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Abstract. In recent years, we have seen the arrival of Distributed Denial-of-
Service (DDoS) open-source bot-based attack tools facilitating easy code 
enhancement, and so resulting in attack tools becoming more powerful. 
Developing new techniques for detecting and responding to the latest DDoS 
attacks often entails using attack traces to determine attack signatures and to 
test the techniques. However, obtaining actual attack traces is difficult, 
because the high-profile organizations that are typically attacked will not 
release monitored data as it may contain sensitive information. In this paper, 
we present a detailed study of the source code of the popular DDoS attack 
bots, Agobot, SDBot, RBot and Spybot to provide an in-depth understanding 
of the attacks in order to facilitate the design of more effective and efficient 
detection and mitigation techniques. 

1 Introduction 

In recent years, professionalism in Internet crime has advanced with the aid of open 
source attack tools, higher bandwidth connections and higher processing power of 
desktop workstations. Distributed Denial-of-Service (DDoS) attacks on high profile 
organizations are becoming prevalent and have received considerable media 
attention [1, 2]. A recent  survey [3] of 36 tier 1, tier 2 and hybrid IP network 
operators in North America, Europe and Asia indicated that DDoS attacks remain the 
foremost concern for the large network operators, with 64% indicating that DDoS 
attacks are the most significant operational security issue they face. 

Lately, DDoS attacks have been used by extortionists and business rivals against 
websites of banking and financial companies, online gambling firms, web retailers 
and government [4-8] to cripple their operations. These attacks are launched from a 
large pool of compromised computers in homes, education, business and government 
organizations. These compromised computers, referred to as bots, typically connect 
automatically to a remote Internet Relay Chat (IRC) server to enable remote control 
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by the attacker to form a  botnet [9, 10]. Botnets are used for generating spam emails, 
viruses, worms as well as DDoS attacks.  

In the past,  typical botnet sizes were as large as  hundreds of  thousands [11, 12], 
but, a recent report [13] has shown botnets to have “slimmed” down to an average of 
20,000 in order to be less visible and make detection more difficult. It also showed 
that blacklisted or worn-out botnets were being resold for DDoS attacks as these did 
not use email or viruses and so would not be caught by the blacklists or signature-
based antivirus products. A relatively small botnet comprising a few thousand bots 
can seriously damage a victim’s website or server as their combined bandwidth (e.g. 
1000 x each uplink bandwidth of 128kbps = 125 Mbps) can be higher than the 
Internet connection bandwidth of many corporate systems. 

Developing new techniques for detecting and responding to DDoS attacks often 
entails using attack traces to determine attack signatures and to test the techniques. 
However, obtaining actual attack traces can be very difficult, particularly for the 
latest attacks, because the high-profile organizations which are typically attacked 
will not release monitored data as it may contain sensitive information.  In addition, 
they often do not want to publicly admit to being attacked as this can damage their 
reputation. Analysis of the way bots behave in terms of the types of attacks they can 
generate, how they generate data within an attack message, the target port addresses 
they attack, how they generate legitimate or spoofed source addresses, can be used to 
formulate attack signatures and anomaly detection algorithms.     

In this paper, we present a detailed study of the source code of the popular DDoS 
attack bots. The availability of open source for bots and their modular design has led 
to thousands of variants of the popular ones which require very frequent updates of 
signature based anti-virus products to try to prevent infections and can outwit 
signature-based attack detection techniques. Analyzing the attack tools based on their 
source code enables a more in-depth understanding and presents a clearer picture of 
the attacks rather than studying the attack traces. We obtained the bot source code 
from hacker web and forum sites. We also discuss the implications of our findings on 
well-known DDoS mitigation techniques and emphasize the need to acquire an 
understanding of the attacks before being able to design and develop more effective 
and efficient mitigation techniques. 

Section 2 of the paper presents the related work discussing botnets. In Section 3, 
we describe 4 popular DDoS bots, namely Agobot, SDBot, RBot and Spybot. In 
Section 4, we discuss our findings and the implications on DDoS mitigation 
techniques. Section 5 concludes the paper. 

2 Related Work 

The evolution of botnets has resulted in them becoming the latest most prevalent 
threat on the Internet and so has resulted in significant research in the network 
security community to develop detection and response techniques. 

A Symantec white paper [14] discusses the design, coding and structure of the 
source code of popular bots and looks at how they have evolved with enhancement 
in network propagation, communication encryption and polymorphism. Observations 



A Survey of Bots Used for Distributed Denial of Service Attacks 231
 

on botnet activities, collected using Honeypots and mwcollect is described in [15]. 
180 botnets were tracked over 5 months to observe the coordinated activities within 
the botnets. Preventive mechanisms by identification of the activities and infiltration 
of the botnets to stop their operations, are proposed. In [16], an overview of the 
origins and structure of botnets is presented. It used data from the Internet Motion 
Sensor project [17] and Honeypot [18] to demonstrate the dangers of botnets due to 
their increase in number and their ability to exploit common system vulnerabilities 
such as the DCOM RPC [19] and LSASS [20]. Botnet detection by correlating data 
to pinpoint bots and botnet communications is also discussed. In [21], the authors 
studied the source code of popular bots and classified them according to their design 
and implementation characteristics, commands and control protocol, mechanisms to 
manipulate bots, propagation mechanisms, available vulnerabilities exploit, malware 
delivery mechanisms, obfuscation and detection evasion mechanisms. However, we 
could not find any existing reports providing a thorough understanding of the inner 
working and characteristics of the DDoS attack tools used in bots. Therefore, we 
conduct an in-depth study on these tools in this paper. 

3 DDoS Bots 

We studied the DDoS source code of 4 popular bots, namely Agobot, SDBot, RBot 
and Spybot [22-24] and present the details of the attacks in this section. These 
botnets have a few hundred to thousand variants due to multiple authors working to 
enhance the exploitation, propagation and communication code. We chose the 
version with the most advanced DDoS attack tools. 

3.1 Agobot 

Agobot is one of the most popular bots with the Anti-Virus vendor, Sophos [24], 
listing over 600 different versions. Variants of Agobot include Gaobot, Nortonbot, 
Phatbot and Polybot. The source code that we studied is the widely available 
“current” version of Phatbot, written in C++ and provides cross platform capabilities. 
The bot is structured in a modular way and allows new attacks to be easily added. Of 
all the bots studied, this has the most comprehensive set of DDoS attack tools, with 
the following attack commands: 
• ddos.synflood <host> <time> <delay> <port> 
• ddos.udpflood <host> <port> <time> <delay> 
• ddos.httpflood <url> <number> <referrer> <delay> <recursive> 
• ddos.phatsyn <host> <time> <delay> <port> 
• ddos.phaticmp <host> <time> <delay> 
• ddos.phatwonk <host> <time> <delay> 
• ddos.targa3 <host> <time> 
• ddos.stop 

In all the above attacks, host is the IP address of the victim, time is the duration 
of the attack in secs, delay is the interval in msecs between sending attack packets, 
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and port is the victim’s destination port. Other dynamic or attack specific parameters 
are presented as follows. 

In the synflood attack, if port = 0, a random port number from 1000 to 10000 will 
be generated for each attack packet, otherwise, the one provided will be used. In the 
IP header, the identification (ID) field is set to 1 and the Time-to-Live (TTL) to 128. 
In the TCP header, the SYN flag is set and the window size is set to 16384. The TCP 
sequence number for each attack packet is formed by performing a binary OR on 2 
32-bit randomly generated numbers (with one been left shifted by 16 bits). For each 
attack packet sent, each byte of the source IP address is randomly generated from 0 
to 255 and the source port is randomly generated from 1000 to 2000.  

In the udpflood attack, if port = 0, the destination port number will be randomly 
generated from 1 to 65535 for every attack packet. The 2-byte network prefix (i.e. 
x1.x2) of the source IP address (i.e. x1.x2.x3.x4) is initialized to that of the attacking 
node (i.e. local address y1.y2.y3.y4) or “255.255” if an error occurs while retrieving 
the local address. y2, y3 and y4 of the local address are stored in 3 counters and 
incremented in nested loops for each packet. The counter for y4 is incremented and 
reset to 1 after 254 and the counter for y3 is incremented. The counter for y3 is reset 
to 0 after 254 and the counter for y2 is incremented (also reset to 0 after 254 is 
reached). The above mentioned process is used to generate x2 of the source IP 
address. x1, which is equal to y1 remains the same for all the packets. x3 and x4 of 
the source IP address are randomly generated from 0 to 253 and 1 to 253, 
respectively. The data portion of the packet is 256 bytes and is filled with the 
character ‘A’. The attack packet source port is a random number from 1000 to 2000. 

In the httpflood attack, url is the web address to be accessed and number is the 
number of requests to be made to the specified address. Referrer is provided by the 
attacker and used in the http request. If the delay = 0, a random delay in the range of 
1 msec to 24 hours is generated at the end of each cycle of a request (including 
recursive requests) for a URL. If recursive = 0, only the URL is accessed, otherwise, 
a recursive request on the page’s resources is performed.  

In the phatsyn attack, the destination port number is randomized from 0 to 65535 
for each attack packet if the one provided is 0. The SYN and URG flags in the TCP 
header are set. For each attack packet, the ID and TTL fields in the IP header are 
randomly generated from 1024 to 65535 and 200 to 255, respectively, while the TCP 
source port, ACK number, window size and URP (offset for computing sequence 
number of last byte of urgent data) field are randomly generated from 0 to 65535. 
The TCP sequence number is formed by adding 2 randomly generated numbers from 
0 to 65535 with one number left shifted by 8 bits. The 2-byte network prefix of the 
source IP address is set to that of the victim’s, while the lower 2 bytes are randomly 
generated from 1 to 254 for each attack packet. 

In the phaticmp attack, the destination port is hard-coded to 0. For each attack 
packet, the Type-of-Service (TOS), ID, more fragmentations, total length and TTL 
fields in the IP header are set to 4, 1234, 1, 0 and 255, respectively. The type and 
code fields in the ICMP header are randomly generated from 0 to 17 and 0 to 14, 
respectively. The 2-byte network prefix of the source IP address is set to that of the 
victim’s, while the lower 2 bytes are randomly generated from 1 to 254. 

In the phatwonk attack, 28 victim’s ports (i.e. 1025, 21, 22, 23, 25, 53, 80, 81, 88, 
110, 113, 119, 135, 137, 139, 143, 443, 445, 1024, 1433, 1500, 1720, 3306, 3389, 
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5000, 6667, 8000, 8080) are scanned to discover open ones. The port numbers of the 
open ports are placed in an array of size 28. The destination port to be used in the 
entire attack is chosen from the array of open ports or randomly generated if any of 
the entries is 0. The selection process ends after 28 iterations or when the attack 
duration time has expired, whichever happens first. 1 TCP SYN packet and 1023 
TCP ACK packets are sent to the victim per inner loop for the attack duration. The 
TOS, ID and TTL fields in the IP header are set to 8, a random number from 1024 to 
65535, and 255, respectively, each time the outer loop is run. In each run, the most 
significant 2 bytes of the source IP address are randomly generated from 1 to 
hexadecimal FFFE and the least significant 2 bytes are set to that of the victim’s IP 
address. Assume that x1.x2.x3.x4 represents the IP address, then, x1.x2 remains the 
same as the victim’s IP address while x3 ranges from 1 to 254 and x4 ranges from 0 
to 255. The source port, window size, sequence number and data offset fields in the 
TCP header are set to a random number from 0 to 65535, 16384, an addition of 2 
random numbers from 0 to 65535 with one been left shifted by 8 bits, and 5, 
respectively, for each run of the outer loop. In the inner loop, the IP ID field and the 
TCP sequence number are incremented for each of the 1024 attack packets. 

In the targa3 attack, the destination port number is set to 666. The IP header 
protocol field and fragmentation offset field are randomly chosen from a set of 14 
(i.e. 0, 1, 2, 4, 6, 8, 12, 17, 22, 41, 58, 255, random number from 0 to 254) and 10 
integers (i.e. 0, 0, 0, 8192, 4, 6, 16383, 1, random number from 0 to 8099), 
respectively, for each packet sent. The last integer in each array is randomly 
generated. The source IP address has the 24-bit network prefix set to that of the 
attacking node. The last byte of the address is randomly generated from 0 to 254. 
The TOS, ID and TTL fields in the IP header are set to 4, a randomly generated 
number from 0 to RAND_MAX (based on the compiler) and 255, respectively. 

Lastly, the stop command allows the synflood, udpflood and httpflood attacks to 
be stopped if they are running. 

3.2 SDBot 

SDBot is another popular bot with over 1800 variants. The widely available version 
is 0.5b, but only comes with ping and udp flooding tools, whereas the “SYN Flood 
Edition” includes TCP SYN flooding attacks. SDBot is written in C++ and targets 
Windows systems. The DDoS commands are as follow: 
• udp <host> <number> <packet size> <delay> <port> 
• ping <host> <number> <packet size> <delay> 
• syn <host> <port> <time> 

In the above attacks, host is the victim IP address, number is the number of 
attack packets to send, packet size is the size of each attack packet in bytes, delay is 
the interval in msecs between every attack packet sent and is set to 1 if < 1, port is 
the victim’s destination port number and time is the duration of the attack in secs.  

In the udp attack, the code restricts the port number to be from 1 to 65535. The 
data contents in the packets are filled with randomly generated bytes from 0 to 254. 
The actual size of the packet is randomized by subtracting a random number ranging 
from 0 to 9 from the packet size parameter provided, for each attack packet.  
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In the ping attack, the ICMP.DLL API is used. The ICMP Echo Request 
messages are used as the attack packets. The packet size is restricted to be ≤ 65535.  

In the syn attack, the bot’s registry entries and executables are removed from the 
system if a syn attack fails and the REMOVE_NONSYNNERS macro is defined. 
However, it is commented out of the code. The source IP address is initialized by 
adding the victim’s address (as unsigned long integer) to 256 and a random number 
from 0 to 511. The ID and TTL fields in the IP header are set to 1 and 128, 
respectively. The SYN flag is set in the TCP header and the window size is set to 
16384. For each attack packet, the source IP address is incremented by 1 and the 
TCP source port is randomly generated from 1000 to 2000. The TCP sequence 
number is formed by performing a binary OR on 2 randomly generated numbers 
(with one been left shifted by 16 bits). 

3.3 RBot 

RBot has over 1600 variants. It is also written in C++ and targets Windows systems. 
The version we studied is the one with the LSASS exploit and master password for 
scanning and compromising Optix servers. The DDoS commands include: 
• ddos.syn/ddos.ack/ddos.random <host> <port> <time> 
• synflood/syn <host> <port> <time> 
• tcpflood/tcp <type> <host> <port> <time> [-r] 
• icmpflood/Icmp <host> <time> [-r] 
• pingflood/ping <host> <number> <size> <delay> 
• udpflood/udp <host> <number> <size> <delay> <port> 

In the above attacks, host, port, time, number, and delay have the same meaning 
as for the SDBot, size is the size of each attack packet in bytes, and if the optional 
parameter ‘r’ is provided, source IP address spoofing is used. 

The ddos.syn, ddos.ack and ddos.random attacks exist in the same code module. 
For the ddos.syn attack, the ACK number in the TCP header is set to 0 and the SYN 
flag is set. For the ddos.ack attack, the ACK number in the TCP header is set to 0 
and the ACK flag is also set. For the ddos.random attack, the ACK number in the 
TCP header is set to a random number from 0 to 2 and the SYN or ACK flag is set 
based on a probability of 0.5. In the attack packets, the ID and TTL fields in the IP 
header are set to 1 and 128, respectively. The source IP address is initialized by 
adding the victim’s address (in the unsigned long integer format) to 256 and a 
random number from 0 to 511. It is then incremented by 1 for each packet. The TCP 
source port is randomized from 1000 to 2000 and the sequence number is formed by 
performing a binary OR on 2 randomly generated numbers (with one been left 
shifted by 16 bits). The TCP window size is set to 16384.  

The synflood or syn attack code is based on the one in SDBot. However, the non-
synners remover code is not implemented here.  

In the tcpflood or tcp attack, the parameter type allows the attacker to specify a 
“syn”, “ack” or “random” TCP attack. It has the same settings of flag and ACK 
number based on the attack type as in the ddos.syn/ddos.ack/ddos.random attacks. 
The ID and TTL fields in the IP header are set to 1 and 128, respectively. If the 
parameter ‘r’ is used, source address spoofing is performed. Otherwise, the real 
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source address of the attacking host will be used. The spoofed source IP address is 
generated by adding 4 randomly generated numbers with the 2nd, 3rd and 4th number 
left shifted by 8, 16 and 24 bits, respectively. Each number is in the range of 0 to 
RAND_MAX. The TCP source port is randomized from 0 to 1024 and the sequence 
number is set to the hexadecimal number 12345678. The TCP destination port is 
randomized from 0 to 1024 if port = 0. The TCP window size is set to 512.  

In the icmpflood or icmp attack, the source IP address is generated similarly to 
that in the above tcpflood/tcp attack. The destination port is set to 0. The ID and TTL 
fields in the IP header are set to 1 and 128, respectively. For each attack packet, the 
ICMP type and code are random numbers from 0 to 255. The ICMP ID number is 
randomly generated from 1 to 240, and the ICMP sequence number is set to 1. The 
data portion is filled with bytes randomly generated from 0 to 254. 

The pingflood or ping attack code is based on the one in the SDBot, and is similar 
in characteristics and functions used (i.e. ICMP.DLL API). 

The udpflood or udp attack is similar to the one in the SDBot. 

3.4 Spybot 

Spybot is written in C and also affects Windows systems. It has over 200 variants 
currently and the version we studied is 2.0. It has more spreading abilities than the 
original version written by the author known as Mich. The DDoS commands are: 
• syn <host> <port> <delay> <number> 
• spoofdsyn <host> <port> <delay> <number> 
• ping <host> <port> <delay> <number> 

In the above attacks, the parameters have the same meaning as for the SDBot. 
In the syn attack, socket connections are made to the victim and closed after the 

connection attempts and delay is forced to a minimum of 5 msec. The source IP 
address is not spoofed and the source port is randomly generated by the system. 

In the spoofdsyn attack, delay is forced to a minimum of 5 msec. The ID and 
TTL fields in the IP header are set to 1 and 128, respectively. For each packet, each 
byte of the source IP address is randomized from 0 to 254. The SYN flag is set in the 
TCP header and the window size is set to 16384. The TCP source port is randomly 
generated from 1000 to 2000. The TCP sequence number is formed by performing a 
binary OR on 2 randomly generated numbers (with one been left shifted by 16 bits). 

In the ping attack, the ICMP.DLL API is used. ICMP Echo Request messages are 
used as the attack packets. The destination port number is set to 65500 if greater and 
delay is forced to a minimum of 1 msec. Each byte of the data is set to the integer 37. 

4 Analysis and Discussions 

4.1 Bot Features 

Most of the tools provide source IP address spoofing (either in whole or in part) and 
randomization of the source ports, destination ports, other header fields such as the 
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TCP sequence number, and the data contents of the attack packets. With a high 
degree of randomization, it makes mitigation such as dropping the traffic difficult 
due to the problem of accurately identifying the signature or pattern of the attack 
packets. However, if there is no restriction on the randomization of fields, this will 
result in more anomaly values appearing and so easing the detection of the presence 
of attacks. For example, performing partial source IP address spoofing reduces the 
randomness of the attack packets. However, if the addresses produced are within the 
safe range of legitimate addresses, this will reduce the chance of triggering a defense 
alarm mechanism. On the other hand, randomization without restrictions of 
destination port numbers or IP protocol types would raise alarms due to obvious 
anomalies such as hitting closed ports or unassigned network services. Thus, a high 
degree of randomization eases detection of the presence of an ongoing attack (e.g. 
through packet sampling). However, mitigation by means of checking the validity of 
each individual packet and dropping them are more difficult without a common 
identifiable signature. 

All the attack tools that perform source IP address spoofing have different ways 
of forming the address from the randomly generated numbers. However, all of them 
prevent setting the final byte to 255 which will translate to a broadcast address. 
Source port randomization, though provided, is not really necessary as it will be 
randomly generated anyway if socket binding is not performed. Ranges of 
destination port numbers generated include 1000 to 10000, 0 to 65535, and 1 to 
65535. However, some of these ports are still unassigned with only 0 to 1023 in the 
“Well-known ports” range. Therefore, most of these ports will most likely be closed 
at the victim. Randomization of the IP identification and fragmentation offset fields 
are most likely used to deter mitigation. However, it is not very useful since 
providing a value of 0 would allow the attack traffic to mix in well with the 
legitimate traffic as most Internet traffic does not require fragmentation. IP Time-to-
Live field randomization could hide the actual hop counts traversed by the packets 
though it is not particularly useful since hop counts could not reveal the exact 
location of the attacking host anyway.  

Agobot, SDBot and RBot all support SYN flood attacks, but RBot’s ddos.random 
attack is the most dangerous SYN attack tool as it can randomly generate SYN and 
ACK packets thereby circumventing mitigation techniques which try to correlate 
TCP SYN and ACK according to the protocol characteristics. Next in line would be 
Agobot’s ddos.phatsyn as it set the URG flag which allows the packet to have a high 
priority. When the TCP/IP stack at the server sees a packet with the URG flag set, it 
is duty bound to stop what it is doing and immediately send this packet to the server. 
RBot’s ddos.syn and SDBot/RBot’s syn simply provide standard SYN packets 
flooding with partially spoofed source IP address and randomized sequence numbers. 
The last five tools are Agobot’s ddos.synflood and Spybot’s spoofdsyn, which spoofs 
all 4 bytes of the source IP addresses, RBot’s tcpflood syn and random, which fixes 
the TCP sequence number for all the packets to hexadecimal number 12345678, and 
Spybot’s syn, which performs connection and disconnection attempts of sockets and 
does not provide source IP address spoofing. 

For the UDP flood tools, we have the Agobot’s ddos.udpflood and SDBot/RBot’s 
udp. However, Agobot’s ddos.udpflood filled its data with the character ‘A’ which 
simiplifies signature-based detection. SDBot/RBot’s udp tool randomized its data but 
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only during initialization. It also randomizes its packet size but it has no source IP 
address spoofing. It is possible that future versions will combine the advantageous 
features of both tools while also randomizing the data contents for each attack packet 
which would make detection difficult.  

For the ICMP flood tools, we have the Agobot ddos.phaticmp and RBot 
icmpflood. Agobot’s ddos.phaticmp is slightly superior to RBot’s as it limits its 
ICMP type spoofing from 0 to 17 and code spoofing from 0 to 14, instead of 0 to 255 
in RBot. The Type-of-Service flag is set to 4 for route selection to maximize 
throughput if supported. In ICMP, type 1, 2 and 7 are not assigned and most types 
have no code at all. Spoofing an invalid type or type/code combination would 
therefore trigger the DDoS detection alarm. However, the chance of Agobot 
triggering an alarm is less than for RBot due to its type and code spoofing 
restrictions, though attack signature-based detection is slightly easier  for Agobot due 
to this restriction and the fact that the identification field is fixed to the value of 
1234. 

SDBot/RBot and Spybot ping tools simply provide ICMP Echo Request messages 
flooding. It does not have any source IP address spoofing capability and is similar in 
function to a common ping, though Spybot’s is distinguishable from its data contents 
which have the value 37. Agobot is the only one with HTTP requests flooding tool to 
emulate legitimate requests of resources from web servers. Source IP address 
spoofing is not used since information of subsequent resources to be retrieved has to 
be known to continue the recursive attacks. It also makes the attack indistinguishable 
from legitimate requests. 

Agobot’s ddos.phatwonk attack has the advantage of scanning for a list of ports to 
check if they are open before attempting to flood it with SYN and ACK packets. 
However, a balance of 0.5 probability of generating either SYN or ACK packets 
would reduce anomalies rather than the 1 SYN followed by 1023 ACK packets for 
each round of flooding. In Agobot’s targa3 attack, the destination port is set to 666, 
which is the designated port for a popular multiplayer PC game, Doom. However, 
the list of IP protocol types to use will raise anomalies as only the TCP and UDP 
network services are typically supported for port 666. RBot’s ddos.ack and tcpflood 
ack attack tools simply flood the victim with TCP ACK packets. However, RBot’s 
tcpflood ack has the same disadvantage as its tcpflood syn and random whereby the 
TCP sequence number is set to hexadecimal number 12345678. 

The main purpose of the above analysis and discussion is not to advise on how to 
enhance attack tools to circumvent current mitigation techniques, but to raise the 
awareness to the network security research community that making changes to 
improve on the attack tools is possible and easy. When designing and developing 
network security products, we have to bear in mind the need to foresee the future 
attacks that the attackers would be able to come up with to “challenge” the 
mitigation techniques and systems. 

4.2 Implications on Mitigation Techniques 

We see that source IP address spoofing remains a security issue. Although it could be 
postulated that since bots are used in current DDoS attacks, tracing the source of 
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attack does not lead to the attack controller, so source spoofing is not really needed. 
However, managing bots is not an easy task for attackers and often attackers 
maintain ownership of their botnets to rent out for fees. Therefore, they want to make 
sure the bots are not traced and neutralized. Thus, source address spoofing is still 
used in the DDoS attack tools to deter detection. Ingress filtering removes any traffic 
from a customer site to the Internet which has invalid source addresses i.e. not within 
the range allocated to the customer. Egress filtering on traffic from the Internet to a 
customer site discards traffic with “illegitimate” source addresses such as 
private/reserved IP addresses or addresses within the domain of the customer site. 
Although ingress and egress filtering [25, 26] is performed, it is not universally 
applied and so does not completely prevent DDoS attacks with spoofed source 
addresses.  In addition some attack tools circumvent this filtering by spoofing source 
addresses from within the network of the bot. [27] is a technique used to infer hop 
count information from the Time-to-Live value in the IP header to determine if 
source IP address spoofing has been performed and thus detect if the traffic is 
legitimate or not. However, in the case of internal source address spoofing, it would 
fail to tell the difference since the hop count would not differ greatly from the 
legitimate source. Backscatter analysis [28] also proves that source address spoofing 
is indeed still widely used in current attacks while [29] shows that spoofing remains 
a serious problem to Internet security.  

In [30], a DDoS TCP SYN flooding detection mechanism, SYN-dog, was 
proposed based on the protocol behavior of the TCP SYN – SYN/ACK pairs to 
detect source IP address spoofing, which is used in TCP SYN flood attacks. The 
non-parametric Cumulative Sum (CUSUM) method [31] was applied to make the 
scheme insensitive to site and access pattern. SYN-dog was meant to be 
implemented near the flooding sources as with a spoofed source address, a TCP SYN 
packet sent out to a server would not result in receiving a SYN/ACK packet. 
However, we noticed in the attack source code that it is possible for attackers to send 
out randomized SYN or ACK packets, imitating the three-way handshake. Therefore, 
this mechanism will not work at the victim end as there is unlikely to be much 
variation in the number of SYN and ACK packets seen by the victim or within the 
network.   

5 Conclusion 

In this paper, we presented a detailed study of the functionalities of the popular 
DDoS attack bots, namely Agobot, SDBot RBot and Sybot. We found that analyzing 
the attack tools based on their source code to give an in-depth understanding of the 
attacks is better than studying attack traces which are difficult to obtain.  The 
information presented on the attack tools can be used to design both detection and 
attack mitigation techniques. 

One of the most important characteristics is the degree of randomization of 
addresses, protocol fields and data contents. Greater randomization can ease 
detection as more anomalies are generated but can make mitigation more difficult as 
specifying packet signatures for filtering becomes harder. We have also given a 
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comparison between the attack tools in the bots and provided a view of possible 
enhancements on the tools in the foreseeable future. 

We have shown that well-known DDoS mitigation techniques can be easily 
bypassed. For example, partial source IP address spoofing circumvents ingress and 
egress filtering and hop count filtering. Randomization of SYN and ACK packet 
generation makes some SYN flood detection mechanisms ineffective. Therefore, we 
see the need to acquire an understanding of the attacks before being able to design 
and develop more effective and efficient mitigation techniques. 

As the modular design and open source nature make modifications and 
implementation of additional features easy for the bot authors, there will always be a 
race between the attackers, and network security providers to see who can be the 
most innovative. Therefore, it is important that network security products are able to 
get a grasp on the latest attack tools in use today and possibly in the future, and 
incorporate learning techniques and adaptive mechanisms to provide timely 
responses to the new variants of attack tools. 
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