
A B Formal Framework for Security
Developments in the Domain of
Smart Card Applications

Frédéric Dadeau, Marie-Laure Potet, Régis Tissot

Abstract We propose in this paper a formal framework based on the B
method, that supports the development of secured smart card applications.
Accordingly to the Common Criteria methodology, we focus on the formal
definition and modelling of access control policies by means of dedicated B
models expressing, on one hand, the access control rules, and, on the other
hand, the dynamics of the system. These models are then weaved to produce a
security kernel. From there, we propose a conformance relationship that aims
at establishing whether a concrete representation of the system complies, at
the security level, with the security kernel. This embraces both a well-defined
notion of security conformance as well as traceability allowing to relate basic
events appearing at the level of applications with abstract security policies.
This approach is put in practice on an industrial case study in the context of
the POSÉ project, involving both academic and industrial partners.

Key words: Access Control, B Method, Security Model, Traceability, Com-
mon Criteria, Conformance Relation

1 Introduction

Security requirements, as functional aspects, must be taken into account
along the global development process of applications. For instance, in the
Common Criteria (CC) approach, security is specified as a set of security

Frédéric Dadeau, Régis Tissot
Laboratoire d’Informatique de Franche-Comté, 16 route de Gray, F-25030 Besançon cedex,
e-mail: {dadeau,tissot}@lifc.univ-fcomte.fr

Marie-Laure Potet
Laboratoire d’Informatique de Grenoble, BP. 72 – F-38402 Saint-Martin d’Hères cedex,
e-mail: Marie-Laure.Potet@imag.fr

141

142 Frédéric Dadeau, Marie-Laure Potet, Régis Tissot

functional components [7] and the development process must then supply
some assurances relatively to these security requirements [8]. The main as-
surance classes are relative to the design of the application to be evaluated
(ADV), how functional testing have to be conducted (ATE) and to the vul-
nerability analysis (AVA). The result is a level of confidence, based on the
measures taken during the development process. Furthermore, based on the
functional and assurance components which are selected, CC evaluations rely
on the principle of presentations of evidences, which explain how security
functionalities are really guaranteed. For instance, testing assurance must es-
tablish how security requirements are covered. On the other hand, functional
specifications must be established complete and consistent with the security
functionalities requirements. The CC norm is then strongly based on the no-
tion of specifications (models) and traceability (presentations of evidences).

On the other hand, smart cards play an important role in the information
systems security. They supply a medium for authentication, confidentiality
and integrity. Security in smart cards is based on hardware mechanisms and
operating system protections and, at the level of applications, on some secu-
rity properties that can be established. Because smart cards become a cen-
tral piece of every day citizen security, as high-security identification cards,
public transport, payment or healthcare cards, it is crucial to produce some
evidences in term of security. Due to the increasing number of such appli-
cations, methodologies must be elaborated, in order to dispose of validation
processes which can be reproduced and automated.

This paper presents a formal framework dedicated to the development of
secure smart cart applications, based on the B method [2]. This work has
been developed in the national french ANR project named POSÉ that aims
at proposing an effective approach, adapted to security and development en-
gineer practices. Section 2 describes the context of the POSÉ project and the
proposed approach. Section 3 describes the security model level and Section
4 shows how conformance between an application and a security model can be
characterized. Then, Section 5 illustrates our approach on a real smart card
case study and its use in a model-based testing process. Finally, conclusion
and perspectives are presented in Sect. 6.

2 The Context

The POSÉ project1 is dedicated to the validation of smart card applications,
using a model-based testing approach [22]. Model-based testing consists in
using the formal model to support the computation of test cases and the asso-
ciated test oracle, namely, the result expected after the execution of the test
case. Then, abstract test cases have to be concretized to be run on the system
under test. In this process, the major difficulty is to relate the abstract data

1 http://www.rntl-pose.info

A B Formal Framework for Security Developments of Smart Card Applications 143

(operations signatures and abstract values) to the concrete data of the imple-
mentation (method signatures and concrete values). The partners2 implied
in this project are Gemalto, the world leader in smart cards technology sup-
pliers, LEIRIOS Technologies and its model-based test generation LTG tool,
SILICOMP-AQL an accredited organization in security certification and two
academic partners, the LIG (Grenoble) and LIFC (Besançon).

2.1 The POSÉ Approach

A model-based testing approach is deployed at Gemalto, using the Leirios
Test Generator tool [14] based on B. The POSÉ project addresses the exten-
sion of this approach to take specific security properties into account. More
precisely, addressed topics are how security requirements can be formalized
and linked to a functional model, in order to be exploited for security model-
based testing. One of the major challenge was to re-use the concretization
platform, which links the abstract specifications with the APDU communica-
tion level [13]. Furthermore, also for industrial reasons, a compatibility with
the Common Criteria norm was expected, in order to re-use the methodology
for validation testing, to satisfy evaluations levels EAL 4, 4+ or 5 [9].

The POSÉ project focuses on access control policies for several reasons.
First, as pointed out previously, data protection is a central piece of security in
smart card applications. Furthermore, this aspect becomes more important
when smart card standardized platforms are considered. For instance, the
POSÉ case study is based on the notion of objects (data, file and directory
files) which carry their own access control rules. Thus, the correctness of the
access control implementation is very crucial, as well as the personalization
phase which instantiates the platform for a given set of controlled objects.
Access control which is considered here is the control of subjects executing
some operations on some of the protected objects. These rules depend on
security attributes, such as the files life cycle. Second, we are interested in the
dynamic aspects of access control policy, i.e., how permissions evolve during
the system execution. Thus, a security model will describe both the access
control entities (subject, object, conditional rules) and the dynamic part of
the controlled operations. In this way, access control can be specified as a set
of admissible traces. A similar approach is adopted by F. Schneider [19] who
characterizes access control by security automata.

When security is dedicated to the control of operation execution, trace-
ability and conformance consist in establishing a correspondence between
behaviors admitted by the security model and behaviors admitted by the
application. Contrary to functional conformance, where a specification and
an implementation are compared, there is here no direct correspondence be-
tween secured operations and the interface of applications. Thus, a mapping

2 http://www.gemalto.com, http://www.leirios.com, http://www.aql.fr

144 Frédéric Dadeau, Marie-Laure Potet, Régis Tissot

Informal specifications

Application model
AI

Trace in TI

Security model
SF

Trace in TS

Mapping

Conformance

Fig. 1 Principle of the approach

relation must be given, in order to decompose application interfaces in terms
of secured operations. The proposed approach is depicted in Fig. 1.

Intuitively, traces accepted by the application can also be accepted by
the security model, through the mapping relation. Thus, the conformance
reduces to the inclusion, apart from the mapping. In sections 3 and 4, we
describe the formal framework capturing both modelling and conformance.
This framework is based on the B method because B was already used in
the existing model-based testing approach [6] and it is also well-suited to the
definition of conformance.

2.2 A Brief Introduction to the B Method

The B method [2] is dedicated to the formal development, from high level
specification to implementable code. Specifications are based on three for-
malisms: data are specified using a set theory, properties are first-order pred-
icates and the behaviors are specified by Generalized Substitutions. A for-
mal development process is supported through a refinement relation. The
B method has been applied in industrial applications, such as the railway do-
main [3] and in the context of JavaCard application or environment [17, 5].

Generalized Substitutions can be defined by the Weakest Precondition
(WP) semantics, introduced by E.W. Dijkstra [10], and denoted here by
[S]R. [x := e]R is the substitution of free occurrences of x in R by e. Table 1
presents other useful WP definition examples (in which z is a fresh variable).

From generalized substitutions, the following predicates can be computed
(x being the state variables attached to the substitution S and x

′ the values
of x after the substitution):

trm(S) =̂ [S]true termination
prdx(S) =̂ ¬[S]¬(x′ = x) before-after predicate
fis(S) =̂ ∃x prdx(S) feasibility

Operation definitions are of the form o ← op(i) =̂ pre P then S

end. An operation is characterized by its termination and its before-after
predicate. The Event B extension [1], dedicated to dynamic aspects, is based
on another execution model. Events are of the form select P then S end.

A B Formal Framework for Security Developments of Smart Card Applications 145

[x, y := e, f] R ⇔ [z:=f][x:=e][y:=z] multiple substitution
[skip] R ⇔ R null substitution
[pre P then S end] R ⇔ P ∧ [S] R preconditioned substitution
[select P then S end] R ⇔ P ⇒ [S] R guarded substitution
[S1 ; S2] R ⇔ [S1] [S2] R sequential substitution
[choice S1 or S2 end] R ⇔ ([S1]R) ∧ ([S2]R) bounded choice substitution
[var x in S end] R ⇔ ∀ x [S] R substitution with local variable

Table 1 Some Weakest Precondition calculus definitions

An event is characterized by its before-after predicate and as soon as the
event is feasible, it can be enabled. Feasibility is considered here as a guard.

Abstract models can be proved and refined (see Fig. 3 and 5 for examples).
First, invariants can be stated: the proofs consist in showing that invariants
are established by the initialization part and preserved by each operation
definitions. Then, the refinement process consists in building a more concrete
model and establishing the refinement relation. The refinement is based on
a gluing invariant linking abstract and concrete variables. Refinement proof
obligations consists in showing that the concrete initialization refines the
abstract one, and that each concrete operation refines its abstract definition.
A substitution S is refined by a substitution T , with respect to the gluing
invariant L (S ⊑L T) if and only if:

L ∧ trm(S) ⇒ [T]¬[S]¬L

3 Formal Security Models

As stated in Sect. 2.1 we are interested by both access control rules and the
dynamic evolution of security attributes. In order to be compatible with the
Common Criteria security functional requirements, a security model will be
constituted by two parts: a rule-based model, describing classical aspects of
access control and a dynamic model, describing how security attributes evolve.
The rule-based model corresponds to components of families FDP ACC and
FDP ACF (access control policy and access control functions) of the Com-
mon Criteria, and the dynamic model corresponds to components of family
FMT MSA (Management of Security Attributes) [7]. These two models will
be stated by means of B specifications. In this way, security properties can
be proved as invariants relative to object, subject and security attributes.

3.1 B Security Model

The rule-based model describes which subjects are authorized to execute
which operations on a controlled object, depending on some conditions rela-
tive to security attribute values. Permissions (the only kind considered here)

146 Frédéric Dadeau, Marie-Laure Potet, Régis Tissot

machine e_purse_rules

sets

SUBJECTS={admin, bank, pda}; OPERATIONS={checkPin, credit, ...};
MODE={perso, use, invalid}

constants

permission,

/* Security attributes: */

mode, isHoldAuth

properties

mode ∈ MODE ∧ isHoldAuth ∈ BOOL ∧
permission ∈ (SUBJECTS ↔ OPERATIONS) ∧

/* Access control rules: */

(mode=use ⇒ (bank %→ checkPin) ∈ permission) ∧
((mode=use ∧ isHoldAuth=TRUE) ⇒ (bank %→ credit) ∈ permission) ∧
...

end

Fig. 2 Formal model expressing the e-purse security rules

are defined as triplets belonging to a relation of the form SUBJECTS ↔
OPERATIONS ↔ OBJECTS, where A ↔ B stands for a binary relation be-
tween A and B, and a "→ b is the representation associated to pairs. Security
attributes are specified as abstract constants and conditions are predicates
on these constants. An example is given in Fig. 2.

In smart card applications, subjects generally correspond to the type of
authentication and access control depends on the life cycle of the card or the
applet. We illustrate this with an example of an electronic purse (e-purse),
in which some operations may only be executed from specific terminals that
represent the subjects. We distinguish three kinds of terminals: administrative
terminals dedicated to personalization, bank and pda terminals. An access
rule of the security policy states, for example, that the checkPin operation,
that compares the holder PIN code for its authentication can only be executed
from a bank terminal. In the same way, the holder authentication is also
a security attribute. Another rule states that a credit command can be
executed only if the holder has been authenticated.

The dynamic model describes how objects, subjects and security attributes
evolve through a set of basic operations, including controlled operations.
The dynamic model should fulfill several properties relative to the rule-based
model: all controlled operations must be defined in the dynamic model; more-
over, this latter must contain two special entities, named subject and object,
denoting respectively the current subject and object values. The dynamic
description of the checkPin operation is given in Fig. 3. Because, in this ex-
ample, the access control does not imply any object, their related definitions
are omitted.

A B Formal Framework for Security Developments of Smart Card Applications 147

machine e purse dynamic

sets

SUBJECTS={admin, bank, pda}; MODE={perso, use, invalid}
variables

subject, mode, isHoldAuth

invariant

subject ∈ SUBJECTS ∧ mode ∈ MODE ∧ isHoldAuth ∈ BOOL

initialisation

subject :∈ SUBJECTS ∥ mode := perso ∥ isHoldAuth := FALSE

operations

res ← checkPin(p) =̂
pre p ∈ 0..9999 then

choice isHoldAuth := TRUE ∥ res := success

or isHoldAuth := FALSE ∥ mode := invalid ∥ res := blocked

or isHoldAuth := FALSE ∥ res := failure

end

end

...

end

Fig. 3 Formal model expressing the e-purse dynamics

3.2 Security Kernel and Admissible Traces

From a rule-based model and a dynamic model, a security kernel, enforcing
the rules of the first model on the second one, can be automatically generated
by the Meca tool [12]. Let out ← op(i) =̂ pre P then S end be the
definition of operation op in the dynamic model. Let C ⇒ (s #→ op #→ o) ∈
permission be the unique rule associated to operation op (to simplify). The
generated kernel contains the operation given in Fig. 4, describing how the
execution of the operation op is controlled.

The security kernel specifies behaviors that are secure. Traces can be syn-
tactically represented as sequences of occurrences of execution calls, stated
as triplets (op, v, r) where op is an operation name, v a valuation of input
parameters and r a valuation of output parameters. Then, a trace associ-
ated to a model M is written < init ; (c1, v1, r1) ; . . . ; (cn, vn, rn) > with
ci ∈ Oper(M). In order to define admissible traces, the event correspond-
ing to the execution of an operation call has to be defined. Let out ← op(i)

out, rs ← exec op (i) =̂
pre pre typ then /* typing of parameters */

if subject=s ∧ object=o ∧ C ∧ P

then S || rs := OK else rs := KO

end

end

Fig. 4 General format of an operation in the security kernel

148 Frédéric Dadeau, Marie-Laure Potet, Régis Tissot

be an operation defined by the substitution pre P then S end. The event
exec(op, v, r), corresponding to the execution of the call op(v) returning the
value r, can be defined by the substitution:

select [i := v]P then

var out in [i := v]S ; select (r = out) then skip end end

end

Substitution into substitution, as [i := v]S, is defined as in [2]. As described
in Sect. 2.2, a substitution can be characterized by its prd predicate. Here, we
have prd(exec(op, v, r)) ≡ ∃ out

′
/ [i := v](P∧ prd(S)∧ out

′ = r), that exactly
describes the effect of an operation call for input v producing the value r as re-
sult. Now, let t be a trace of the form < init ; (c1, v1, r1) ; . . . ; (cn, vn, rn) >.
This trace is admissible for the model M (t ∈ TM) if and only if the condition
fis(init ; exec(c1, v1, r1) ; . . . ; exec(cn, vn, rn)) holds.

For instance, < init ; S ; (checkpin, < 1234 >,< success,OK >) > is
an admissible trace if the predicate mode = use ∧ subject = bank can be
established after the sequence < init ; S >. We now present a conformance
relation, based on this formal framework that aims at establishing whether
or not an application conforms to a security model.

4 Conformance Relationship

Smart card applications are generally built as a set of commands, in the
APDU format [13]. APDU commands supply the card with instructions to
be executed and their parameters. APDU responses return results and a
status word that contains the result of the command execution. Values of
the status word are standardized; for instance, SW=9000 indicates that the
commands terminated in the right way. Conformance is then based on some
relations between APDU commands and abstract controlled operations.

Relatively to the security properties which are considered, ie., the con-
trol of commands execution, the granularity between operations which are
controlled and the operations of the application is the same. Nevertheless,
operations at the level of application and commands designed in the access
control differ. In the first case, operations are defensive and can be invoked
in any case (authorized case, security error or functional restriction) whereas
operations of the security model are not executed if access control conditions
do not hold, since they are considered as preconditions. Moreover, although
status words are standardized, APDU responses are not always predictable.
In case of multiple errors (for instance two security defaults or a functional
restriction and a security error) application specifications do not impose any
choice. This indeterminism is very important in the sense that implementa-
tions are free to favour one cause over another. A too precise specification
could introduce a cause of channel side, making the implementation behavior

A B Formal Framework for Security Developments of Smart Card Applications 149

too predictable. As a consequence the mapping correspondence must support
a form of underterminism to deal with multiple errors.

4.1 Mapping Security and Functional Models

We propose, hereafter, a definition of a mapping which is suitable for our
application domain. A mapping is a set of rules stating how application calls
can be related to controlled operations of the security kernel. In a more
general case, a rule takes one of the two following forms:

1. (opApp, < vApp >,< rApp >)→ (opSec, < vSec >,< rSec, OK >)
2. (opApp, < vApp >,< rApp >)→ (skip, < KO >)

The first case maps an authorized behavior with a security behavior that
describes a set of possible security attributes change. The second case cor-
responds to non authorized calls, in particular security attributes and the
current subject and object must not be modified, in any way. < vApp >,<

rApp >,< vSec >,< rSec > denotes sequences of values or free variables. In
the following, (cApp, cSec) ∈ R means that there exists a rule l #→ r and a
substitution σ such that σ(l) = cApp and σ(r) = cSec.

Here, we consider a restrictive case where the name of operations are
identical and the input parameter values are equal. In this case, a mapping
consists in establishing, for each application level command, a correspondence
between results which are returned at the application level and associated
result in the security model. Thus, a mapping takes the form:

{< r

1

App >, . . . , < r

n
App >} #→ {< r

1

Sec >, . . . , < r

k
Sec >}

Figure 5 describes a functional specification of our e-purse. The mapping
R1 hereafter is based on the fact that a thin observation of authorized be-
haviors is possible (success, failure, blocked):

{< 9000 >}→ {< success,OK >} {< 9202 >}→ {< blocked,OK >}
{< 9201 >}→ {< failure,OK >} {< 9401 >,< 9402 >}→ {< KO >}

A mapping can be non-deterministic, meaning that some results of the
application level can belong to two sets. In this case, one result at the ap-
plication level can correspond to different abstract results. Non-determinism
is a way to deal with multiple errors. Suppose now that the dynamic part
of our example (see Fig. 3) introduces a precondition of the form p ∈ N and
a condition of the form if p ̸∈ 0..9999 then res := data error else . . .end.
The mapping R1 is changed to R2 in which {< 9401 >} → {< KO >} is
replaced by {< 9401 >} → {< data error,OK >}. Nevertheless a problem
arises when the two conditions p ∈ 0..9999 and mode = use do not hold.
Depending on the order in which the verifications are performed in the ap-

150 Frédéric Dadeau, Marie-Laure Potet, Régis Tissot

sw ←− checkPin(p) =̂
pre p ∈ N

then

if p ∈ 0..9999

then if mode = use ∧ terminal = bank

then

if p = pin

then isHoldAuth := TRUE ∥ hptry := 3 ∥ sw := 9000

else isHoldAuth := FALSE ∥ hptry := hptry - 1 ∥
if hptry - 1 = 0

then mode := invalid ∥ sw := 9202

else sw := 9201

end

end

else sw := 9402 /* mode ̸= use ∨ terminal ̸= bank */

end

else sw := 9401 /* p ̸∈ 0..9999 */

end

end

Fig. 5 A functional model of the checkPin command

plication level, the result may differ. To overcome this problem, R2 has to
be extended, introducing a non-deterministic mapping, by adding the rule
{< 9401 >}→ {< KO >} (cf. Sect. 4.2).

4.2 Conformance Definition

Intuitively, an application conforms to a security model if and only if its traces
are accepted by the security model, through the mapping relation. Due to
the considered security policies, it means that: (i) all sequences of positive
calls (associated to an effective execution of operations) can also be played by
the security model, and, (ii) the application level can refuse more executions
than the security level, in particular for functional reasons.

More formally, let tA = < initA ; c

1
A ; . . . ; cn

A > be a trace relative to
the application and let tS = < initS ; c

1
S ; . . . ; cn

S > be a trace relative to
the security model. A mapping relation R can be extended to traces in the
following way:

(tA, tS) ∈ R iff (c1
A, c

1
S) ∈ R ∧ . . . ∧ (cn

A, c

n
S) ∈ R.

In this way, the set of traces associated to an application trace tA can
be computed. Now, operation calls that return KO can be assimilated to
stuttering steps [16], because they do not modify security attributes. The
operation Stut hereafter erases such calls.

Stut(< (skip, < KO >) ; s >) =̂ Stut(< s >)
Stut(< (c,< v >,< r,OK >) ; s >) =̂ < (c,< v >,< r,OK >) ; Stut(< s >) >

Stut(<>) =̂ <>

A B Formal Framework for Security Developments of Smart Card Applications 151

Finally, the conformance between an application A and a security model
S, through a mapping relation R, is defined by:

∀ ta (ta ∈ TA ⇒ ∃ ts ((ta, ts) ∈ R ∧ Stut(ts) ∈ TS))

With this definition, it is possible to implement some part of the access
control in a wrong way, for instance in making a mistake during the update of
a security attribute. The conformity relation that we propose (only) verifies
that a wrong implementation can not be used to obtain rights that are not
authorized. Nevertheless, it is the main expected characteristics in security: a
security failure which can not be exploited in any way is not really a problem.

The relevance of the proposed approach is based on the correctness of R.
For a left part (cApp, vApp, rApp) of a mapping rule, let {(ci

Sec
, v

i
Sec

, r

i
Sec

) | i ∈

1..n} be the set of right parts associated to it. Correctness must ensure that
modification of security attributes evolve in the same way, at the application
and security levels. Then correctness must be stated by:

choice exec(c1

Sec
, v

1

Sec
, r

1

Sec
) or . . .or exec(cn

Sec
, v

n
Sec

, r

n
Sec

) end

⊑L exec(cApp, vApp, rApp)

with L the relation linking security attributes, subjects and objects with
their representation at the application level (see Sect. 2.2). For instance if
the correspondence {< 9401 >} → {< KO >} is omitted in R2 then the
correctness of R2 (cf. Sec. 4.1) does not hold, because we can not establish
that subject = terminal ∧ p ̸∈ 0..9999 ⇒ mode = use ∧ terminal =
bank ∧ p ̸∈ 0..9999, where subject = terminal is the gluing invariant linking
variables of the security level with variables of the application level (other
variables do not differ).

5 Applications in the POSÉ Context

In order to support interoperability and security, standards have been pro-
posed by the main manufacturers. These norms define open platforms upon
which standardized consumer and business applications can be built. It is
thus very interesting to propose a methodology associated to the develop-
ment and validation of applications based on such platforms. The IAS ap-
plication [11], chosen as the case study of the POSÉ project, offers a no-
tion of security data objects –SDO– that carry their own access control
rules –SDO security header. An application developed on IAS consists in
a personalization phase, giving a set of SDOs with their instantiated se-
curity headers. The IAS platform has been chosen in the French Admin-
istration project Adèle (https://www.ateliers.modernisation.gouv.fr/
ministeres/projets_adele/a125-ter-developpement/public).

152 Frédéric Dadeau, Marie-Laure Potet, Régis Tissot

5.1 Description of the Models

Initially, only a functional model of the application was available. This model
had previously been used to validate an implementation that has been estab-
lished as conform to the functional model. Since this latter is very large (60
operations for about 15000 lines of B code), it was necessary to ensure its con-
formance w.r.t. the security requirements. We started by designing a model
of the dynamics of the system, and, separately, we considered the access con-
trol rules. The resulting model was much simpler and more abstract than the
original model (13 operations for about 1000 lines of B code). This model fo-
cuses on the file life cycle and access conditions based on pin authentication.
Because of the limitation of the animator tool we use, these two models are
deterministic. Let us consider an example, extracted from the case study.

We consider the VERIFY command which works as the checkPin opera-
tion of the e-purse example (Fig. 3) but it is parametrized by any PIN object.
VERIFY permits either to get the authentication of a PIN object, if a PIN
value is given, or to check its authentication state, if no PIN value is given.
In the security model, the success of the VERIFY command depends on the
existence of the PIN object and the validation of the access conditions which
protect the PIN. The security model also deals checks the expected PIN value
and the value of its tries counter.

In the security model, the status words of the command VERIFY are
abstracted to success, blocked, failure, whose meanings are similar to those of
the checkPin command. We define a mapping M1 (given hereafter) between
the status word of the implementation and the abstracted ones –in 63Cx, x

represents the number of remaining tries.

Status word on Meaning Mapping with
functional model security model

9000 Success {< success, OK >}
6983 SDO PIN unverified and no more tries {< blocked, OK >}
6984 SDO PIN tries counter reached 0 {< failure, OK >}
63Cx User authentication failed or not done {< failure, OK >}
6A88 SDO PIN not found {< KO >}
6982 Secure messaging erroneous {< KO >}

or invalid access conditions
6700 PIN value length is out of bounds {< KO >}

Due to the complexity of the models, the mapping relation correction was
not established by proof. It has been established by a review process based
on the analysis of each branch of the code. Such form of validation seems to
be at the level of smart card application developers because developers must
understand both the security model and the application description, stating
which status word corresponds to which internal behaviors.

A B Formal Framework for Security Developments of Smart Card Applications 153

5.2 Testing Methodology

The conformance relation that we have proposed is able to establish whether,
or not, a trace is correct w.r.t. security requirements, in our case, the access
control policy. In the POSÉ project, the model based validation approach is
based on the Leirios Test Generator (LTG) tool [14] that offers an animator
for B specifications and technics for generating tests from B specification.
Animation will be both used to verify that a sequence can be played by
a model and to compute parameter values or preambles to build a correct
sequence. Moreover, a script has been developed in order to apply a mapping
relation to any traces relative to the functional model.

In a first (ascending) approach, tests are produced at the application level
and confronted to the security model kernel. In this way, the confidence of
the functional model w.r.t the security one is improved. For instance, let us
consider a functional model in which we have omitted to cancel the authenti-
cation on a PIN when an subsequent authentication fails –due to an erroneous
PIN value. This error is observable in the example of Fig. 5. Then, the test
sequence:

< (VERIFY,<pin1,1234>) ; (VERIFY,<pin1,4321>) ; (VERIFY,<pin1, >) >

produces the output sequence <<9000> ; <63C1> ; <9000>>. But the
animation of the sequence s for the mapped output sequence <<success,
OK> ; <failure, OK> ; <success, OK>> fails to be established on the secu-
rity kernel model. In order to experiment the defined conformance relation,
we have performed mutations on model and checked that tests sequences
generated from this model did not conform to the security model.
As pointed out before, only deterministic models can be taken into account
by LTG. As a consequence, an abstract sequence computed from an appli-
cation sequence can be easily animated by this tool, provide a very effective
procedure for a test oracle. If unbounded non-deterministic models are con-
sidered, the feasability of the abstract sequences can be computed through a
proof process. Finally, if the mapping relation is non-deterministic, at least
one sequence must be accepted by the security model.

A second (descending) approach has been experimented in the POSÉ
project. It consists in exploiting the security model to generate abstract test
cases, which are completed with the help of the functional model. This ap-
proach is well-suited to the industrial process, since tests are built at the
security level. Let s be an input sequence constituted by a sequence of com-
mand invocation and their input values. s can be played at the security
level in order to obtain a result sequence r. Now, sequence s is played by
LTG at the functional level. Notice that operations at the security level may
have abstracted –and removed– parameters w.r.t. the functional level; these
parameters are added when replaying the sequence s at the functional level.
Thus, the animator looks for an instantiation of input parameters that makes
it possible to successively execute each operation so that this latter results

154 Frédéric Dadeau, Marie-Laure Potet, Régis Tissot

in one of the expected outputs in r (modulo the mapping relation). If the
instantiation is possible, we have the guarantee that the test conforms to
the security requirements, and thus it can be played on the implementation.
Otherwise, if the sequence is not be executable at the functional level, we
not conclude on the conformance of the functional level w.r.t. the security
level; indeed it is possible that the functional level is more restrictive than
the security level, and requires additional operations of the functional level
to be inserted along the sequence.

6 Conclusion and Future Work

As stated in the introduction, the approach proposed here has been devel-
oped in the framework of the RNTL POSÉ project, dedicated to verification
and development of certifiable smart card applications. The B method has
already been proved to be well-suited for smart card industries [6] and also,
here, for modelling main entities of access control. Based on this method,
Security Policy Model required from Common Criteria EAL5, can be easily
specified, including dynamic aspects as preconized by some data protection
class components. Due to the expressiveness of the B method, dynamic as-
pects can be captured in a more or less precise way. Moreover, notions of
observability and refinement attached to the B models has been easily ex-
ploited in order to define a conformance relation including data refinement.
This relation can be used both for testing or formal development approaches,
as preconized by the ADV and ATE classes, particularly for high EALs.

The B method has already been used as a support for access control poli-
cies [4, 20]. In [4], the authors propose a form of modeling attached to Or-BAC
access control and characterize behaviors which are conform to a given access
control. The approach proposed here, can be seen as an extension of [4] and
[20], in which dynamic conditions are taken into account as well as the ob-
servation of inputs, outputs and data refinement. In this way we have relate
models which are stated at different levels of abstraction, as it is imposed
by the Common Criteria approach. In [18], the authors use Labeled Transi-
tion Systems (LTS) to describe test purposes from Or-BAC rules specifying
access control. They act as an oracle for the test execution, using based on
the ioco conformity relation [21]. Our approach is similar, since they both
rely on trace inclusions, and our notion of stuttering is close to the notion of
quiescence. Nevertheless, our relation is not exclusively destined to be used as
a test oracle. Indeed, by establishing preservation properties on our relation,
it would be possible to prove properties on the implementation through the
abstract security model.

We are currently leading experiments on using a combinatorial testing
approach in order to generate test cases that exercise the security of the
system. In this context, we plan to use the conformance relation as a test
oracle, as illustrated previously.

A B Formal Framework for Security Developments of Smart Card Applications 155

Acknowledgements This work was supported by the RNTL POSE project (ANR-05-
RNTL-01001), and partially funded by the Région Franche-Comté.

References

1. J-R. Abrial and L. Mussat. Introducing Dynamic Constrains in B. In D. Bert, editor,
Proceedings of the 2nd Int. B Conference, volume 1393 of LNCS. Springer, 1998.

2. J.R. Abrial. The B-Book. Cambridge University Press, 1996.
3. P. Behm and all. Météor: A Successful Application of B in a Large Project. In FM’99

- Formal Methods, volume 1708 of LNCS, pages 348–387. Springer, September 1999.
4. N. Benaissa, D. Cansell, and D. Mery. Integration of Security Policy into System

Modeling. In Julliand and Kouchnarenko [15].
5. D. Bert, S. Boulmé, M-L. Potet, A. Requet, and L. Voisin. Adaptable Translator of

B Specifications to Embedded C programs. In FME 2003: Formal Methods, volume
2805 of LNCS. Springer, 2003.

6. F. Bouquet, F. Celletti, G. Debois, A. De Lavernette, E. Jaffuel, J. Julliand, B. Leg-
eard, J. Lidoine, J.-C. Plessis, and P.-A. Masson. Model-based security testing, ap-
plication to a smart card identity applet. In eSmart 2006, 7th Int. Conf. on Smart

Cards, Sophia-Antipolis, France, September 2006.
7. Common Criteria for Information Technology Security Evaluation, Part 2: Security

functional components. Technical Report CCMB-2006-09-002, version 3.1, sept 2006.
8. Common Criteria for Information Technology Security Evaluation, Part 3: Security

assurance components. Technical Report CCMB-2006-09-003, version 3.1, sept 2006.
9. Common Criteria for Information Technology Security Evaluation, version 3.1. Tech-

nical Report CCMB-2006-09-001, sept 2006.
10. E.W. Dijkstra. A discipline of Programming. Prentice-Hall, 1976.
11. The Gixel web site. http://gixel.fr.
12. A. Haddad. Meca: a Tool for Access Control Models. In Julliand and Kouchnarenko

[15].
13. Smart Card Standard: Part 4: Interindustry Commands for Interchange. Technical

report, ISO/IEC, 1995.
14. E. Jaffuel and B. Legeard. LEIRIOS Test Generator: Automated Test Generation

from B Models. In Julliand and Kouchnarenko [15].
15. J. Julliand and O. Kouchnarenko, editors. B 2007: Formal Specification ans Develop-

ment in B, volume 4355 of LNCS. Springer, 2007.
16. Lamport. A temporal logic of actions. ACM Transactions on Programming Languages

and Systems, 16(3):872–923, may 1994.
17. J-L. Lanet and A. Requet. Formal Proof of Smart Card Applets Correctness. In

CARDIS’98, number 1820 in LNCS. Springer, 1998.
18. K. Li, L. Mounier, and R. Groz. Test Generation from Security Policies Specified in

Or-BAC. In COMPSAC – IEEE International Workshop on Secuirty in Software

Engineering (IWSSE’07), Beijing, July 2007.
19. Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,

3(1):30–50, 2000.
20. N. Stouls and M-L. Potet. Security Policy Enforcement through Refinement Process.

In Julliand and Kouchnarenko [15].
21. J. Tretmans. Conformance testing with labelled transition systems: Implementation

relations and test generation. Computer Networks and ISDN Systems, 29(1):49–79,
1996.

22. M. Utting and B. Legeard. Practical Model-Based Testing - A tools approach. Elsevier
Science, 2006. 550 pages.

