
An Implementation of a Privacy Enforcement
Scheme based on the Java Security Framework
using XACML Policies

Thomas Scheffler, Stefan Geiß, Bettina Schnor

Abstract In this paper we discuss implementation issues of a distributed privacy en-
forcement scheme to support Owner-Retained Access Control for digital data repos-
itories. Our approach is based on the Java Security Framework. In order to achieve
policy enforcement dependent on the accessed data object, we had to implement
our own class loader that supports instance-level policy assignment. Access policies
are described using XACML and stored together with the data as sticky policies.
Enforcement of generic policies over sticky policy objects required the extension of
XACML with XPath specific functions. Our use-case scenario is the user-controlled
distribution of Electronic Health Records.

1 Introduction

The continuing advances in storage technologies allows the collection and storage
of substantial data collections on mobile media such as smart cards. With the in-
troduction and use of these mobile electronic data repositories for the storage and
access of personal private data comes the requirement to securely enforce access
policies for these repositories. Such an attempt requires the coordination between
many parties, especially when the data on such media is used by many different
principals and organisation. In this paper we propose a mechanism for the creation,
distribution and enforcement of data-use-policies in distributed systems based on
the Java Security Framework[11].
Many existing privacy protection techniques, such as P3P [7] and EPAL [3],

are implemented by the custodian of the data. This protection model assumes that
there are relatively few data release cases and the data itself is relatively immobile.
With the use of mobile data repositories the data owner might want to implement

Thomas Scheffler, Stefan Geiß, Bettina Schnor
Department of Computer Science, University of Potsdam, 14482 Potsdam, Germany
e-mail: {scheffler,schnor}@cs.uni-potsdam.de

157



158 Thomas Scheffler, Stefan Geiß, Bettina Schnor

a need-to-know policy where data is only visible to the authorised data user and
it is possible to maintain selective views on the repository. It would be beneficial
to create the ability for Owner-Retained Access Control (ORAC), as described by
McCollum [17], for the protection of mobile private data:

“ORAC provides a stringent, label-based alternative to DAC1 for user communities where
the original owners of data need to retain tight control of the data as they propagate through
copying, merging, or being read by a subject that may later write the data into other objects.
. . . The user who creates a data object is considered its owner and has the right to create an
ACL (Access Control List) on the object. ”

Enforcing data-use policies in a distributed environment requires a distributed ar-
chitecture, where each distributed component supports the access control scheme.
A Reference Monitor, as defined by Anderson [1], is a trusted component that val-
idates each and every request to system resources against those authorised for the
subject.
A distributed policy enforcement is necessary to control data access. It must be

secured that access to data is only possible via a trusted intermediary that reliably
enforces the defined policy. Otherwise policies and/or data could be accessed, al-
tered and deleted without trace and protection would be lost. Maintaining a trusted,
distributed reference monitor infrastructure is one of the main challenges in the pro-
posed architecture. Every participating site needs to trust and to install the necessary
components. We base our solution on the existing Java Security Framework which
might already be installed and trusted by most sites.
The Java programming language already provides Reference Monitor function-

ality for the safe execution of untrusted code. It was our aim to re-use these proven
mechanisms for the enforcement of data-use policies. Data-use policies are specified
in the eXtensible Access Control Markup Language (XACML) [22]. The private
data of the data owner is translated into a suitable XML record format and stored
together with the corresponding policy as a single XML data object. The Reference
Monitor needs to intercept data access and enforces the XACML policy through a
mapping onto Java permissions for the accessing application instance.
This paper focuses on the task of expressing, managing and enforcing authorisa-

tions for distributed data access. We assume that a suitable encryption and authen-
tication scheme, such as XML Encryption [13], is used to protect data and policies
from modifications and make data securely available to the authorised data user.
The rest of the paper is organised as follows: Section 2 explains a motivating

use case for the application of ORAC policies, Section 3 introduces the Privacy
Enforcement Architecture and explains the use of XACML policies. In Section 4 we
describe implementational details for the policy enforcement using the Java Security
Framework. Section 5 presents related work and the paper concludes with Section 6.

1 Discretionary Access Control (DAC) - is characterised by the capability of subjects with access
permission to pass that permission (perhaps indirectly) on to other subjects



An Implementation of a Privacy Enforcement Scheme using XACML Policies 159

2 Use Case

Electronic Health Records (EHR) are a good example for mobile electronic data
repositories. The work described in this paper has been motivated by the ability to
store and process personal health record data on mobile media, such as a patient
smart-card. The German government has mandated the use of patient smart-cards
for general health care [5]. The health cards have the ability to store personal health
record data of the patient, so that it can be accessed and exchanged by different
practitioners participating in the treatment process and act as a repository for future
diagnosis. While it is in the interest of the patient to have this data available, the data
sharing needs to be controlled, since it involves sensitive private data.
Historically, health records have been created, stored and accessed locally by

the practitioner or hospital. Data access was restricted through the fact that patient
records were only locally available. When data will be stored in a mobile electronic
repository, a similar level of separation between the different data sources needs to
be maintained.
In our use case, practitioners can add medical data from examinations and treat-

ment processes to the electronic repository. For this purpose the repository is sub-
structured into separate compartments that will be guarded by an appropriate access
policy. The implementation of a suitable policy-set guarantees the same level of
privacy between the different visits to practitioners that the patient can currently
expect.

2.1 Data Model

Repository data is stored in a structured way and data access policies can be applied
to these structures. Several standards exist for the structured data representation
in EHR (cf. [6],[14]). Since the focus of this work is not the exact representation
of medical data, but rather the creation, management and enforcement of access
decisions, the EHR is represented as a simple XML document which is flexible
enough to incorporate standards-based data representation as necessary.
We propose to group all treatment records generated by the same practitioner into

a virtual Examination Room (cf. Figure 1). A 1 :m relationship between practitioner
and Examination Room is assumed. All treatment records generated by the practi-
tioner are stored under this particular node and form a single zone of trust similar to
the existing patient – practitioner relationship.

2.2 Use Case Policy Example

Hierarchical grouping is a widely used concept in the field of access control. It
allows to minimise access rule management - rules can be defined and enforced at



160 Thomas Scheffler, Stefan Geiß, Bettina Schnor

<?xml version="1.0" encoding="UTF-8"?>
<healthRecord>

<demographicData>
<patient_id>CN=Homer J. Simpson, ... </patient_id>
<dayOfBirth>19670904</dayOfBirth>

</demographicData>
<practitioners>

<practitioner id="CN=Julius Hibbert, ...">
<examinationRoom>

<visit date="2007-11-28 15:06:37">
<description>X-Ray taken...</description>
<attachments>

<attachment filename="homer_brain.jpg"
mimetype="image/jpg" >...</attachment>

</attachments>
</visit>

</examinationRoom>
</practitioner>

</practitioners>
</healthRecord>

Fig. 1 Electronic Health Record Example

the group level, thus minimising the number of rules in the policy. The practitioner,
as data author, has specific rights for his or her sub-tree in the patient health record.
These can be specified as a generic rule affecting all groups of a certain type and be
applied consistently for every instantiation of this type:

• Practitioner can create new examination entries in his/her personal examination
room

• Practitioner can read examination entries from his/her personal examination
room

A distinctive feature of the use case is the fact that data ownership and authorship
are separated. The data owner determines the access policy for data access by other
practitioners, but is constrained in the policy editing in order to avoid errors (e.g.
revoke its own access rights) and inconsistencies (e.g. can not create a policy that
allows him or her to act as a data author):

• Patients can grant access rights for practitioners to read examination entries of
other practitioners

• Patients can grant the right to export entries from the health card into medical
information system

• Patients have no right to create/modify entries in the examination rooms

3 Privacy Enforcement Architecture

The creation, distribution and enforcement of ORAC policies in a distributed en-
vironment requires the presence of an enforcement architecture that supports dis-
tributed policy creation and evaluation. Figure 2 shows a simplified version of the



An Implementation of a Privacy Enforcement Scheme using XACML Policies 161

generic architecture described by the XACML standard [19]. The Policy Adminis-
tration Point (PAP) is the entity that creates an access policy and makes this policy
available to the Policy Decision Point (PDP). The data user tries to access a re-
source via a Policy Enforcement Point (PEP) and thus triggers a Decision Request
to the PDP which will issue an appropriate Decision Response based on the avail-
able policy. The PEP then grants or denies access in accordance with this policy
decision.

Fig. 2 Simplified XACML
Access Control Architecture

Policy description languages, such as XACML are well suited to express usage
policies for Electronic Health Records [2]. Policy languages have the ability to ex-
press policies for logically grouped objects and subjects and can express dependen-
cies from environmental conditions (e.g. time of access). These properties allow the
creation of concise policies that can be specified at high level of abstraction close to
the intention of the policy creator.
XACML policies must be evaluated at the time of access in order to determine

the access decision. This access decision is generated by the Policy Decision Point
which implements a deterministic policy evaluation algorithm. In our architecture
we use and extend a Java-based XACML implementation provided by Sun [21].

3.1 Sticky Policy Paradigm

Data access policies need to be referenced reliably throughout the distributed archi-
tecture. Policy storage and distribution becomes an important design choice for the
implementation of the architecture. One possibility would be to store policies in a
central repository. This requires the accessibility and availability of the policy store
for every potential data user at any given time and would be suitable if the data is
also centrally stored.
Our use case assumes that data is stored on a mobile media and thus needs to

reference the policy independently. A policy distribution method, well suited for
handling access to distributed data, is the Sticky Policy paradigm (cf. [15]). The data
access policy is stored and distributed together with the data that it is protecting.



162 Thomas Scheffler, Stefan Geiß, Bettina Schnor

Together they form a sticky data object that allows the direct referencing of the
policy as data needs to be accessed.
Figure 3 shows the enforcement architecture for the Sticky Policy model. Ac-

cess to data and policy is mediated through the Policy Administration Point. The
protected resource and its access policy are created and stored together.

Fig. 3 Access Control Archi-
tecture using ’Sticky Policies’

The XACML standard separates the description of authorisation policies from the
actual resources. However, since policy and data are XML-based resources, policies
can be included directly in the EHR document and referenced via XPath [9]. It then
becomes the responsibility of the PEP to select the requested resource node from the
XML document and query the PDP for a policy decision regarding the authenticated
subject and the requested action for this resource.

3.2 Use case policy examples

Policy management will be controlled by a Policy Template (as shown in Figure 3),
that also guides the policy creation process. The policy template has the function to
apply a default policy for newly created EHR entries that already enforces a basic
privacy protection level. Secondly, the default rules are needed to limit the data
owner and data author in their administrative power over data and policies (e.g. the
data owner should not be able to refuse data access to the data author).
The XACML policy-base contains two types of rules:

1. Generic access rules which define default behaviour for policies over the set of
resources. These rules are static and immutable and based on the Policy Tem-
plate.

2. Specific access rules define resource specific policies and are managed by the
data owner to create specific access decisions (e.g. granting extended access to
treatment records for an external practitioner)



An Implementation of a Privacy Enforcement Scheme using XACML Policies 163

Example 1. Generic Rule:A data owner has read access to his or her own resources

<Rule RuleId="dataOwnerRule0" Effect="Permit">
<Target>
<Subjects><AnySubject /></Subjects>
<Resources><AnyResource /></Resources>
<Actions>
<ActionMatch MatchId="string-equal">

<AttributeValue DataType="string">read</AttributeValue>
<ActionAttributeDesignator AttributeId="action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />
</ActionMatch>

</Actions>
</Target>
<Condition FunctionId="function:xpath-node-element-x500-compare">

<Apply FunctionId="x500Name-one-and-only">
<SubjectAttributeDesignator DataType="x500Name"
AttributeId="subject-id" />

</Apply>
<Apply FunctionId="string-concatenate">

<Apply FunctionId="string-one-and-only">
<ResourceAttributeDesignator AttributeId="resource-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />

</Apply>
<AttributeValue DataType="string">

/parent::attachments/parent::visit/parent::examinationRoom/
parent::practitioner/@id</AttributeValue>

</Apply>
</Condition>

</Rule>

Based on the requirements of our use case, new resource-trees can be added to the
document anytime. In order to support dynamic comparison between the data user
and the data owner of the currently selected resource sub-tree, we need to compare
the current data user with the data owner of the sub-tree of the requested resource.
The XACML standard provides an XPath expression-based function for the se-

lection of XML attributes. XACML uses the <AttributeSelector> element
to identify a particular attribute value based on its location in the request con-
text. The RequestContextPath attribute of the <AttributeSelector>
element takes a static XPath expression and evaluates to a bag of values, given by
the DataType attribute. The drawback of this function lies in the fact, that the at-
tribute value for the RequestContextPath attribute handles only fixed XPath
expressions that must be fully known at policy creation time.
We define a new XPath-based function that enables referencing and comparing

of XML nodes relative to the currently selected resource:

The function <function:xpath-node-element-x500-compare>
takes two arguments. The first argument is of data type:

urn:oasis:names:tc:xacml:1.0:data-type:x500Name
and the second argument is of data type:

http://www.w3.org/2001/XMLSchema#string
which is interpreted as an XPath expression and evaluates to a

urn:oasis:names:tc:xacml:1.0:data-type:x500Name



164 Thomas Scheffler, Stefan Geiß, Bettina Schnor

This function returns an http://www.w3.org/2001/XMLSchema#bool-
ean and allows the dynamic creation of an XPath expression for the second argu-
ment, using the standard XACML string manipulation functions, such as concatena-
tion. Both arguments are treated as X500Name values. The function compares the
arguments and if they match, the function evaluates to true.

Example 2. Specific Rule: A practitioner is granted access to a treatment record for
a limited time period

<Rule Effect="Permit">
<Target>
<Subject>

<SubjectMatch MatchId="x500Name-match">
<AttributeValue DataType="x500Name">CN=Julius Hibbert,

... </AttributeValue>
<SubjectAttributeDesignator AttributeId="subject-id"

DataType="x500Name"/>
</SubjectMatch>

</Subject>
<Resources>
<ResourceMatch MatchId="xpath-node-equal">/healthRecord/

practitioners/practitioner/examinationRoom/visit/
attachments/attachment/@filename=’homer_brain.jpg’

</ResourceMatch>
</Resources>
<Action>view</Action>
</Target>
<Condition FunctionId="date-less-than-or-equal">

<Apply FunctionId="date-one-and-only">
<EnvironmentAttributeDesignator DataType="date"

AttributeId="current-date" />
</Apply>
<AttributeValue DataType="date">2009-03-22</AttributeValue>

</Condition>
</Rule>

Generic rules capture the default behaviour of the system and can not be changed
by the data owner or the data user. Specific rules can be added and deleted by the
data owners depending on the different trust relationships and data exchange needs.
These two rule-sets can be maintained separately using the existing XACML policy
combining mechanism.

4 Reference Monitor Implementation

Implementation of the Privacy Enforcement Architecture requires the presence of a
trusted system component at every data access location. An ideal Policy Enforce-
ment Point would be based on a trusted virtual machine implementation that has
the ability to enforce data use policies. We choose to base our implementation on
the Java Security Framework and use the permission concept of the Java security
manager for the enforcement of data use policies. Client applications will be started
under the control of the Java security manager that controls resource access based
on an appropriate data access policy for an application instance.



An Implementation of a Privacy Enforcement Scheme using XACML Policies 165

4.1 Java Security Architecture

The Java programming language provides a Security Framework that is aimed to
protect the local system user from threats arising from untrusted Java code that is
executed on the local system (such as Java Applets). Local programs typically have
the full set of rights to access any resource on the system. Untrusted programs run
under the supervision of the Java SecurityManager within a sandbox environment
and are restricted in their access to system resources. For each Java Virtual Ma-
chine there exists exactly one instance of the SecurityManager. With the introduc-
tion of the Java 2 Security Architecture [11] the rigid sandbox model became much
more refined and allows now the definition of application-specific security policies
through the definition of permissions also for local programs.
Policies for resource access by Java applications started under the control of the

SecurityManager are established through the Java Policy class. The default policy
implementation uses text based configuration files to determine the actual set of
permissions. The policy file(s) specify what permissions are granted for code from
a specified CodeSource and support fine grained permissions.
All permissions granted to a class are encapsulated within a ProtectionDo-

main which is determined and irrevocably bound to the class at class loading time
by the Java class loader. Permissions are granted depending on the origin of the
code CodeSource and the user of the application Principal and bundled as a
PermissionCollection. A ProtectionDomain for a class is constructed
from the CodeSource, the PermissionCollection, a ClassLoader ref-
erence and the Principal who executes the code.

4.2 Assigning a XACML-Policy

In order to be enforceable through the Java Security Framework, XACML poli-
cies need to be translated into Java permissions. Only such policies that can be
mapped to a corresponding Java permission can be directly enforced through the
Reference Monitor without cooperation of the application. The set of permissions
for the ProtectionDomain will be derived from the XACML policy description
of the data object that is currently accessed.
The Reference Monitor is responsible for the translation of the XACML policy

into a PermissionCollection and the launching of a restricted application
component under the protection of the Java SecurityManager. Two alternatives exist
to base permissions granted to code on XACML rather than the standard Java policy:

1. Write a new implementation of the Policy class, that derives permissions from
XACML policies, rather than Java policy files

2. Implement a class loader that is able to derive and assign a ProtectionDomain
from XACML policies



166 Thomas Scheffler, Stefan Geiß, Bettina Schnor

Writing a new Policy class would allow us to derive permissions fromXACML.
However, as permissions apply to the code source, we could not distinguish between
different policies for application instances derived from the same code source. We
therefore implement a custom class loader, because this gives us the possibility to
assign different policies for application instances as we will see later. We started our
implementation with the extension of the SecureClassLoader class. Our class
loader overrides the getPermissions() method in order to allow the creation
of the ProtectionDomain from the XACML Policy rather than the standard
Java policy files. A XACML policy is typically much broader in scope than a Java
permission that applies for a specific data object and the currently authenticated
user. However, all granted actions need to be known at class loading time to be in-
cluded in the ProtectionDomain. To determine the full set of permissions for
a specific data object we execute several XACML requests, each against the corre-
sponding data object and data user, but with different actions. We use the mapping
in Table 1 to translate XACML policy responses into Java permissions.
The Reference Monitor generates a dedicated view on the data object for the

called application, that is destroyed once the application quits. The actions ap-
pend and delete therefore apply only to this view and require the cooperation of
the Reference Monitor to persistently change the XACML data object. The Java
SecurityManager enforces the permissions of the ProtectionDomain and
intercepts actions that are not authorised.

Table 1 Mapping of XACML policy actions against Java Permissions
Java Permission XACML policy actions

read copy save print append delete
AWT:accessClipboard x
Runtime:queuePrintJob x
FilePermission:read x
FilePermission:write x x
FilePermission:delete x

4.3 Assigning Instance-Level Permissions

The current Java Security Architecture is targeted towards class based policing.
Trust settings are applied by the code source and not by the running instance based
on this code. For the realisation of Owner-Retained Access Control the reference
monitor needs to enforce different policies depending on the current execution en-
vironment and data source.
An instance-based policing is necessary to distinguish between different in-

stances of an application that simultaneously load data-sets with different access
policies. Data users will be restricted in their actions based on the data that they



An Implementation of a Privacy Enforcement Scheme using XACML Policies 167

are accessing. For each data object that is been accessed it becomes necessary to
reference the corresponding policy before access is granted. When the data user is
accessing different data objects during one session it becomes necessary to enforce
more than one access policy.
Our class loader assigns a dedicated ProtectionDomain and loads the appli-

cation class when data access is granted. The assignment of a new Protection-
Domain to a class is only possible at class loading time and can not be revoked or
changed. Dynamic policy enforcement therefore requires the loading of a new class,
including the construction of a new ProtectionDomain, for every data object
that is accessed.
The default implementation of the loadClass() method in the Class-

Loader, as described in [10], loads a class in the following order:

1. Call findLoadedClass() to check if the class is already loaded. If this is the
case, return that object. Otherwise,

2. call the loadClass() method of the parent class loader, in order to delegate
the task of class loading to the parent (this is done to ensure that system classes
are only loaded by system class loaders).

3. If none of the parent class loaders in the delegation hierarchy is able to load the
class, the findClass() method of this class loader is called in order to find
and load the class.

With the behaviour of the default loadClass method the existing class would
be found and re-used. In order to load a class with a new ProtectionDomain
we load the class with a new instance of our class loader. The class loader uses a
modified loadClass() method and no longer calls findLoadedClass() to
check if the parent class loader already knows this class. Instead findClass() is
called directly to load the class with a new ProtectionDomain.
Namespace separation in Java is enforced through the use of different class load-

ers. Two classes are considered distinct if they are loaded by different class loaders.

4.4 Use Case Implementation

To validate the protection concept outlined above we developed a prototypical im-
plementation of a medical information system. Figure 4 visualises the interworking
of the framework components. A resource browser component let the data user au-
thenticate, select interesting events in the Electronic Health Record and start the
Health Record Viewer (HRV) upon the selected entries. The HRV visualises the
medical data of the health record such as images and diagnostic text and will be
started under the control of the Java security manager. An appropriate permission
setting will be derived from the XACML-policy part of the EHR. Since the HRV
is under the complete control of the security manager the implementation of this
component does not need to be fully trusted. The HRV can implement a superset



168 Thomas Scheffler, Stefan Geiß, Bettina Schnor

of functions (such as print, save, etc.) whose execution will be restricted at runtime
according to the specified data-use policy.
Multiple instances of HRV can be started simultaneously for different data ob-

jects and allow the comparison of different diagnoses or illnesses. Each instance of
the HRV will carry its individual set of permissions based on the data that is being
accessed.

Fig. 4 Implemented Privacy Enforcement Framework

The XACML policy will be evaluated at the moment the application is loaded
via the Reference Monitor. The Reference Monitor iterates through the set of ac-
tions contained in the policy-base for a given subject/resource pair to gather all the
related permissions. An appropriate set of Java permissions is generated from the
underlying XACML policy. The actual policy enforcement is offloaded to the Java
Security Framework. No XACML requests have to be evaluated at the time of re-
source access of the HRV.
Policy enforcement is limited by the support of native permissions in Java –

which are primarily focused on the Java threat model. Policies that can not be di-
rectly enforced through the native Java permission mechanism include the ability
to control the file-append function and time based policies that enforce access time
restrictions.
Time restricted policies can be handled at application start-up time by the Refer-

ence Monitor, but require reliable access to a trusted time-base.
The Java permission model can be extended through application specific exten-

sion of the policy class, however in this case the application needs to be trusted to
correctly implement the necessary access checks. Implementation of new permis-
sions would require the extension of our trust model, that currently only includes
the Reference Monitor.



An Implementation of a Privacy Enforcement Scheme using XACML Policies 169

5 Related Work

Different policy schemes have been proposed to aid the data owner in the task of
protecting his or her data.
Author-X [4] is a Java based data protection solution that allows the definition

and enforcement of access restrictions on (parts of) XML-documents. It is a server-
based solution where the document access is mediated by the access component,
based on the collocated authorisation store. Access can be granted to parts of the
complete document. No further protection mechanism exists once data access has
been granted. While we realise a similar view on the document protections mech-
anism, our proposed protection scheme can enforce policies even after the data is
released to the data user.
Damiani et al. [8] developed an access control system for XML documents that is

able to describe fine grained access restrictions for the structure and content of XML
documents. Their system generates a dedicated user view according to the permis-
sions granted in a server-side authorisation file: the XML Access Sheet (XAS). The
system does not implement any control over data that has been released by the server
to the client. Consequently any information that is granted to be read by a user could
be locally stored, copied and processed by the client. The generated view restricts
data processing for single action classes only, e.g. the ’read’ action. No support is
given for orthogonal action sets, e.g. restricting a document to be read, but not to be
printed.
Mont et al. [18] propose a privacy architecture that uses sticky policies and ob-

fuscated data that can only be accessed if the requester can attest compliance with
the requested privacy policy for this data. Data access is mediated via a Trusted
Third Party that can reliably enforce time-restricted access. Our work aims to pro-
vide similar protection but does not depend on functions provided by another party.
It uses the functions of a trusted reference monitor instead.
Sevinc and Basin [20] describe a formal access control model for documents

based on the sticky policy paradigm. In their work they focus on document related
actions such as read, print, change and delegate. Their model supports multiple own-
ers and sub-policies for document parts and takes document editing into account,
where merging and splitting of document content also influences the attached poli-
cies. We believe that our work fits within their problem definition but we focus
mainly on implementational issues.
Lehmann and Thiemann [16] have developed a field access analyser that is able

to analyse existing Java programs in order to determine the points in the program
code where object methods are accessed. Static policy checking code is inserted to
enforce access controls in accordance with the access-control policy for the pro-
gram. In our work we choose to clearly separate the policy enforcement from pro-
gram execution. No access to the application source code is necessary for the policy
enforcement and policies can be expressed, evaluated and enforced independently
from the application.
Gupta and Bhide [12] describe an XACML based authorisation scheme for Java

that extends the Java Authentication and Authorisation Service. The work describes



170 Thomas Scheffler, Stefan Geiß, Bettina Schnor

a generic implementation that extends the Java policy class with the ability to in-
terpret XACML policies. While this work allows the Java Security Framework to
enforce permissions for different users of an application, it might not be possible to
enforce ORAC policies where different permissions need to be enforced depending
on the data object that is currently accessed.

6 Conclusion

We investigated whether standard techniques like the Java Security Framework and
XACML are sufficient for the implementation of privacy enforcement.
Our implementation allows the start of arbitrary, untrusted Java programs under

the control of the Java Security Framework. The relevant access permissions of the
application are derived at runtime from the policy of the data object that is being
accessed. The developed architecture provides fine grained policy support for the
enforcement of document policies at application level, independent from specific
OS security mechanisms. We implemented a new class loader that supports instance
level policy assignment. No new access control mechanism had to be added, as we
use the existing implementation of the Java Security Manager.
The XACML policy language was used for the definition of data-use policies

by the original data owner. The private data of the data owner is translated into a
suitable XML record format and stored together with the corresponding XACML
policy as a single XML data object. Data access policies are defined and bound to
the data at creation time and revised later as access decisions need to be granted
or revoked. Policy management is aided through the separation of generic default-
policies from user-editable specific policies. The private data is referenced from the
XACML policy via XPath.

References

1. Anderson, J.P.: Computer security technology planning study. Technical Report ESD-TR-73-
51 (October 1972)

2. Apitzsch, F., Liske, S., Scheffler, T., Schnor, B.: Specifying Security Policies for Electronic
Health Records. In: Proceedings of the International Conference on Health Informatics
(HEALTHINF 2008), vol. 2, pp. 82 – 90. Funchal/Madeira, Portugal (January 2008)

3. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise Privacy Authorization
Language (EPAL 1.2) (November 2003). URL http://www.w3.org/Submission/2003/SUBM-
EPAL-20031110/

4. Bertino, E., Braun, M., Castano, S., Ferrari, E., Mesiti, M.: Author-X: A Java-Based System
for XML Data Protection. In: Proceedings of the IFIP TC11/ WG11.3 Fourteenth Annual
Working Conference on Database Security: Data and Application Security, Development and
Directions, pp. 15–26. Kluwer, B.V. (2001)

5. Bundesgesundheitsministerium: Gesetz zur Modernisierung der gesetzlichen Krankenver-
sicherung, SGB V, §291a. In: Bundesgesetzblatt, vol. 55 (2003)



An Implementation of a Privacy Enforcement Scheme using XACML Policies 171

6. CEN/TS-15211: Health informatics - Mapping of hierarchical message descriptions to XML.
European Committee for Standardisation (2006). URL http://www.cen.eu

7. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The
Platform for Privacy Preferences 1.0 (P3P1.0) Specification (April 2002). URL
http://www.w3.org/TR/2002/REC-P3P-20020416/

8. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-grained access
control system for XML documents. ACM Transactions on Information and System Security
5(2), 169–202 (2002)

9. DeRose, J.C.S.: XML Path Language (XPath). W3C Recommendation (1999). URL
http://www.w3.org/TR/1999/REC-xpath-19991116

10. Gong, L., Ellison, G., Dageforde, M.: Inside Java 2 Platform Security - Second Edition.
Addison-Wesley, Boston (2003)

11. Gong, L., Mueller, M., Prafullchandra, H., Schemers, R.: Going Beyond the Sandbox: An
Overview of the New Security Architecture in the Java Development Kit. In: USENIX Sym-
posium on Internet Technologies and Systems. Monterey, California (1997)

12. Gupta, R., Bhide, M.: A Generic XACML Based Declarative Authorization Scheme for
Java, Lecture Notes in Computer Science: Computer Security - ESORICS 2005, vol. Volume
3679/2005. Springer Berlin / Heidelberg (2005)

13. Imamura, T., Dillaway, B., Simon, E.: XML Encryption Syntax and Processing. W3C Rec-
ommendation (2002). URL http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

14. ISO/HL7-21731: Health informatics - HL7 version Reference information model Release 1)
(2006)

15. Karjoth, G., Schunter, M., Waidner, M.: Platform For Enterprise Privacy Practices: Privacy-
enabled Management Of Customer Data. In: 2nd Workshop on Privacy Enhancing Technolo-
gies (PET2002), vol. Lecture Notes in Computer Science 2482, pp. 69–84. Springer Verlag
(2003)

16. Lehmann, K., Thiemann, P.: Field access analysis for enforcing access control policies. In:
Proceedings of the International Conference on Emerging Trends in Information and Com-
munication Security (ETRICS 2006), Lecture Notes in Computer Science, vol. 3995, pp. 337–
351. Springer-Verlag, Berlin, Heidelberg (2006)

17. McCollum, C.J., Messing, J.R., Notargiacomo, L.: Beyond the pale of MAC and DAC-
defining new forms of access control. In: IEEE Computer Society Symposium on Research in
Security and Privacy, pp. 190–200 (1990)

18. Mont, M.C., Pearson, S., Bramhall, P.: Towards accountable management of identity and pri-
vacy: Sticky policies and enforceable tracing services. In: Proceedings of the 14th Inter-
national Workshop on Database and Expert Systems Applications, p. 377. IEEE Computer
Society (2003)

19. Moses, T.: eXtensible Access Control Markup Language (XACML) Version 2.0. XACML
Core Standard (2005). URL http://www.oasis-open.org/committees/xacml

20. Sevinç, P.E., Basin, D.: Controlling Access to Documents: A Formal Access Control Model.
Technical Report No. 517, Department of Computer Science, ETH Zurich, 8092 Zurich,
Switzerland, (May 2006)

21. SUN: Sun’s XACML implementation (2005). URL http://sunxacml.sourceforge.net/
22. XACML-2.0: eXtensible Access Control Markup Language (XACML). OASIS-Standard

(2005). URL http://www.oasis-open.org/committees/xacml


