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Abstract We construct a bump-in-the-wire (BITW) solution that retrofits security
into time-critical communications over bandwidth-limited serial links between de-
vices in legacy Supervisory Control And Data Acquisition (SCADA) systems, on
which the proper operations of critical infrastructures such as the electric power
grid rely. Previous BITW solutions do not provide the necessary security within
timing constraints; the previous solution that does is not BITW. At a hardware cost
comparable to existing solutions, our BITW solution provides sufficient security,
and yet incurs minimal end-to-end communication latency.

1 Introduction

1.1 SCADA Systems

Supervisory Control And Data Acquisition (SCADA) systems are real-time process
control systems that monitor and control local or geographically remote devices.
They are widely used in industrial facilities and critical infrastructures such as elec-
tric power generation and distribution systems, oil and gas refineries and transporta-
tion systems, allowing operators to ensure their proper functioning.

Electric power utilities, for instance, were among the first to widely adopt remote
monitoring and control systems. Their earliest SCADA systems provided simple
monitoring through periodic sampling of analog data, but have evolved into more
complex communication networks. In this paper, we focus on SCADA systems for
electric power generation and distribution. However, our proposed solution and dis-
cussion are applicable to many other SCADA systems.
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Devices and Communications A SCADA system consists of physical devices, as
well as communication links (we simply call them links from now on) that connect
them together. Typical communications in a SCADA system include exchanging
control and status information between master and slave devices. Master devices,
most of which are PCs or programmable logic controllers (PLCs), control the oper-
ation of slave devices; a slave device, e.g., a remote terminal unit (RTU), can be a
sensor, an actuator, or both. Sensors read status or measurement data of field equip-
ments such as voltage and current, whereas actuators send out commands or analog
set-points such as opening or closing a switch or a valve.

Most SCADA systems have traditionally used low-bandwidth links, e.g., radio,
direct serial and leased lines, with typical baud rates from 9600 to 115200. They
are known as serial-based SCADA systems. Communication protocols used in these
systems are very compact—messages are short, and slave devices send information
only when polled. Popular protocols include Modbus (http://www.modbus.
org/) and DNP3 (http://www.dnp.org).

Security Trouble Many serial-based SCADA systems in operation today were de-
ployed decades ago with availability and personnel safety as the primary concerns,
rather than security. As with any complex systems not designed to withstand adver-
sarial action, these systems are vulnerable to a variety of malicious attacks such as
sniffing and tampering. The risks due to such a lack of security in these systems are
ever increasing, as an initial protection of “security through obscurity” breaks down.

First, after initial dependence on proprietary elements, it is now common to build
SCADA systems using commercial off-the-shelf (COTS) hardware and software
that speak open communication protocols, the technical internals of which are of-
ten easily accessible. Second, many utilities have replaced, to various extent, their
private networks by public ones such as the Internet. Their SCADA networks and
corporate networks have also become highly inter-connected to achieve efficient
information exchange—leading to increased risks of intentional or inadvertent ex-
posure to the Internet. Finally, teams of sophisticated hackers are now employed by
criminal organizations or terrorists to break into these systems.

Retrofitting Security Failures of critical infrastructures could lead to devastating
consequences. As an example of cyber-attacks on critical infrastructures, in 2001,
an Australian man hacked into a computerized sewage management system and
dumped millions of liters of untreated waste into local parks and rivers [9]. It is
therefore paramount to secure SCADA systems against malicious attacks. In the
long run, existing insecure SCADA systems may eventually be replaced by newer
ones built with better technologies and with security as a primary goal—we will
gradually see devices that are computationally more powerful, links with higher
bandwidths, as well as devices and protocols with built-in security, e.g., DNPSec [7]
and IEC 61850 (http://www.61850.com/).

Nonetheless, for the next several decades (the expected lifetime of many SCADA
equipments spans from 20 to 50 years), achieving security requires non-intrusively
retrofitting it to existing insecure and legacy SCADA systems, as it is economically
infeasible, if not technically impossible, to simply throw away the existing infras-
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Fig. 1 System and attack model for “bump-in-the-wire” approach.

tructures overnight. In such an effort, several “bump-in-the-wire” (BITW) solutions
have been developed. In a BITW solution, two hardware modules are inserted into
the link connecting two communicating SCADA devices, one next to each of the
device, as depicted in Figure 1. These modules transparently augment the necessary
security through mechanisms such as encryption and authentication.

1.2 The Challenge

BITW solutions secure SCADA communications at the expense of incurring end-
to-end communication delay, due to the processing and buffering in the BITW mod-
ules. Buffering can be prohibitively expensive in low-bandwidth links. For instance,
a serial link at 9600 baud per second has a byte time (i.e., the time to send one byte
of data) of roughly 1ms. If each of the two BITW modules buffers up a message
of 20 bytes before processing it, then a timing overhead of 40ms is incurred, due to
buffering alone. If the message has 250 bytes, the overhead becomes 0.5s.1

Such an overhead could be intolerable for serial-based SCADA systems that have
timing constraints on communication latencies. For example, the exchange of event
notification information for bus and transformer protection function between Intel-
ligent Electronic Devices (IEDs) within a power substation must be accomplished
within 10ms, and the maximum delivery time for information such as response to
data poll and phasor measurements is up to 0.2s [5].

As we will see in Section 2 when we review some of the existing solutions,
retrofitting data privacy to the communications in serial-based SCADA systems,
even the time-critical ones, is a relatively trivial task; the real challenge lies in
retrofitting data authenticity and freshness in a timely manner, as the straightfor-
ward application of conventional data authentication techniques does not provide
the required timing guarantee: the BITW module at the receiving end of the com-
munication must “hold back” the message, i.e., it must wait until the receipt of the
entire message and its authentication information, before relaying the message to

1 A typical SCADA message has a length of roughly 20 bytes. However, some SCADA protocols
allow a maximum message-length of more than 250 bytes.
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the destination SCADA device, if the message is indeed authentic and fresh. This
incurs a latency dependent linearly on the length of the message being secured.

1.3 Our Contributions

We present Yet Another SecurIty Retrofit, or YASIR, which is a novel BITW solu-
tion for retrofitting security to time-critical communications in serial-based SCADA
systems. To the authors’ best knowledge, our solution is the first that achieves all of
the following goals simultaneously:

• High Security. YASIR provides data authenticity and freshness, and optionally
data privacy, against not only eavesdroppers but stronger adversaries such as in-
siders, at a security level of 80 bits.2

• Low Latency. YASIR incurs an overhead of at most 18 byte times, irrespective of
the length of the message being authenticated, and can hence secure time-critical
SCADA communications.

• Comparable Cost. YASIR’s BITW modules have hardware costs comparable to
many existing solutions. Deploying YASIR is thus economically practical.

• Standard and Patent-free Tools. All cryptographic tools and techniques used
in YASIR, such as AES-CTR and HMAC, are NIST-standardized and patent-free.

The rest of this paper is organized as follows. In Section 2, we review several
existing BITW solutions. Section 3 covers SCADA preliminaries. Section 4 stud-
ies the threat model and security goals of BITW solutions. We give an overview to
our solution in Section 5 and provide the details of its actual construction in Sec-
tion 6. Section 7 concludes the paper. In the extended version of this paper [10],
we evaluate YASIR’s security, performance and costs in depth. We also report on a
micro-controller prototype of YASIR.

2 Existing Solutions

We do not consider encryption-only solutions as retrofitting only data privacy does
not provide sufficient security. Also, since we are interested in non-intrusively
retrofitting security into legacy SCADA communications, we do not consider non-
BITW solutions, i.e. solutions that require replacing the link with one of a higher
bandwidth, e.g., from RS-232 to Ethernet, and/or upgrading the (software or hard-
ware of) the SCADA devices to allow for newer technologies such as IPSec [6].

Below, we review several existing BITW solutions, all of which fall short in
some critical property: they don’t provide data authenticity against realistic attacks,
or they delay messages too long. Table 1 summarizes this picture.

2 A security solution attains a security level of ` bits if brute-forcing a space of 2` possibilities is
the most effective strategy for an adversary to break the solution’s security.
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Table 1 Previous BITW solutions for securing legacy SCADA communications all fall short in
some critical property; the one previous approach that provides the critical property is not BITW.
Our approach meets all the criteria.

2.1 SEL’s Serial Encrypting Transceiver

The SEL-3021 Serial Encrypting Transceiver from Schweitzer Engineering Labo-
ratories, Inc (SEL, http://www.selinc.com) is a BITW module for securing
RS-232 serial links between SCADA devices against malicious attacks. Both avail-
able models, SEL-3021-1 and SEL-3032-2, support all standard SCADA protocols,
including DNP3-Serial and Modbus/RTU, at data rates up to 115200 bps.

The SEL-3021-2 provides data authenticity through HMAC-SHA-1/-256. It also
optionally provides data privacy through AES-CTR-128. Unfortunately, SEL-3021-
2 does not provide an upper-bound on the delay it may incur [8]. In fact, SEL sug-
gests that SEL-3021-2 “may not be suitable to secure links that require time-critical
communications with low latency (i.e., links for electrical tele-protection)” [8]. An-
other model in the family, the SEL-3021-1, is an encryption-only solution.

2.2 AGA’s SCADA Cryptographic Module

The American Gas Association (AGA) (http://www.aga.org/) Task Group
12 designed the SCADA Cryptographic Module (SCM) [1] as a BITW solution that
retrofits data authenticity to SCADA communications while maintaining the per-
formance requirements. AGA’s SCM provides several cipher-suites to choose from.
The most secure ones use AES-CTR for data privacy and HMAC-SHA-1/-256 for
data authenticity. Unfortunately, messages must be held back by the receiving SCM
using these cipher-suites.

PE Mode of Operation In one of the cipher-suites provided by AGA’s SCM,
data authentication is achieved by operating AES in the Position-Embedded (PE)
mode [11]. Using this cipher-suite, SCMs provide data authenticity with an over-
head of only 32 byte times, regardless of the message-length. To the best knowledge
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of the authors, AGA’s SCM and our YASIR are the only BITW solution for legacy
SCADA systems that provide data authenticity without message hold-back.

Unfortunately, AES operating in the PE mode attains a security level of only 16
bits at maximum, which is far below the generally accepted minimum of 80-bit level
of security: with a probability of at least 2�16, SCADA devices protected by SCMs
will accept maliciously crafted messages as authentic. As a remedy, SCMs rely in
addition on traditional HMAC for more secure data authentication. However, as
pointed out by Majdalawieh et al [7], although unauthentic messages can eventually
be detected by the SCM, the late detection can’t stop the SCM from forwarding them
to the SCADA devices. Moreover, AES in PE mode is proven secure only under
known-plaintext attacks [11]. Hence, this solution is not guaranteed to be secure
against stronger and yet realistic attacks, such as chosen plaintext and/or ciphertext
attacks launched by, e.g., a compromised employee working in the control center.

2.3 PNNL’s Secure SCADA Communications Protocol

A SCADA communications authenticator technology is under development by a
group led by Mark Hadley at the Pacific Northwest National Laboratory (PNNL,
http://www.pnl.gov/). In PNNL’s solution, SCADA messages are “wrapped”
by an authenticator and potentially some other information such as a unique iden-
tifier. Their solution is effectively a protocol wrapper that converts an insecure
SCADA protocol into their Secure SCADA Communications Protocol (SSCP).

PNNL’s technology is being implemented both as a BITW solution and an em-
bedded solution [3]. The BITW solution requires message hold-back. The embedded
solution is fast but is not a BITW solution: it requires upgrading the hardware and/or
software of the SCADA devices.

3 Preliminaries

SCADA Protocols The data link layer of a SCADA protocol specifies how control
and data messages are encoded into bit-sequences known as frames for transmis-
sion over the communication link. Let || denote the concatenation of (bit- or octet-)
strings. A frame F has the form s||H||P||e.

The header H, if present,3 may contain control information about the frame such
as its length. The payload P contains a message in its encoded form and usually has
variable length. The starting symbol s and the ending symbol e are bit-sequences
distinct from any code symbols used in the rest of the frame so that a SCADA de-
vice can detect frame boundaries unambiguously. In many asynchronous protocols
including Modbus/ASCII and DNP3-Serial, frame boundaries can be recognized

3 In some SCADA protocols such as Modbus, frames do not have a header.
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within two byte times. In Modbus/RTU, which is a synchronous protocol, a silence
of 3.5 byte times indicates the end of a frame.

A Classification of Legacy SCADA Protocols There are more than a hundred
SCADA protocols in use today, many of which are closed and proprietary. A prac-
tical BITW solution should make few assumptions about the SCADA protocol it is
protecting, so that it can be used to, upon simple configuration, protect a majority
of protocols.

Our solution to be presented in Section 6 does require certain assumptions to
be made about the underlying protocols, but is otherwise designed so that those
assumptions hold for the majority of SCADA protocols. Specifically, we introduce
a classification of SCADA protocols into Type-I and Type-II in the following; our
solution assumes that a SCADA protocol is of Type-I or Type-II, or both.

• Type-I Protocols. The last few octets in the frame is a checksum of (a part of)
the rest of the frame produced according to certain known CRC algorithm. A
receiving SCADA device flags an error and drops the frame if the checksum is
incorrect. For example, in Modbus/ASCII (resp. DNP3), the last two octets is a
CRC-16 on the rest of the payload (resp. the previous 16 bytes).

• Type-II Protocols. A frame contains in its fixed-sized header information from
which the length of the frame (and thus that of the payload) can be calculated.
If the actual length of the frame is smaller than4 the length as calculated using
the header information, a receiving SCADA device flags an error and drops the
frame.5 For example, DNP3 frames contain in the header the size (in terms of the
number of 16 octets) of the payload excluding the CRCs.

Most existing SCADA protocols are of Type-I or Type-II: it has long been a com-
monly adopted practice to append CRC checksums to frames at the data-link layer of
a communication protocol for detecting transmission errors. Similarly, length verifi-
cation is employed in many communication protocols as a mechanism for detecting
errors. Moreover, it is fairly easy to check if a protocol is of one of the types and de-
termine the CRC algorithm used. Even if the protocol is closed and proprietary, one
can do so by examining several actual frames coming out of a real SCADA device
speaking that protocol.

Formalizing BITW Solutions As Figure 1 illustrates, a source SCADA device S
converts messages such as data or control information into frames for transmission.
We overload S to denote the function that models the device, which takes a message
M as input and outputs the corresponding frame F. Similarly, the destination SCADA
device D is modeled as a function D, which takes a frame F0 as input and output
an error, if F0 fails to pass certain conformance checks such as the random-error
detection, or else the corresponding original message M0.

4 Replacing “smaller than” with “different from” results in a more restrictive assumption as there
may exist protocols that reacts to frames longer than what is specified in the header by, rather than
dropping them as error, truncating them to the specified length and operating on the truncation.
5 This implicitly implies that the device will do the same if the frame is shorter than a header.
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If no error was introduced (randomly or maliciously) into F during its transmis-
sion (i.e., if F0 = F), then a correct pair of S and D must always give D(F0) = D(F) =
D(S(M)) = M. If F0 6= F, then D may or may not return an error, depending on whether
F 0 passes the conformance checks in D. Virtually all SCADA devices have random-
error detection mechanisms such as CRCs, and are thus capable of catching most
random errors.

Now, any BITW solution injects two hardware modules into the link in the model,
one next to S and the other next to D, which we call the Transmitter T and the
Receiver R respectively. Refer to Figure 1 again for a diagrammatic illustration.
Again T is overloaded to denote the function that models the Transmitter, which
takes each frame F output by S as input and returns the corresponding transformed
frame F̃ to be transmitted over the insecure channel. Similarly, the Receiver R is
modeled as a function R that takes in a transformed frame F̃0 and outputs either
an error, or the corresponding original frame F0 to be given to D. If no error was
introduced (randomly or maliciously) into F̃, i.e., F̃0 = F̃, a correct pair of T and R
must always give R(F̃0) = R(F̃) = R(T (F)) = F. In most existing BITW solutions
that provides data authenticity and freshness, if for whatever reason F̃0 6= F̃, then R
should output an error with overwhelming probability. Effectively, R acts as a guard
in these solutions and discards all malformed frames so that D won’t even see them.

We note that while S and D do not output the corresponding output until they
receive the input in its entirety, this is not necessarily the case for T and R: they
could start outputting part of the output after having received only part of the input.
For example, T and R output data of size equal to an AES-block for every receipt
of data of the same size in AGA’s SCMs; in the solution we are going to propose, T
and R output a byte upon receiving a byte.

Finally, a SCADA device can be the source at one time and the destination at
another (but never at the same time). A BITW module in operation will thus switch
between the role of a Transmitter and that of a Receiver accordingly.

4 Security Requirements

A BITW solution retrofits security to legacy SCADA communications to thwart
adversarial attacks. Here we study the adversary’s goals and capabilities when at-
tempting to launch those attacks and the security properties a BITW solution must
possess to defend against them. A more formal treatment of the discussion in this
section can be found in the extended version of this paper [10].

4.1 Threat Model

When attempting to break the security provided by a BITW solution, the adversary
may interact with the various components in the SCADA system through all inter-
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faces exposed to him in any malicious and arbitrarily intelligent way, in order to
increase his advantage in launching a successful attack. Formalizing a threat model
by correctly identifying the adversary’s capabilities is thus critical in the evaluation
of the security of any BITW solution.

Communication Links It is impossible to keep the adversary away from the entirety
of links as they travel through a long distance to connect end SCADA devices to-
gether. This is the case for private leased lines, and even more so for public networks
such as the Internet. As Figure 1 shows, in our threat model, links are insecure: an
adversary may arbitrarily sniff, tamper, inject and replay communications.

SCADA Devices and YASIR Modules We assume that the adversary knows how
S, D, T and R operate, i.e., the complete specification of how they convert an input
into the corresponding output. For SCADA systems that speak open protocols, such
information is readily available to the public. Even for systems that use closed and
proprietary standards, one should that the same information can be obtained by the
adversary through reverse-engineering or insider leaks.

However, we assume that the adversary can’t physically tamper with any of
them, e.g., manipulate their internal operations, or extract or overwrite their inter-
nal states, including the secret keys in the case of T and R. Assumptions on physical
tamper-resistance as such are inevitable for most cryptographically secure hardware.
One usually achieves physical tamper-resistance by carefully controlling who can
have physical accesses to the hardware, and/or by introducing tamper-resistant/-
responsive mechanisms to the hardware itself.

Insider Attacks If there existed security boundaries around the substations and the
control centers, then attacking the communication links would be all the adversary
could possibly do. Unfortunately, such security boundaries do not exist. For exam-
ple, an adversary may physically break into an under-guarded substation, compro-
mise an employee working in the control center, or remotely hack into the computers
auditing the SCADA devices.

In our threat model, SCADA devices and the attached YASIR modules are inse-
curely located: as depicted in Figure 1, an adversary may feed D with maliciously
crafted inputs and learn the corresponding outputs at T ; he may also feed R with
maliciously crafted inputs and learn the corresponding outputs at D.

As we have discussed, the security of AGA’s SCMs using AES operating in PE
mode assumes the absence of any insider. We think that this is a rather unrealistic
assumption. The actual security of their solution is unclear in practice when the
assumption ceases to hold.

4.2 Security Goals

A BITW solution must provide data authenticity and freshness to SCADA commu-
nications. If desired, it must also provide data privacy.
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Data Authenticity and Freshness A destination SCADA device D equipped with
a YASIR Receiver R only accepts a transformed frame F̃ as valid, i.e., it outputs the
corresponding original message M instead of flagging an error, if:

• (Authenticity.) M was an input to a source SCADA device S equipped with the
YASIR Transmitter T that shares its secret keys with R.

• (Freshness.) F̃ is fresh, i.e., not a replayed/re-ordered frame. More precisely, if T
output any other transformed frame F̃0 after outputting F̃, R has not been given F̃0

as an input.

Data Privacy No information about the corresponding original frame can be in-
ferred from a transformed frame in transit, except perhaps its size. More precisely,
an adversary is allowed to choose two messages M0 and M1 such that their corre-
sponding frames, F0 and F1 respectively, as output by S, are distinct but of the same
length. The goal of data privacy is so that when given the transformation F̃ by T of
either F0 or F1, the adversary does not know which is the case.

We remark that there are scenarios when data privacy is not a concern. For ex-
ample, it is fine for an IED to report the current temperature reading to another IED
within the same substation over an unencrypted channel because an adversary who
has broken into the substation might as well go to read off the temperature directly
from the sensing IED instead of tapping into the serial link. There are even scenarios
when data privacy is undesirable, such as when a message has multiple recipients.
One example is when the control center wants to broadcast the same control mes-
sage to all RTUs. Also, one might want to install a logging device that audits all the
messages leaving or entering a SCADA device.

As will become clear, our proposed solution provides both data privacy and data
authenticity and freshness by default, and yet can easily be modified to provide only
data authenticity and freshness and send transformed frames in cleartext.

5 Solution Overview

An Observation Recall that the BITW receiver module R acts as a guard for the
destination SCADA device D in most existing solutions. R can’t decide if a frame
is authentic and fresh and hence can’t start relaying it until the receipt of the entire
frame and its authentication tag. The latency thus grows linearly with the frame
length. AES in PE mode used in AGA’s SCM as previously discussed is, however, a
novel exception. R starts relaying the frame to D before the authenticity of the frame
is known. However, R operates on the frame in such a way that, with probability
close to 1, D will flag a CRC error and drop the frame if it has been tampered.

In a sense, AGA’s solution converts random-error detection, already built in to the
legacy SCADA devices, into a mechanism for verifying data authenticity against
malicious attacks. In their solution, the conversion relies on the “real-or-random
indistinguishability” property [2] of AES when used as a block cipher. However,
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this solution has three drawbacks: (1) one 16-byte block of data must be buffered
at each of both BITW modules. (2) There is a non-negligible probability (as high
as 2�8 or 2�16, depending on the underlying protocol) that a maliciously tampered
frame can get through R and be operated on by D. (3) This approach is proven
secure only against known-plaintext attacks, but not against stronger and yet still
very realistic attacks such as chosen-plaintext and/or chosen-ciphertext attacks.

Our Approach Our solution shares the same idea of converting random-error de-
tection to data authenticity and freshness checking, but is different in how that con-
version is done, which enables our solution to offer three advantages: (1) our BITW
modules operate on a frame as a stream of bytes instead of 16-byte blocks so that la-
tency to due buffering is minimal. (2) Our solution uses HMAC (but in a way so that
no message hold-back is required) so that R knows, at a 80-bit security level, when
a frame has been tampered with, in which case R is always capable of forcing D to
drop the frame. (3) The use of HMAC also allows our solution to be secure against
stronger and yet realistic attacks, namely chosen-plaintext-and-ciphertext attacks.

To provide data privacy and freshness, our solution makes appropriate use of en-
cryption and sequence numbers respectively, as we will describe in details in the
next section. However, if we ignore data privacy and freshness for now, the follow-
ing explains at a high level how our solution provides data authenticity.

For each frame F the BITW Transmitter T receives from the source SCADA
device S, T appends an HMAC-SHA-1-96 on F to the back of F and sends it off to
the insecure channel. This can done without holding back the frame. At the other
end, the BITW Receiver R relays every byte it gets from the insecure channel to the
destination SCADA device D, but with a delay of 14 byte times. Since a HMAC-
SHA-1-96 MAC has 12 bytes, by the time R is about to relay last byte, it will have
already received the whole HMAC and will thus be able to verify the authenticity
of the received frame. Now if the HMAC verifies, all R has to do is to finish up
relaying the frame by sending the last byte. However, if the HMAC does not verify,
R manipulates the last byte to cause the conformance checks at D to fail.

6 Solution Details

We now present the construction for our YASIR Transmitter and YASIR Receiver.
Our single YASIR Transmitter construction works for both Type-I and Type-II
SCADA protocols; we have two YASIR Receiver constructions, one for each type
of SCADA protocols. If a SCADA protocol to be secured is of both Type-I and
Type-II, then either YASIR Receiver construction may be used.

Due to space limitation, we omit the presentation of our YASIR Receiver con-
struction for Type-II SCADA protocols, and an in-depth analysis of YASIR’s secu-
rity. They can be found in the extended version of this paper [10].

Let HASH denote the cryptographic hash function SHA-1, the output of which
has an octet-length of `H = 20. Let HMAC denote the HMAC function HMAC-SHA-
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1-96, the output of which has an octet-length of `M = 12. Further let ENCRYPT de-
note the encrypting (resp. decrypting) function AES-CTR-128, which takes a nonce
of octet-length `N = 4, and a plaintext (resp. ciphertext) of any length, and outputs
the corresponding ciphertext (resp. plaintext) of the same length. Finally, let CRC
denote the CRC algorithm used by the Type-I SCADA protocol, which takes a frame
and outputs boolean answer of the validity of a frame, as described in Section 3.

The BITW Transmitter T and Receiver R share a 128-bit AES key ek and a 160-
bit HMAC-SHA-1 key hk. These keys are re-negotiated on a regular basis, such
as once every day.6 T and R keep counters ctrT and ctrR of octet-length `S = 4
respectively, both of which are reset to zero every time keys are re-negotiated.7

6.1 YASIR Transmitter

On input an incoming frame F = s||H||P||e, the YASIR Transmitter T does the fol-
lowing:

1. Output the corresponding transformed frame F̃= s||CTXT||x||MAC||SEQ||e, where

CTXT = ENCRYPTek(ctrT ,H||P), MAC = HMAChk(ctrT ||CTXT), SEQ = ctrT ,

and x is, like s and e, a special symbol distinct from any code symbol used in the
rest of the frame. It indicates the end of CTXT and hence the start of MAC.8

2. Increments ctrT by 1.

In a nutshell, T transforms F to F̃ by first encrypting F’s content (i.e., header and
payload) for data privacy, then appending a “time-stamp” on the ciphertext with a
unique sequence number for data authenticity and freshness, and finally appending
the sequence number itself.

The above describes how T operates on an input to produce the corresponding
output, without detailing the timeliness of the operation, i.e. which part of the output
is available when. We specify this in the following.

Operation Timeliness T leverages the “stream”-nature of AES-CTR, which, upon
receiving one byte in the plaintext, can compute the corresponding byte in the ci-
phertext. Consequently, T processes each of the bytes in the incoming frame F as
they come in, and immediately outputs a byte in the corresponding transformed
frame F̃. The processing of each byte involves only a byte-wise XOR operation in
the critical path, which incurs negligible latency.

When T has received F in its entirely, it immediately computes the HMAC on the
internal counter and the ciphertext and starts outputting the result as well. We adopt

6 Key management is outside the scope of this paper. One can borrow key distribution and re-
negotiation techniques from other existing BITW solutions.
7 There is no practical chance of exhausting a 4-byte counter in any SCADA deployment.
8 Alternatively, one can use a character escaping mechanism to allow for proper frame parsing.
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Fig. 2 Latency incurred by (a) YASIR Transmitter, (b) the communication link itself, and (c) YASIR
Receiver. Shaded boxes indicates values computed by the YASIR components.

an iterative computation of HMAC so that both the latency and storage requirement
of this HMAC computation is a small constant independent of the length of the
ciphertext, and thus that of F.

Consequently, the transformation done by T incurs no delay, except the time
needed to decode a code symbol or detect frame boundaries in the input frame,
which takes at most 4 byte times in almost all protocols, as discussed in Section 3.

Figure 2 gives a pictorial illustration of this.

6.2 YASIR Receiver for Type-I Protocols

On input a transformed frame F̃0 = s||CTXT0||x||MAC0||SEQ0||e, denote

H0||P0 = ENCRYPTek(ctrR,CTXT0), MAC00 = HMAChk(ctrR||CTXT0),

and l = |P0|. The YASIR Receiver R does the following:

• If MAC0 = MAC00 then output the frame F0 = s||H0||P0||e. and increment ctrR by 1.
• Otherwise, output the frame F00 = s||H0||P00||e, where P00 = P0 [1 . . .(l�1)] ||err

and err is any single octet such that CRC(F00) is invalid. Furthermore, if SEQ0 >
ctrR and MAC0 = HMAChk(SEQ0||CTXT0), set ctrR = SEQ0 +1.

In other words, R reconstructs F0 from F̃0 simply by decrypting CTXT0 if F0 contains
a valid HMAC. Otherwise, R replaces the last byte of F0 with a byte err during its
reconstruction in such as way that the error-injected frame F00 will fail the confor-



458 Patrick P. Tsang and Sean W. Smith

mance check in D. R calculates err by first computing the correct CRC for F00 and
then choosing err to be any byte different from the last byte of the correct CRC.

Sequence Numbers Contrary to many other protocols in which sequence numbers
are contained in frame headers, T in YASIR puts the sequence number at the end
of a frame to reduce the amount of data R must receive before it can reconstruct a
frame and decides on the authenticity and freshness of the frame. Since YASIR uses
a 4-octet sequence number, the latency at R is reduced by 4 byte times.

Note that R does not know the actual sequence number of a frame by the time
it has finished relayed the frame to D. To properly decrypt and verify the integrity
the incoming transformed frame, R predicts the sequence number of the frame using
its internal counter value. The prediction will be correct if there was no random or
malicious corruption in one or more frames recently sent. The sequence number at
the back of the frame is used for re-synchronizing the internal counters between T
and R in case they have gone out of synchronization, but only when the integrity of
the frame can be verified using that sequence number, to prevent malicious manip-
ulation of the value of R’s counter.

Operation Timeliness Similar to T , R is designed to minimize the latency it incurs
by attempting to start outputting bytes of the detransformed frame once they become
available. The use of AES-CTR once again allows R to reconstruct the original
frame at a per-byte basis by decrypting the input bytes as they arrive.

The output of R depends on the validity of the HMAC inside the transformed
frame it receives. R behaves indifferently until when it has finished outputting the
second to last byte in the payload and has to decide whether it should inject an
error or not, depending on the validity of the HMAC. This implies that R must have
received the entire 12-byte-long HMAC in the input at that moment. To ensure this,
R must delay its operation by at least 12 byte times.

As argued in Section 6.1, decrypting a byte and verifying a HMAC both take
negligible time. Also, the CRC checksum for F 00 and thus the value of err can be
computed in negligible time and even pre-computed. Therefore, if we assume that
the symbol x can be decoded in 2 byte times, the total latency incurred by R is thus
12+2 = 14 byte times. Finally, while R may operate on the sequence number in the
input, the operation does not incur additional latency as the detransformation does
not depend on it.

Figure 2 illustrates this.

7 Conclusions

In this paper, we have proposed YASIR, which is a BITW solution for retrofitting
security to serial-based SCADA systems where communications are time-critical,
such as those for electric power generation and distribution. As Table 1 has shown,
our solution is the first to provide data integrity in a timely manner, at a high security
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level even against strong and yet realistic adversaries. Hence, YASIR is a pragmatic
solution to a high-threat security problem we are facing right now.

We have implemented our solution as a proof-of-concept prototype. As our next
step towards a real industrial deployment of YASIR, we are going to implement it
on FPGA for better cost-effectiveness. Furthermore, we have been in contact with
Working Group C6 in the Substation Committees of IEEE. The group is drafting a
standard for a cryptographic protocol for cyber security of substation serial links [4].
We are working on the potential incorporation of YASIR into that standard.
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