
Anomaly Detection with Diagnosis in Diversified
Systems using Information Flow Graphs

Frédéric Majorczyk, Eric Totel, Ludovic Mé, Ayda Saı̈dane

Key words: anomaly detection, design diversity, COTS diversity, anomaly diagno-
sis, graph similarity
Abstract Design diversity is a well-known method to ensure fault tolerance. Such
a method has also been applied successfully in various projects to provide intru-
sion detection and tolerance. Two types of approaches have been investigated: the
comparison of the outputs of the diversified services without any knowledge of the
internals of the server (black box approach) or an intrusive observation of the ac-
tivities that occur on the diversified servers (gray box approach). Previous work on
black-box approaches have shown that some types of attacks cannot be detected.
In this paper, we introduce a gray-box approach, on the one hand to increase the
detection coverage, and on the other hand to add some diagnosis capability to the
IDS. Our gray-box approach is based on the comparison of information flow graphs
generated by the activities on the servers.

1 Introduction

Intrusion detection includes misuse detection and anomaly detection. Misuse detec-
tion consists in detecting known attacks (and thus requires a base of signatures),
as anomaly detection relies on the comparison of a system or application behavior
with a previously defined “normal” behavior. Most of the time, anomaly detection
requires to explicitly build the model of the normal behavior, either statically or dy-
namically (e.g., during a learning phase). Previous work [9, 6, 8] has introduced a

Frédéric Majorczyk, Eric Totel, Ludovic Mé
Supelec, Avenue de la Boulaie, 35575 Cesson-Sévigné Cedex, France, e-mail: fred-
eric.majorczyk@supelec.fr, eric.totel@supelec.fr, ludovic.me@supelec.fr

Ayda Saı̈dane
University of Trento, via Belenzani, 12 I-38100 Trento, e-mail: ayda.saidane@unitn.it

301

302 Frédéric Majorczyk, Eric Totel, Ludovic Mé, Ayda Saı̈dane

way to avoid building the behavior model explicitly, while allowing the built IDS
to detect new or unknown attacks. This previous work is based on a dependability
technique: N-version programming [1]. However, instead of developing specifically
each variant like in classical N-version programming, latest work proposes the use
of COTS (Components Off The Shelf) components. This reduces the cost of the
architecture, and thus appears as the only viable approach, from an economic point
of view. Nevertheless, the detection relies on the same hypothesises as in classi-
cal N-Version programming: the faults in the COTS (and thus the intrusions) are
decorelated, to ensure that an intrusion on one of the server cannot occur on the
others.
The basic approach of the intrusion detection consists in comparing the outputs

of the diversified servers. Two types of comparisons can be performed at the IDS
level as the servers can be considered as black-boxes or gray-boxes. In the first case,
the outputs considered are the outputs of the servers. In the second case, the outputs
are composed of both the internals of the servers (e.g., system calls) and the outputs
of the servers.

In this paper, our objective is to present a new IDS based on COTS diversity, on
one hand to correctly handle all types of attacks, on the other hand to add diagnosis
capabilities to the intrusion detection system. We propose here an approach that ex-
ploits information about the activities occurring in the diversified servers: our gray
box approach consists in dynamically building a view of the information flows that
occur in the system, in order to be able to compare the behaviors of several diver-
sified servers. The detection relies on the creation and comparison of information
flow graphs generated by the activities on the servers.

The method we introduce provides the security administrator with an insight of
what happens in the different servers. This brings some diagnosis capabilities to an
anomaly detector. Indeed, a major drawback of anomaly detection is that no evi-
dence is provided about the cause of the anomaly. No diagnosis is performed in
order to help the administrator to identify whether an alert is a false positive or not;
in the case of a true positive, no information is provided about the intrusion that has
led to the anomaly.

In the following sections, we consider the various approaches that have been car-
ried out in the domain of implicit model based anomaly detection (Section 2), and
propose a technique to detect behavior variations of the diversified COTS in the
architecture (Section 3). Then we show how we can propose a diagnosis of an intru-
sion using the graphs (Section 3.4). Finally a prototype is described to demonstrate
the feasibility of the approach (Section 4).

Anomaly Detection with Diagnosis in Diversified Systems 303

2 Related Work

We present here the different work that have been carried out in the context of black-
box and gray-box approaches.

Black-Box Intrusion Detection using Diversity

Three recent projects use diversity to detect intrusions with a black-box approach:
DIT, HACQIT and DADDi.
DIT (Dependable Intrusion Tolerance) [9] is a project that proposes a general

architecture for intrusion-tolerant systems and the implementation of an intrusion-
tolerant web server as a specific instance. The architecture includes functionally
redundant COTS servers running on diversified operating systems and platforms,
hardened intrusion-tolerant proxies that mediate client requests and verify the be-
havior of servers and other proxies, and monitoring and alert management compo-
nents based on the EMERALD intrusion-detection framework [7]. The architecture
was then extended to consider the dynamic content issue and the problems related
to on-line updating. The comparison of outputs is based on MD5 hashes of the web
pages but the intrusion detection relies mainly on the host monitors and network
intrusion detection systems.
HACQIT [6] (Hierarchical Adaptive Control for QoS Intrusion Tolerance) is a

project that aims at providing intrusion tolerance for web servers. The architecture
is made up of two COTS web servers: an IIS server running on Windows and an
Apache server running on Linux. One of the servers is declared as the primary and
the other one as the backup server. Only the primary server is connected to users.
Another computer, the Out-Of-Band (OOB) computer, is in charge of forwarding the
request of each client from the primary server to the backup one, and of receiving the
responses from each server. Then, they compare the responses given by each server.
The comparison is based on the status code of the HTTP response. In addition to
this detection mechanism, host monitors, application monitors, a network intrusion
detection system (Snort) and an integrity tool (Tripwire) are also used to detect
intrusions.
DADDi [8] (Dependable Anomaly Detection with Diagnosis) implements an IDS

for web servers with an architecture composed by three different COTS servers: an
Apache on Mac-OS X, an IIS on Windows 2000 and a thttpd on Linux. The project
extends the comparison to the complete network output of the COTS servers. Unlike
the two projects presented above, the intrusion detection relies only on diversity.
Neither mechanisms nor IDSes are used. The authors show that, depending on the
algorithm used, the COTS diversity method can lead to many false positives due
to design and specification differences. To solve this key issue, they propose the
introduction of masking mechanisms to determine which output differences are the
consequence of a design or a specification difference. This provides a model of
the normal differences, which is much simpler to build than a complete web server
model.

304 Frédéric Majorczyk, Eric Totel, Ludovic Mé, Ayda Saı̈dane

These three projects adopt a black-box approach. One major drawback is then
that they are not able to detect all intrusions since they do not consider all outputs of
the monitored services but only the network outputs. An intrusion against integrity
can be missed: an attacker who has successfully compromised one server can forge
a response identical to the ones from the other servers. It is necessary to add host and
application monitors to be able to detect this kind of intrusions. Both the HACQIT
and DIT projects add host monitors to detect this kind of intrusions but these host
monitors do not use diversity. Gray-box approaches would also be able to detect
this kind of intrusions since they monitor and compare the internal activity of the
system.

Gray-Box Intrusion Detection using Diversity

Gao, Reiter and Song [4, 5] propose a way to compare system call sequences per-
formed by different COTS on different operating systems. They introduce the notion
of behavioral distance which is a measure of the deviation of the behaviors of two
processes. They propose two ways to compute this distance: using evolutionary dis-
tance [4] and hidden Markov models [5]. The key idea is that an intrusion should
thus modify the behavior of only one of the processes and should increase the be-
havioral distance. If the distance computed is above a given threshold then an alert
is emitted. A drawback of this work is that it only takes the number of the system
calls into account, while the operation performed by a system call often depends on
its arguments. Moreover, no diagnosis of the alerts is provided to the administrator.

3 Intrusion Detection and Diagnosis by Comparison of
Information Flow Graphs

Classical N-version programming requires to define which outputs must be com-
pared, the system detects only errors that are propagating through these outputs. In
the context of a black-box detection, only the intrusions affecting the server net-
work outputs can be detected. In the context of a gray-box detection, other outputs,
like system calls, can be compared. This approach is the one that has been used
by [4, 5]. However, it is not straightforward to compare system calls on different
operating systems as they are not equivalent namely and functionally.
The different server versions should behave the same with respect to the security

policy. This security policy is generally implemented using access rights, and can
be described as a set of permitted information flows in the system. This implies that
a faulty service will not only invoke unauthorized system calls, but also produce il-
legal information flows generated by system calls. For example, an intrusion against
confidentiality is seen as an illegal information flow between two objects. All the in-
formation flows generated by the processing of a request form an information flow
graph. We argue here that comparing two information flow graphs, while not trivial,

Anomaly Detection with Diagnosis in Diversified Systems 305

is easier than comparing two sequences of system calls produced on two different
systems. An other advantage is that we do not have to monitor all the system calls,
but only the subset of them that generates information flows.
In the following Sections we describe what is an information flow graph (Sec-

tion 3.1), and the method we propose to use in order to compute the similarity be-
tween graphs (Section 3.2). Then we apply this method to detect intrusions in an
architecture of diversified COTS servers (Section 3.3).

3.1 Information Flow Graphs

First of all, we must define the information flow notion. We consider an information
flow has been produced from an object o1 to an object o2 if the state of the object o2
causally depends [3] on the state of the object o1.
An information flow graph is a set of information flows and objects that are

involved during an invocation of the diversified service.
Formally, an information flow graph is a labeled graph, i.e., a directed graph G=

(V,rV ,rE), of information flows between objects in the operating system, where: V
is a set of vertices, rV ⊆ V ×LV is the relation between the vertices and the vertex
labels (LV is the set of vertex labels), rE ⊆ V ×V ×LE is the relation between the
edges and the edge labels (LE is the set of edge labels).
The vertices correspond to objects of the operating system. Currently, we con-

sider processes, threads, files, sockets, pipes and memory mappings. The edges cor-
respond to information flows between these objects. The labels are needed to calcu-
late the similarity between two graphs, as explained in the next section.
In practice, each vertex or edge is associated with data items that define infor-

mation required to characterize the edge or the vertex. For example, vertices are
associated with a type (Process, Socket, File, Pipe, Mapping), edges with one of the
types 1 (Process to file, File to process, Process to socket, ...). Moreover, depend-
ing on this type, additional information can be attached to each edge or vertex. For
example, the vertices of type File are associated with a name, the file descriptor,
the creation time and the destruction time of the file descriptor in the OS. Processes
are associated with their name, their pid, the pid of their parent and a creation and
destruction time. The edges are associated with the data transferred between the
source and the destination of the flows as well as the time of the call.
The labels are in fact defined as a part of these data items chosen to compute the

similarity, as explained in the following section: in our prototype, we use only the
type as label. This implies that in our prototype, the data are not taken into account
when we compute the similarity. In fact, we check the existence of information
flows, instead of the contents of the information flows. This choice has been made
for performance reasons.

1 This information can seem redundant with the types associated with the vertices, but are in fact
required to compute the graph similarity, see Section 3.2.

306 Frédéric Majorczyk, Eric Totel, Ludovic Mé, Ayda Saı̈dane

Information
Flow

File

pid process_name Process

Socket

fd file_name

fd socket

2954 apache

5 socket
15 /private/var/log/httpd/error_log

17 /private/var/log/httpd/access_log

Fig. 1 Information flow graph for a HTTP request on the Apache web server

An example of information flow graph can be seen on Figure 1. This information
flow graph is the one obtained for a single HTTP request. The type of a vertex
is represented by its shape and information about vertices (name, pid, fd) is written
inside. The graph Figure 1 shows that the Apache process reads from a socket, writes
to two log files and writes to the socket (the time associated with the information
flows allow to determine the chronology of the flows). The Section 4.2 explains how
such a graph is built in practice, from system call monitoring.

3.2 Information Flow Graph Similarity

Since the COTS servers implement the same service, we expect that the information
flow graphs on the different servers are quite similar. We need a way to assess if two
graphs are similar or not. We use the model developed by Champin and Solnon [2]
to measure the similarity between two labeled graphs. In their work, they propose
an algorithm to calculate this similarity that we slightly change to optimize the com-
putation to our particular case. We briefly present their approach and then detail the
algorithm we use to compare information flow graphs.

To define the similarity between two graphs, we need to define the descriptor
of a labeled graph: the descriptor of a labeled graph G = (V,rV ,rE) is defined by
desc(G) = rV ∪ rE .

We consider two labeled graphsG1 = (V1,rV1 ,rE1) andG2 = (V2,rV2 ,rE2) and we
look for a measure of the similarity between those two graphs. In order to measure
this similarity, the notion of mapping is defined: a mapping m is a relation m ⊆
V1×V2. m is a set of pairs of vertices. It must be noted that, in a mapping m, a vertex
v1 ∈ V1 (resp. v2 ∈ V2) can be mapped with zero, one or more vertices in V2 (resp.
V1). A functional notation may be used for m: m(v) is the set of vertices which the
vertex v is mapped with.

The similarity between G1 and G2 with respect to a mapping m is given by:

simm(G1,G2) =
f (desc(G1)⊓m desc(G2))

f (desc(G1)∪desc(G2))

where f is a non-decreasing positive function with respect to inclusion (the cardi-
nality is a function that respects these criteria, for example) and ⊓m, the intersection

Anomaly Detection with Diagnosis in Diversified Systems 307

with respect to a mapping represents the set of labels corresponding to the vertices
and to the edges in the mapping m:

desc(G1)⊓m desc(G2) = {(v, l) ∈ rV1 |∃v
′ ∈ m(v),(v′, l) ∈ rV2}

∪ {(v, l) ∈ rV2 |∃v
′ ∈ m(v),(v′, l) ∈ rV1}

∪ {(vi,v j, l) ∈ rE1 |∃v
′
i ∈ m(vi),∃v′j ∈ m(v j)(v′i,v′j, l) ∈ rE2}

∪ {(vi,v j, l) ∈ rE2 |∃v
′
i ∈ m(vi),∃v′j ∈ m(v j)(v′i,v′j, l) ∈ rE1}

A last concept is necessary to measure the similarity between two graphs. A vertex
can indeed be mapped with more than one vertex. It can be interesting in our case,
as we may need to map two processes in one operating system with one process in
another operating system. The notion of splits can be added to take into account
the mapping of a particular vertex to multiple vertexes. The splits of a mapping m
represents the vertices that are mapped with more than one vertex in the mapping
m:

splits(m) = {(v,sv)|v ∈V1∪V2,sv = m(v), |m(v)|≥ 2}

The definition of the similarity with respect to a mapping m is changed to:

simm(G1,G2) =
f (desc(G1)⊓m desc(G2))−g(splits(m))

f (desc(G1)∪desc(G2))

where g is a positive, monotonic and non-decreasing function with respect to inclu-
sion. We have defined the similarity between two graphs with respect to a mapping
m. The similarity between two graphs can be defined by:

sim(G1,G2) = max
m⊆V1×V2

f (desc(G1)⊓m desc(G2))−g(splits(m))

f (desc(G1)∪desc(G2))

So finding the similarity between two graphs G1 and G2 means finding the mapping
m that maximizes this value.
Champin and Solnon [2] propose two algorithms to solve this problem: a com-

plete search with some optimizations that allows to cut branches off the search tree
and a greedy algorithm. In our prototype, we have used the complete search al-
gorithm as we are more interested in the detection accuracy than in the temporal
performance of the similarity computation, at least for a first implementation.

3.3 Intrusion Detection using Graph Similarity

In information flow graphs, an intrusion is characterized by the creation or modifi-
cation of information flows, active objects (e.g., processes) and/or passive objects
(e.g., files). An intrusion against confidentiality implies the creation of information
flows and if necessary, the creation of new objects. An intrusion against integrity is

308 Frédéric Majorczyk, Eric Totel, Ludovic Mé, Ayda Saı̈dane

characterized by the creation or modification of information flows and if necessary,
the creation of new objects. Thus, an intrusion affects the value of the similarity
between the information flow graph of a successfully attacked server and the one of
a server which has not been compromised.

Similarity Threshold. The calculation of a similarity is a function taking two
graphs as parameters. A high similarity means that the servers have behaved quite
in the same way. A low similarity means that the servers have behaved quite differ-
ently, which can be the consequence of an intrusion, a design difference or specifi-
cation difference. Our approach consists in learning what is an acceptable value of
a similarity in the context of a normal behavior. This leads to determine a threshold
to decide when an alert must be emitted, i.e., to determine the value of the similar-
ity, under which it is symptomatic of an intrusion. If a similarity is lower than the
threshold, we generate an alert.
This threshold must be determined experimentally for each pair of diversified

services: the similarity depends on the cardinality of the descriptors of the graphs
considered and then depends on the application considered. If the graphs are large,
one or more vertices or edges that are not mapped have less influence on the sim-
ilarity than in small graphs. So there cannot exist a unique threshold for all the
applications. In order to calculate this threshold, we determine statistically which
value corresponds to a normal behavior, i.e., a request that is not an attack.

Intrusion Detection Algorithm. In the context of an architecture with n COTS
servers Si, we must determine the similarity threshold ti, j for each pair of servers as
explained in the previous paragraph. Detecting an intrusion requires calculating the
similarities between all pairs of servers for a given service request. This leads to the
computation of C2n = n!

(n−2)!×2! graph similarities, noted si, j. Since the similarity is
symmetric, we can write si, j = s j,i for all (i, j) in {1,n}2. We note Ii, j1 = [0, ti, j] and
Ii, j2 = [ti, j,1].
Currently, we use the following rules to determine the decision of our gray-box

IDS for n servers:

∃(i, j) ∈ {1,n}2, i< j,si, j ∈ Ii, j1 ⇒ Alert

∀(i, j) ∈ {1,n}2, i< j,si, j ∈ Ii, j2 ⇒ No Alert

i.e., an alert is emitted as soon as one similarity is low, i.e., beneath ti, j. If all the
similarities are high, i.e., above ti, j, no alert is emitted.
Intrusion Localization. Low similarities indicate that an incorrect activity has

occurred in the architecture. Nevertheless, under the hypothesis that only one server
can be compromised at a time, this server must be the only one leading to low
similarities. In that case, the localization of the compromised server is possible.
This localization is required to apply a reconfiguration to the architecture in order to
mask the effects of the detected intrusion (e.g., the reconfiguration of a server). In

Anomaly Detection with Diagnosis in Diversified Systems 309

s2,3 ∈ I2,31 s2,3 ∈ I2,32
!

!
!

!
!

!
s1,2 ∈

s1,3 ∈ I1,31 I1,32 I1,31 I1,32
I1,21 A/? A/S2 A/S1 A/?
I1,22 A/S3 A/? A/? NA

Table 1 Alerts and localization of the server compromised in the case N = 3; A means Alert (gray
cells), NA means No Alert (white cells), ? means no localization is possible, Si means the server Si
is considered as being compromised

our prototype, the localization of the server compromised is based on the following
rule:

∃i ∈ {1,n},∀ j ∈ {1,n}, j ̸= i,si, j ∈ Ii, j1
∧

∀(k, l) ∈ {1,n}2, k ̸= i, l ̸= i,sk,l ∈ Ik,l2

⎫

⎬

⎭

⇒ Si is compromised

Three Server Instance. Table 1 sums up, in the case of three servers S1, S2 and S3,
in what conditions we decide to raise an alert and if we can localize the compromised
server in function of the computed similarities.
Some cases should not happen: for example, for three servers, if s1,2 and s2,3 are

high and s1,3 is low. This means that the behaviors of S1 and S2 are close as well
as the ones of S2 and S3, but the behaviors of S1 and S3 are really different. Since
we have no evidence about the transitivity of the relation linked to the similarity,
we consider that this case may be possible. An alert is emitted by the IDS but no
localization is possible.

3.4 Diagnosis of Anomalies Detected

In classical anomaly detector, no diagnosis is associated with the alerts, which is
one of the main drawbacks of this kind of detector. Here, as we capture information
flows that can be viewed as an history of the system activity, we provide the security
administrator with an evidence of what happens in the different servers: it is pos-
sible to explain an intrusion through the differences between the graphs: processes
created, files read or written, sockets opened, etc.
By computing the similarity between the graphs, we identify also the active ob-

jects (processes), the passive objects (files, sockets, pipes, . . .) and the information
flows not mapped in the best mapping, i.e., the one for which the similarity is max-
imum. It must be noted that the best mapping depends on the computation of the
similarity and thus on the functions f and g.
In case of an intrusion, the objects not mapped are visible effects at the OS level

of an intrusion. By analyzing these objects, it is possible to gather some information
about the intrusion: processes created, files written or read, sockets created, etc. If it
is not possible to identify directly the vulnerability exploited, this information may

310 Frédéric Majorczyk, Eric Totel, Ludovic Mé, Ayda Saı̈dane

lead to it. In the case of a zero-day, it even offers a good starting point to discover
the currently unknown vulnerability.
We propose to show to the security operator the graphs of the different servers for

the suspicious input and mark the objects and flows not mapped (This is illustrated
in Section 4.3.4). We believe that this approach can be very helpful to a security
operator and can be extended by automatically summing up the objects non mapped
and their interactions. It is, as far as we know, the first anomaly-based approach in
intrusion detection, which offers such a diagnosis capability.

4 Prototype and Experimental Results

We have implemented a proof-of-concept prototype of an IDS based on information
flow graph similarity for web servers. After a brief presentation of the components
of the architecture, we discuss the modeling of system calls. Finally some results
show the performances of this prototype, in relation to its detection capabilities.

4.1 Intrusion Detection Architecture

We use three different web servers in our prototype: a thttpd (for tests with a static
web server) or Lighttpd (for tests with a dynamic web server) web server running
on Linux, an Abyss web server running on Windows 2000 Server and an Apache
web server running on Mac-OS X. The architecture (Figure 2) is composed of sev-
eral components: a HTTP proxy, a gray-box IDS based on information flow graph
comparison and, on each server, a wrapper, a graph generator and a system call
logger. The role of the wrapper is mainly to associate a request with its beginning
and ending times. It receives an HTTP request from the proxy, stores the beginning
time of the request and forwards the request to the web server. Then the wrapper
forwards the response of the web server to the proxy and stores the time at the end
of the response. Then it asks the graph generator for the information flow graph
corresponding to the request by sending the beginning time and the ending time of
the request considered and send the information flow graph to the proxy. Depending
on the design of the web servers, it is not always easy to determine the correspon-
dence between system calls and requests. To solve this problem, we choose in our
prototype to serialize the requests to ensure that at one time only one request is pro-
cessed. This proof-of-concept prototype has been developed to evaluate detection
precision and reliability, its optimization in terms of real-time capability is left for
future work.
The system call logger logs the system calls performed by the web server and

sends them to the graph generator on demand. The graph generator builds informa-
tion flow graphs from system calls and sends them to the wrapper.

Anomaly Detection with Diagnosis in Diversified Systems 311

+ Grap
hs

HTTP Requests

+ Graph Requests

HTTP Resp
onses

HTTP Proxy

Black−Box IDS

Graph Comparison

Wrapper Web Server

Generator
Graph System Call

Logger

+ Gray−Box IDS by Wrapper Web Server

Generator
Graph System Call

Logger

Wrapper Web Server

Generator
Graph System Call

Logger

Firewall

Fig. 2 Gray-box intrusion detection architecture

4.2 Monitoring System Calls Generating an Information Flow

About twenty system calls have been identified to generate information flows (For
example, the read system call) and are thus monitored on each operating system. In
the case of the read system call, the graph built is the following: the process which
performs the system call read is an active object, the file, socket or pipe read is a
passive object, and these two objects are linked.

However, some other information flows are difficult to build. The system calls
that create another thread such as clone (on Linux) allow information flows between
processes. In case of the system call clone, the child process is a copy of his parent
process. The child process and the parent process share their memory and can thus
communicate. It is possible to monitor whether one of the processes access to this
data, but this has a significant impact on the performance. So we decided to model
this system call by two information flows: one from the child to the parent process
and the other one from the parent to the child. The information flow created this way
has an empty label data.

A system call that creates another process such as fork corresponds to the exe-
cute operation of our model. For the same reason as the one mentioned above, the
information flow which corresponds has an empty label data.

System calls such as mmap can also be the source of information flows which
can not be modeled without observing memory accesses of processes. mmap allows
a process to map a file in memory. Reading or writing in the file is simply performed
by reading or writing to memory. Depending on the arguments ofmmap, we decided
to create information flows between the process which executes mmap and the file
considered. If the mapping is read-only (resp. write-only), we create an information
flow from the file (resp. process) object to the process (resp. file) object. If the map-
ping is read-write, we create two information flows: one from the file to the process
object and the other one in the other way.

Our current prototype does not consider some IPC mechanisms (messages,
shared memory) and signals. IPC mechanisms can be modeled as passive objects.
Signals create information flows between the process that sends the signal and the

312 Frédéric Majorczyk, Eric Totel, Ludovic Mé, Ayda Saı̈dane

process that receives it. They can be modeled by an information flow with a label
data corresponding to the number of the signal sent.

4.3 Experimental Results

4.3.1 Detecting a Successful Attack Against Integrity

One of the motivations of defining a gray-box approach is to be able to detect suc-
cessful attacks against integrity, where the network answers of the diversified servers
does not reflect the intrusion. To demonstrate this detection capability, we have de-
velopped a small diversified php script, where, on the value of one parameter, a file
write operation is performed on one server, but all the scripts return the same answer.
This attack results in the creation of an information flow graph containing a write
operation on the attacked server, and thus results in a low similarity between this
server and the others. Consequently, this approach complementarize a black-box
approach, where this type of attack were impossible to detect.

4.3.2 Evaluation of the False Positive Rate

In this Section, we evaluate the false positive rate of our prototype. For that purpose,
we use a static web server, the one of our campus, and two sets of normal requests
(real requests to this server).
Computation of the Thresholds ti, j. As stated in Subsection 3.3, the thresholds ti, j

must be chosen experimentally for each pair of servers used. We decide to set up
the threshold so as to ensure that, for most of normal HTTP requests, our prototype
does not raise an alert, i.e., the similarities computed for these requests are above
the thresholds ti, j.
For the normal requests, we use a set of HTTP requests logged on the website of

our campus during a week. This set is composed of 71,596 HTTP requests. To check
if this set contains only non-intrusive requests, we use WebSTAT [10] and the black-
box IDS of [8]: all alerts generated have been confirmed to be false positives. Thus
we have a high confidence in the fact that the traffic does not contain successful
attacks. After this phase, we decide to set up all the thresholds to 0.7. More than
99.5% of the requests are thus considered as normal.
Results. In order to evaluate the false positive rate, we use another set of HTTP

requests logged by the server of our campus during a week. This set is composed of
105,228 requests.
Table 2 sums up the 140 alerts raised by the gray-box IDS and the localization

of the server considered as being compromised. All these alerts are false positives
since they are not due to intrusions. It represents a false positive rate of 0.13% and
20 alerts a day, which is acceptable.

Anomaly Detection with Diagnosis in Diversified Systems 313

s2,3 ∈ I2,31 s2,3 ∈ I2,32
!

!
!

!
!

!
s1,2 ∈

s1,3 ∈ I1,31 I1,32 I1,31 I1,32
I1,21 0 (?) 0 (S2) 120 (S1) 1 (?)
I1,22 2 (S3) 1 (?) 16 (?) 105,088

Table 2 Number of alerts and localization of the server considered compromised for the test week;
gray cells mean an alert is raised, white cells mean no alert is raised, ? means no localization is
possible, Si means the server Si is considered compromised

❤❤❤❤❤❤❤❤❤❤❤❤
Similarity between

Intrusions SQL
injection

write execute
’whoami’

XSS (inser-
tion)

XSS (read the
corrupted entry)

Lighttpd and Apache 0.9655 0.725 0.5882 0.9677 0.9143
Apache and Abyss 0.7742 0.9715 0.6364 0.9677 0.9706
Lighttpd and Abyss 0.7838 0.7209 0.6667 1 0.9189

detected detected detected not detected not detected

Table 3 Similarities between the graphs of the different servers for the intrusive requests

4.3.3 Detection Capabilities

In this Section, we test our prototype in the context of a dynamic web server and
evaluate its detection capabilities.
We replace the thttpd server by the Lighttpd server on the Linux machine. For the

web site, we choose an application named Bibtex Manager which is written in php
and uses a database as a backend. This application manages a database of Bibtex
citations. We log 86 HTTP requests that represent a normal use of the application.
We introduce four vulnerabilities in one of the versions and develop corresponding
exploits.
The similarities between the different graphs corresponding to the intrusions are

lower than the ones for normal requests. While the similarity for normal requests is,
in the mean, around 0.95, the similarity between the graph of a compromised server
and a server not compromised is lower than 0.8. Table 3 sums up the similarities
obtained for the intrusions.
By setting the threshold for each pair of servers to 0.8, our prototype IDS is able

to detect all the intrusions except the XSS attack.The XSS attack is not detected as
its impact on the similarities (see Table 3) is too low.

4.3.4 Diagnosis Capabilities

In order to show the diagnosis capabilities of our approach, we performed an in-
trusion against a tiny vulnerable web server developed for educational purpose (the
result appears on Figure 3). The intrusion consists in a directory traversal so as to

314 Frédéric Majorczyk, Eric Totel, Ludovic Mé, Ayda Saı̈dane

c. Information flow graph for the vulnerable web server

b. Information flow graph for the Apache web servera. Information flow graph for the Abyss web server

File

Information
Flow

300 socket

6 /home/daddi/htdocs/log/127.0.0.1_33594

1072 abyssws.exe

978 abyssws.exe

pid process_name Process

fd socket

12971 buggy 12970 buggy

4 socket

5 /home/daddi/htdocs//../../../../../etc/passwd

2954 apache

5 socket
15 /private/var/log/httpd/error_log

17 /private/var/log/httpd/access_log

Socket

fd file_name

260 log/access.log

Fig. 3 Three information flow graphs linked to a HTTP request on different servers and identifica-
tion of the objects not mapped

read the file /etc/passwd. This server does not check the presence of ’../’ string in
the url while the other servers refuse to serve such a request.

The file object representing the passwd file is not mapped with any objects in
the other graphs as well as the information flows representing the read access to
the passwd file and the write access to the socket. These objects are emphasized
on Figure 3. For the Apache web server as well as for the Abyss web server, the
information flows representing the write access to the socket are not mapped with
their equivalent in the graph for the vulnerable server but are associated with each
other.

5 Conclusion

Detecting intrusions by using COTS diversity proved to provide interesting results,
both in terms of false positives and false negatives. However, the black-box ap-
proaches that have been investigated suffer from being incomplete, as they do not
permit to detect intrusions that have no impact on the network outputs. To improve
them, we have thus developed a gray-box approach that implements information
flow graph comparisons.

As many IDSes, the method proposed can miss some attacks, if the objects in-
volved in the system do not produce sufficient differences in the information flow
graphs built on the different servers. This can lead to some false negatives. However,
further work on the definition of the comparison algorithm (and the function f and
g) should reduce the false negative rate.

Moreover, the current prototype is still far from being perfect, as it generates a
too high false positive rate and exhibits low time performances. These flaws can
be corrected by introducing design difference masking mechanisms on one hand

Anomaly Detection with Diagnosis in Diversified Systems 315

(similarly to the black box approach in [8]), and a greedy algorithm on the other
hand to decrease the similarity computation time significantly. This will motivate
our future work.
Despite these current limitations, this approach and the experiments carried out

with our proof-of-concept prototype show that our gray-box IDS is capable of de-
tecting intrusions of all kinds as they imply a difference in the information flows
observed in the servers.
Finally, the analysis of the differences between the information flow graphs has

proved to be efficient to bring diagnosis capabilities to the IDS as it enlighten the
effects of the intrusions at the OS level. The advantage of our approach is thus to
propose to the administrator more than a simple intrusion detection mechanism: it
brings him an evidence of the intrusion and its causes.

Acknowledgements This work has been funded by the region Bretagne and the French National
Research Agency in the context of the DADDi project.

References

1. Bharathi, V.: N-version programming method of software fault tolerance: A critical review.
In: National Conference on Nonlinear Systems and Dynamics (NCNSD). Kharagpur, India
(2003)

2. Champin, P.A., Solnon, C.: Measuring the similarity of labeled graphs. In: in Proceedings of
the 5th International Conference on Case-Based Reasoning (ICCBR 2003), pp. 80–95. Trond-
heim, Norway (2003)

3. d’Ausbourg, B.: Implementing secure dependencies over a network by designing a distributed
security subsystem. In: Proceedings of the European Sysmposium on Research in Computer
Security (ESORICS’94), pp. 249–266 (1994)

4. Gao, D., Reiter, M.K., Song, D.: Behavioral distance for intrusion detection. In: Proceedings
of the 8th International Symposium on Recent Advances in Intrusion Detection (RAID 2005),
pp. 63–81. Seattle, WA (2005)

5. Gao, D., Reiter, M.K., Song, D.: Behavioral distance measurement using hidden markov mod-
els. In: Proceedings of the 9th International Symposium on Recent Advances in Intrusion
Detection (RAID 2006), pp. 19–40. Hamburg, Germany (2006)

6. Just, J.E., Reynolds, J.C., Clough, L.A., Danforth, M., Levitt, K.N., Maglich, R., Rowe, J.:
Learning unknown attacks - a start. In: A. Wespi, G. Vigna, L. Deri (eds.) Proceedings of
the 5th International Symposium on Recent Advances in Intrusion Detection (RAID 2002),
Lecture Notes in Computer Science, vol. 2516, pp. 158–176. Zurich, Switzerland (2002)

7. Porras, P.A., Neumann, P.G.: EMERALD: Event monitoring enabling responses to anomalous
live disturbances. In: Proc. of the 20th National Information Systems Security Conference, pp.
353–365. Baltimore, MD (1997). URL http://www2.csl.sri.com/emerald/emerald-niss97.html

8. Totel, E., Majorczyk, F., Mé, L.: COTS diversity based intrusion detection and application
to web servers. In: Proceedings of the 8th International Symposium on Recent Advances in
Intrusion Detection (RAID 2005), pp. 43–62. Seattle, WA (2005)

9. Verı́ssimo, P.E., Neves, N.F., Correia, M.P.: Intrusion-tolerant architectures: Concepts and de-
sign. In: Architecting Dependable Systems, Lecture Notes in Computer Science, vol. 2677.
Sptringer-Verlag (2003)

10. Vigna, G., Robertson, W., Kher, V., Kemmerer, R.A.: A stateful intrusion detection system
for world-wide web servers. In: Proceedings of the Annual Computer Security Applications
Conference (ACSAC 2003), pp. 34–43. Las Vegas, Nevada (2003)

