

Table 2 lists the detection results when there is no generalization, and they are
regarded as the baseline costbase. Also in this table, the 2nd and 3rd columns
give the numbers of normal and intrusive instances in every sample pair.

Sample Norm. Intru. #NN #NA #II #IA #IN cost

Pair 1 103 397 0 103 203 193 1 1.01
Pair 2 91 409 0 91 216 193 0 0.932
Pair 3 108 392 5 103 193 198 1 1.02

Table 2. L0: without model generalization.

Among the detection results, more than half of intrusive instances are identi-
fied correctly (denoted by #II), but, in comparison, almost all normal instances
are detected incorrectly. To some extent, it indicates that the normal behaviors
are of great variety, and more generalization is needed to infer their statuses.
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Evaluating the Effects of Model Generalization 9

with the range merging step: without the range merging step:

L1 Gin #NN #NA #II #IA #IN cost #NN #NA #II #IA #IN cost

L1.4 0 35 68 280 115 2 0.65 6 97 278 118 1 0.824
L1.4 1 35 68 280 115 2 0.65 6 97 278 118 1 0.824
L1.4 2 35 68 281 114 2 0.648 6 97 278 118 1 0.824
L1.4 3 35 68 280 115 2 0.65 6 97 279 117 1 0.822
L1.4 4 35 68 281 114 2 0.648 6 97 279 117 1 0.822
L1.4 5 35 68 281 114 2 0.648 6 97 278 118 1 0.824
L1.4 10 35 68 280 115 2 0.65 6 97 279 117 1 0.822
L1.4 20 35 68 281 114 2 0.648 6 97 278 118 1 0.824

Table 3. L1.4 generalization on the 1st sample pair.

4.2 Evaluating L1 Model Generalization

Table 3 gives the detection performance on the 1st sample pair with L1.4 gen-
eralization, where Gin ∈ {0, 1, 2, 3, 4, 5, 10, 20}. Obviously, the value of Gin has
no influence on the detection performance in all aspects. The same phenomenon
is held in the other two sample pairs of our experiments as well. Thus, we let
Gin = 0 in the following experiments.

The utility of the range merging step. In Table 3, the range merging step
has contributed much to the performance enhancement by identifying more
normal behaviors. Note that the range merging step has little effect on the
identification ability for intrusive behaviors.

Table 4 gives the evaluation results on the four scenarios of L1 generalization.
We analyze their utility for intrusion detection, and their difference.

with the range merging step without the range merging step
L1 #NN #NA #II #IA #IN cost #NN #NA #II #IA #IN cost

(Pair 1) Normal:Intrusion=103:397
L1.1 6 97 241 155 1 0.898 0 103 203 193 1 1.01
L1.2 35 68 281 114 2 0.648 6 97 279 117 1 0.822
L1.3 35 68 280 115 2 0.65 6 97 278 118 1 0.824
L1.4 35 68 280 115 2 0.65 6 97 278 118 1 0.824
(Pair 2) Normal:Intrusion=91:409
L1.1 3 88 263 144 2 0.828 0 91 216 193 0 0.932
L1.2 39 52 294 113 2 0.55 7 84 294 113 2 0.742
L1.3 39 52 292 115 2 0.554 7 84 294 113 2 0.742
L1.4 39 52 290 117 2 0.558 7 84 290 117 2 0.75
(Pair 3) Normal:Intrusion=108:392
L1.1 9 99 234 154 4 0.926 5 103 193 198 1 1.02
L1.2 45 63 273 115 4 0.632 10 98 273 115 4 0.842
L1.3 45 63 273 115 4 0.632 10 98 273 115 4 0.842
L1.4 45 63 273 115 4 0.632 10 98 273 115 4 0.842

Table 4. L1 model generalization (L1.1∼4,Gin = 0).

The utility of the unknown subspace splitting step. L1.1 generaliza-
tion without the range merging step is L0, which has no generalization at all.
Comparing the detection results in Table 4 and Table 2, it is apparent that
the generalization led to by the unknown subspace splitting step is useful to
identify more instances, and significantly so for intrusive behaviors.

The difference between L1.2/3/4. The new false negatives caused by L1

generalization is negligible in all three sample pairs (with 1, 2 and 3 additional
ones). Overall, L1.2/3/4 have little difference on the detection results.

In summary, L1 generalization with L1.2/3/4 and range merging is useful
but the detection results are not sensitive to the splitting strategies. Therefore,
we arbitrarily select L1.4 with Gin = 0 in the following experiments.

Evaluating the Effects of Model Generalization on IDS Performance 429
 



10 Zhuowei Li, Amitabha Das and Jianying Zhou

4.3 Evaluating L2 Model Generalization

Figures 2 and 3 list the evaluation results highlighting the influence of grouping
and mutation operations on intrusion detection. In both figures, we only illus-
trate #NA, #IA and #IN but the numbers of #NN and #II can be deduced
with ease since the total of normal and intrusive behaviors remains constant.
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Fig. 2. L2 generalization-grouping (nMutate=0).

L2.1 grouping generalization. As indicated in Figure 2, the grouping oper-
ation enhances intrusion detection, and the detection performance on the three
samples have the same characteristics. Specifically, the overall detection perfor-
mance improves because of a reduction in the detection cost. With the increase
of nGroup, #NN and #II increase while #NA and #IA decrease, all of which
are desirable. One negative aspect of grouping generalization is the increase of
#IN with the increase of nGroup.

Overall, the generalization from the grouping mechanism is useful for intru-
sion detection even though it will lead to a few more false negatives. We choose
nGroup = 3 in the following experiments.

L2.2 mutation generalization. In Figure 3, the improvements caused by L2.2
mutation generalization is not that significant as L2.1 or L1 generalization. The
decreased extent of false positives, #NA, is neutralized by the increased extent
of false negatives, #IN . This fact is also reflected by the overall detection cost
in subfigure 3.d, which is reduced only by a very small extent. The mutation
operation will further worsen the negative aspects in grouping generalization.

In our case study, the L2.2 mutation generalization is useful but it is not
that significant. We select nMutate = 5 in evaluating L3 model generalization.

4.4 Evaluating L3 Model Generalization

In evaluating L3 generalization (Table 5), nGroup = 3 and nMutate = 5. In the
sample pair 1, all the normal behaviors are identified correctly, and most intru-
sions are also identified correctly (88.7%=352/397). In pair 1/2/3, most normal
behaviors can be identified correctly with fewer false positives (i.e., #NA, which
decreases with more generalization) after the model generalization (from L1 to
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The Effect of L2.2 Mutation Generalization
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(a) Pair 1 (Normal:Intrusion=103:397).
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(b) Pair 2 (Normal:Intrusion=91:409).

The Effect of L2.2 Mutation Generalization
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(c) Pair 3 (Normal:Intrusion=108:392).

The Cost Change with nMutate

0.2

0.22

0.24

0.26

0.28

0.3

0 1 2 3 4 5 6 7 8 9

nMutate

C
os

t

Pair 1 Pair 2 Pair 3

(d) Overall Performance w.r.t nMutate

Fig. 3. L2 generalization-mutation (nGroup=3).

Sample #NN #NA #II #IA #IN cost

Pair 1 103 0 352 4 41 0.254
Pair 2 89 2 375 9 25 0.18
Pair 3 105 3 353 2 37 0.244

Table 5. L3 generalization (nGroup=3,nMutate=5).

L3). In contrast, even though more intrusive behaviors are identified correctly
as well with more generalization, the false negatives (i.e., #IN ) increase to a
large extent (in comparison with Table 2).

4.5 The Implications of Model Generalization

In summary, model generalization is necessary for intrusion detection for iden-
tifying more behaviors correctly. The significance of every level of model gener-
alization for intrusion detection is summarized in Table 6.

Levels FP FN Utility

L0, L1.1 - - they act as an evaluation baseline to indicate whether model generalization
is necessary for intrusion detection. We also found that most intrusions are
identified even without generalization.

L1.2/3/4 ↓ - They improve the detection performance in our case study, significantly for
intrusive behaviors. Most importantly, they lead to only a few more false neg-
atives. Their difference are negligible.

Range
Merging
in L1

↓ - It is very useful to infer the statuses for normal behaviors, but it contributes
less in identifying intrusive behaviors. Another good point is that it does not
lead to more false negatives.

L2.1 ↓ ↑ The identification capability is significantly lifted with decreasing anomalies.
However, there is an optimal value for the number of grouping points, which
should be determined in advance.

L2.2 /L3 ↓ ↑ The identification capability is slightly lifted with decreasing anomalies. But
the increase of false negatives is so large that we should neglect the increase
of identification capabilities.

Table 6. The significance of different levels of model generalization. The symbol ‘↓’
represents ‘decrease’ and the symbol ‘↑’ represents ‘increase’. ‘-’ denotes that it will
not affect the parameter.
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5 Conclusions and Future Work
In this paper, we designed a formal framework to evaluate the effect of various
model generalization on intrusion detection in accordance with the reasonable-
ness of its underlying assumptions. In a case study, we applied it to identify the
implications of model generalization. We found that L1 generalization is gener-
ally useful to identify more ‘novel’ behaviors, especially for normal behaviors.
L2.1 generalization will benefit intrusion detection by significantly improving
the identification capability with slight increase of false negatives. The gains and
losses from applying L2.2 and L3 generalization should be considered seriously
under different application scenarios.

Even though our evaluation framework is generally applied to most scenarios
for intrusion detection, it should be pointed out that our conclusions are only
based on our case study on a typical dataset for intrusion detection. Our further
work is to collect datasets to further evaluate the utility of model generalization
in other areas, such as bioinformatics.
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