
A Probabilistic Bound on the Basic Role Mining
Problem and its Applications

Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, Nino Vincenzo Verde

Abstract The aim of this paper is to describe a new probabilistic approach to the role
engineering process for RBAC. We address the issue of minimizing the number of
roles, problem known in literature as the Basic Role Mining Problem (basicRMP).
We leverage the equivalence of the above issue with the vertex coloring problem.
Our main result is to prove that the minimum number of roles is sharply concen-
trated around its expected value. A further contribution is to show how this result
can be applied as a stop condition when striving to find out an approximation for the
basicRMP. The proposal can be also used to decide whether it is advisable to under-
take the efforts to renew a RBAC state. Both these applications can result in a sub-
stantial saving of resources. A thorough analysis using advanced probabilistic tools
supports our results. Finally, further relevant research directions are highlighted.

1 Introduction

An access control model is an abstract representation of security technology, provid-
ing a high-level logical view to describe all peculiarities and behaviors of an access
control system. The Role-Based Access Control (RBAC, [1]) is certainly the most
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widespread access control model proposed in the literature for medium to large-size
organizations. The simplicity of this model is one of the main reasons for its adop-
tion: a role is just a collection of privileges, while users are assigned to roles based
on duties to fulfil [10].

The migration to RBAC introduces several benefits, such as simplified system
administration, enhanced organizational productivity, reduction in new employee
downtime, enhanced system security and integrity, simplified regulatory compli-
ance, and enhanced security policy enforcement [6]. To maximize all these advan-
tages, the model must be customized to describe the organizational roles and func-
tions [3]. However, this migration process often has a high economic impact. To
optimize the customization, the role engineering discipline has been introduced. It
can be defined as the set of methodologies and tools to define roles and to assign
permissions to roles according to the actual needs of the company [5].

To date, various role engineering approaches have been proposed in order to ad-
dress this problem. They are usually classified in literature as: top-down and bottom-
up. The former carefully decomposes business processes into elementary compo-
nents, identifying which system features are necessary to carry out specific tasks.
This approach is mainly manual, as it requires a high level analysis of the business.
The bottom-up class searches legacy access control systems to find de facto roles
embedded in existing permissions. This process can be automated resorting to data
mining techniques, thus leading to what is usually referred to as role mining.

Since the bottom-up approach can be automated, it has attracted a lot of interest
from researchers who proposed new data mining techniques particularly designed
for role engineering purposes. Various role mining approaches can be found in the
literature [3, 7, 12, 16–20, 22]. A problem partially addressed in these works is the
“interestingness” of roles. Indeed, the importance of role completeness and role
management efficiency resulting from the role engineering process has been evi-
dent from the earliest papers on the subject. However, only recently have researchers
started to formalize the role-set optimality concept. One possible optimization ap-
proach is minimizing the total number of roles [7, 12, 18]. Yet, the identification
of the role-set that describes the access control configuration with the minimum
number of roles is an NP-complete problem [18]. Thus, all of the aforementioned
papers just offer an approximation of the optimal solution in order to address the
complexity of the problem. However, since none of them quantify the introduced
approximations, it is not possible to estimate the quality of the proposed role min-
ing algorithm outcomes.

Contributions. In this paper we provide a probabilistic method to optimize the
number of roles needed to cover all the existing user-permission assignments. The
method leverages a known reduction of the role number minimization problem to
the chromatic number of a graph. The main contribution of this work is to prove
that the optimal role number is sharply concentrated around its expected value. We
further show how this result can be used as a stop condition when striving to find
an approximation of the optimum for any role mining algorithm. The corresponding
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rational is that if a result is close to the optimum, and the effort required to discover
a better result is high, it might be appropriate to accept the current result.

Roadmap. This paper is organized as follows: Section 2 reports relevant related
works. Section 3 summarizes the main concepts used in the rest of the paper;
namely, a formal description of the RBAC model, some probabilistic tools, and a
brief review of graph theory. In Section 4 the role minimization problem is formally
described. Section 5 provides the main theoretical result and discusses some practi-
cal applications of this result. Finally, Section 6 presents some concluding remarks
and further research directions.

2 Related Work

Kuhlmann et al. [11] first introduced the term “role mining”, trying to apply existing
data mining techniques (i.e., clustering similar to k-means) to implement a bottom-
up approach. The first algorithm explicitly designed for role engineering is described
in [17], applying hierarchical clustering on permissions. Another example of a role
mining algorithm is provided by Vaidya et al. [20]; they applied subset enumeration
techniques to generate a set of candidate roles, computing all possible intersections
among permissions possessed by users.

The work of Colantonio et al. [3, 4] represents the first attempt to discover roles
with business meanings. The authors define a metric for evaluating good collec-
tions of roles that can be used to minimize the number of candidate roles. Vaidya
et al. [18, 19] also studied the problem of finding the minimum number of roles
covering all permissions possessed by the users, calling it the basic Role Mining
Problem (basicRMP). They also demonstrated that such a problem is NP-complete.
Ene et al. [7] offer yet another alternative model to minimize the number of can-
didate roles. In particular, they reduced the problem to the well-known minimum
clique partition problem or, equivalently, to the minimum biclique covering. Ac-
tually, not only is the role number minimization equivalent to the clique covering,
but it has been reduced to many other NP problems, like binary matrices factoriza-
tion [12] and tiling database [9] to cite a few. These reductions make it possible to
apply fast graph reduction algorithms to exactly identify the optimal solution for
some realistic data set—however, the general problem is still NP-complete.

Recently, Frank et al. [8] proposed a probabilistic model for RBAC. They de-
fined a framework that expresses user-permission relationships in a general way,
specifying the related probability. Through this probability it is possible to elicit
the role-user and role-permission assignments which then make the corresponding
direct user-permission assignments more likely. The authors also presented a sam-
pling algorithm that can be used to infer their model parameters. The algorithm
converges asymptotically to the optimal value; the approach described in this paper
can be used to offer a stop condition for the quest to the optimum.
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3 Background

In this section we review all the notions used in rest of the paper, namely the RBAC
entities, some probabilistic tools, and some graph theory concepts.

3.1 Role-Based Access Control

The RBAC entities of interest are:

• PERMS , the set of access permissions;
• USERS , the set of all system users;
• ROLES , the set of all roles, namely permission combinations.
• UA ⊆USERS×ROLES , the set of user-role assignments; given a role, the func-

tion assigned_users : ROLES → 2USERS identifies all the assigned users.
• PA ⊆ PERMS ×ROLES , the set of permission-role assignments; given a role,

the function assigned_perms: ROLES→ 2PERMS identifies all the assigned perms.

In addition to the RBAC standard entities, the set UP ⊆USERS×PERMS iden-
tifies permission to user assignments. In an access control system it is represented
by entities describing access rights (e.g., access control lists).

3.2 Martingales and Azuma-Hoeffding Inequality

We shall now present some definitions and theorems that provide the mathematical
basis we will further discuss later on in this paper. In particular, we introduce: mar-
tingales, Doob martingales, and the Azuma-Hoeffding inequality. These are well
known tools for the analysis of randomized algorithms [15, 21].

Definition 1 (Martingale). A sequence of random variables Z0,Z1, . . . ,Zn is a mar-
tingale with respect to the sequence X0,X1, . . . ,Xn if for all n ≥ 0, the following
conditions hold:

• Zn is function of X0,X1, . . . ,Xn,
• E[|Zn|]≤ ∞,
• E[Zn+1 | X0, . . . ,Xn] = Zn,

where the operator E[·] indicates the expected value of a random variable. A se-
quence of random variables Z0,Z1, . . . is called martingale when it is a martingale
with respect to himself. That is E[|Zn|]≤ ∞ and E[Zn+1 | Z0, . . . ,Zn] = Zn.

Definition 2 (Doob Martingale). A Doob martingale refers to a martingale con-
structed using the following general approach. Let X0,X1, . . . ,Xn be a sequence of
random variables, and let Y be a random variable with E[|Y |] < ∞. (Generally Y ,
will depend on X0,X1, . . . ,Xn.) Then
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Zi =E[Y | X0, . . . ,Xi], i = 0,1, . . . ,n,

gives a martingale with respect to X0,X1, . . . ,Xn.

The previous construction assures that the resulting sequence Z0,Z1, . . . ,Zn is always
a martingale.

A useful property of the martingales that we will use in this paper is the Azuma-
Hoeffding inequality [15]:

Theorem 1 (Azuma-Hoeffding inequality). Let X0, . . . ,Xn be a martingale s.t.

Bk ≤ Xk−Xk−1 ≤ Bk +dk,

for some constants dk and for some random variables Bk that may be functions of
X0,X1, . . . ,Xk−1. Then, for all t ≥ 0 and any λ > 0,

Pr(|Xt −X0| ≥ λ )≤ 2exp
(
−2λ 2

∑
t
k=1 d2

k

)
. (1)

The Azuma-Hoeffding inequality applied to the Doob martingale gives the so
called Method of Bounded Differences (MOBD) [14].

3.3 Graphs Modeling

This section describes some graph related concepts that will be used to generate our
model. A graph G is an ordered pair G = 〈V,E〉, where V is the set of vertices, and
E is a set of unordered pairs of vertices. We say that v,w ∈ V are endpoints of the
edge 〈v,w〉 ∈ E. Given a subset S of the vertices V (G), then the subgraph induced
by S is the graph where the set of vertices is S, and the edges are the members of
E(G) such that the corresponding endpoints are both in S. We denote with G[S] the
subgraph induced by S. A bipartite graph is a graph where the set of vertex can be
partitioned into two subsets V1 and V2 such that ∀〈v1,v2〉 ∈ E(G),v1 ∈V1,v2 ∈V2.

A clique is a subset S of vertices in G, such that the subgraph induced by S is a
complete graph, namely for every two vertices in S there exists an edge connecting
the two. A biclique in a bipartite graph, also called bipartite clique, is a set of ver-
tices B1 ⊆V1 and B2 ⊆V2 such that 〈b1,b2〉 ∈ E for all b1 ∈ B1 and b2 ∈ B2. In other
words, if G is a bipartite graph, a set S of vertices V (G) is a biclique if and only
if the subgraph induced by S is a complete bipartite graph. In this case we will say
that the vertices of S induce a biclique in G. A maximal clique or biclique is a set of
vertices that induces a complete subgraph, and that is not a subset of the vertices of
any larger complete subgraph.

A clique cover of G is a collection of cliques C1, . . . ,Ck, such that for each edge
〈u,v〉 ∈ E there is some Ci that contains both u and v. A minimum clique partition
(MCP) of a graph is a smallest by cardinality collection of cliques such that each
vertex is a member of exactly one of the cliques; it is a partition of the vertices into
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cliques. Similar to the clique cover, a biclique cover of G is a collection of biclique
B1, . . . ,Bk such that for each edge 〈u,v〉 ∈E there is some Bi that contains both u and
v. We say that Bi covers 〈u,v〉 if Bi contains both u and v. Thus, in a biclique cover,
each edge of G is covered at least by one biclique. A minimum biclique cover (MBC)
is the smallest collection of bicliques that covers the edges of a given bipartite graph,
or in other words, is a biclique cover of minimum cardinality.

4 Problem Modelling

4.1 Definitions

The following definitions are required to formally describe the problem:

Definition 3 (System Configuration). Given an access control system, we refer to
its configuration as the tuple ϕ = 〈USERS ,PERMS ,UP〉, that is the set of all ex-
isting users, permissions, and the corresponding relationships between them.

A system configuration represents the user authorization state before migrating to
RBAC, or the authorizations derivable from the current RBAC implementation—in
this case, the user-permission relationships may be derived as:

UP = {〈u, p〉 | ∃r ∈ROLES : u∈ assigned_users(r) ∧ p∈ assigned_perms(r)}

Definition 4 (RBAC State). An RBAC state is a tuple ψ = 〈ROLES ,UA ,PA〉,
namely an instance of all the sets characterizing the RBAC model.

An RBAC state is used to obtain a system configuration. Indeed, the role engi-
neering goal is to find the “best” state that correctly describes a given configuration.
In particular, we are interested in finding the following kind of states:

Definition 5 (Candidate Role-Set). Given an access control system configuration
ϕ , a candidate role-set is the RBAC state ψ that “covers” all possible combinations
of permissions possessed by users according to ϕ , namely a set of roles such that
the union of related permissions exactly matches with the permissions possessed by
the user. Formally

∀u∈USERS ,∃R⊆ROLES :
⋃
r∈R

assigned_perms(r)= {p∈PERMS | 〈u, p〉 ∈UP}.

Definition 6 (Cost Function). Let Φ ,Ψ be respectively the set of all possible sys-
tem configurations and RBAC states. We refer to the cost function cost as

cost : Φ×Ψ →R+

where R+ indicates positive real numbers including 0; it represents an administra-
tion cost estimate for the state ψ used to obtain the configuration ϕ .
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The administration cost concept was first introduced in [3]. Leveraging the cost
metric enables to find candidate role-sets with the lowest effort to administer them.

Definition 7 (Optimal Candidate Role-Set). Given a configuration ϕ , an optimal
candidate role-set is the corresponding configuration ψ that simultaneously repre-
sents a candidate role-set for ϕ and minimized the cost function cost(ϕ,ψ).

The main goal related to mining roles is to find optimal candidate role-sets. In the
next section we focus on optimizing a particular cost function. Let cost indicate the
number of needed roles. The role mining objective then becomes to find a candidate
role-set that has the minimum number of roles for a given system configuration.
This is exactly the basicRMP. We will show that this problem is equivalent to that
of finding the chromatic number of a given graph. Using this problem equivalence,
we will identify a useful property on the concentration of the optimal candidate
role-sets. This allows us to provide a stop condition for any iterative role mining
algorithm that approximates the minimum number of roles.

4.2 The proposed model

Given the configuration ϕ = 〈USERS ,PERMS ,UP〉 we can build a bipartite graph
G = 〈V,E〉, where the vertex set V is partitioned into the two disjoint subset USERS
and PERMS , and where E is a set of pairs 〈u, p〉 such that u ∈ USERS and p ∈
PERMS . Two vertices u and p are connected if and only if 〈u, p〉 ∈ UP .

A biclique coverage of the graph G identifies a unique candidate role-set for the
configuration ϕ [7], that is ψ = 〈ROLES ,UA ,PA〉 . Indeed, every biclique identifies
a role, and the vertices of the biclique identify the users and the permission assigned
to this role. Let the function cost return the number of roles, that is:

cost(ϕ,ψ) = |ROLES | (2)

In this case, minimizing the cost function is equivalent to finding a candidate role-
set that minimizes the number of roles. This corresponds to basicRMP. Let B a
biclique coverage of a graph G, we define the function cost ′ as:

cost ′(B) = cost(ϕ,ψ)

where ψ is the state 〈UA ,PA ,ROLES〉 that can be deduced by the biclique coverage
B of G, and G is the bipartite graph built from the configuration ϕ that is uniquely
identified by 〈USERS ,PERMS ,UP〉. In this model, the problem of finding an opti-
mal candidate role-set can be equivalently expressed as finding a biclique coverage
for a given bipartite graph G that minimizes the number of required bicliques. This is
exactly the minimum biclique coverage (MBC) problem. In the following we first re-
call both the reduction of the MBC problem to the minimum clique partition (MCP)
problem [7] and the reduction of MCP to the chromatic number problem.
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From the graph G, it is possible to construct a new undirected unipartite graph
G′ where the edges of G become the vertices of G′: two vertices in G′ are connected
by an edge if and only if the endpoints of the corresponding edges of G induce a
biclique in G. Formally:

G′ =
〈
E, {〈e1,e2〉 | e1,e2 induce a biclique in G}

〉
The vertices of a (maximal) clique in G′ correspond to a set of edges of G, where

the endpoints induce a (maximal) biclique in G. The edges covered by a (maximal)
biclique of G induce a (maximal) clique in G′. Thus, every biclique edge cover of G
corresponds to a collection of cliques of G′ such that their union contains all of the
vertices of G′. From such a collection, a clique partition of G′ can be obtained by
removing any redundantly covered vertex from all but one of the cliques to which it
belongs to. Similarly, any clique partition of G′ corresponds to a biclique cover of
G. Thus, the size of a minimum biclique coverage of a bipartite graph G is equal to
the size of a minimum clique partition of G′.

Finding a clique partition of a graph G = 〈V,E〉 is equivalent to finding a coloring
of its complement G = 〈V,(V ×V )\E〉. This implies that the biclique cover number
of a bipartite graph G corresponds to the chromatic number of G′ [7].

5 A Concentration Result for Optimal Candidate Role-Sets

Using the model described in the previous section, we will prove that the cost of
an optimal candidate role-set ψ for a given system configuration ϕ is tightly con-
centrated around its expected value. We will use the concept of martingales and
the Azuma-Hoeffding inequality to obtain a concentration result for the chromatic
number of a graph G [14, 15]. Since finding the chromatic number is equivalent to
both MCP and MBP, we can conclude that the minimum number of roles required
to cover the user-permission relationships in a given configuration is tightly concen-
trated around its expected value.

Let G be an undirected unipartite graph, and χ(G) its chromatic number.

Theorem 2. Given a graph G with n vertices, the following equation holds:

Pr(|χ(G)−E[χ(G)]| ≥ λ )≤ 2exp
(
−2λ 2

n

)
(3)

Proof. We fix an arbitrary numbering of the vertices from 1 to n. Let Gi be the
subgraph of G induced by the set of vertices 1, . . . , i. Let Z0 = E[χ(G)] and Zi =
E[χ(G) | G1, . . . ,Gi]. Since adding a new vertex to the graph requires no more than
one new color, the gap between Zi and Zi−1 is at most 1. This allows us to apply the
Azuma-Hoeffding inequality, that is Equation 1 where dk = 1.

Note that this result holds even without knowingE[χ(G)]. Informally, Theorem 2
states that the chromatic number of a graph G is sharply concentrated around its ex-
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pected value. Since finding the chromatic number of a graph is equivalent to MCP,
and MCP is equivalent to MBC, this result holds also for MBC. Translating these
concepts in terms of RBAC entities, this means that the cost of an optimal candidate
role-set of any configuration ϕ with |UP |= n is sharply concentrated around its ex-
pected value according to Equation 3, where χ(G) is equal to the minimum number
of required roles. It is important to note that n represents the number of vertices in
the coloring problem but, according to the proposed model, it is also the number of
edges in MBP; that is, the user-permission assignments of the system configuration.

2exp(-2λ2/n)
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(b) Highlight of some λ values for Figure 1(a)

Fig. 1 Relationship between the parameters λ , n and the resulting probability

Figure 1(a) shows the plot of the Equation 3 for n varying between 1 and 500,000,
and λ less than 1,500. It is possible to see that for n = 500,000 it is sufficient to
choose λ = 900 to assure that Pr(|χ(G)−E[χ(G)]| ≥ λ ) ≤ 0.1. In the same way,
choosing λ = 600, then Pr(|χ(G)−E[χ(G)]| ≥ λ ) is less than 0.5. Figure 1(b)
shows the values for λ and n to have the left part of the inequality in Equation 3 to
hold with probability less than 0.5, 0.3, and 0.1 respectively.

Setting λ =
√

n logn, Equation 3 can be expressed as:
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Pr(|χ(G)−E[χ(G)]| ≥
√

n logn)≤ 2
n2 (4)

That is, the probability that our approach differ from the optimum more than√
n logn is less than 2/n2. This probability becomes quickly negligible as n in-

creases. To support the viability of the result, note that in a large organization there
are usually thousands user-permission assignments.

5.1 Applications of the Bound

Assuming that we can estimate an approximation Ẽ[χ(G)] for E[χ(G)] such that
|Ẽ[χ(G)−E[χ(G)]| ≤ ε for any ε > 0, Theorem 2 can be used as a stop condition
when striving to find an approximation of the optimum for any role mining algo-
rithm. Indeed, suppose that we have a probabilistic algorithm that provides an ap-
proximation of χ(G), and suppose that its output is χ̃(G). Since we know Ẽ[χ(G)],
we can use this value to evaluate whether the output is acceptable and therefore
decide to stop the iterations procedure. Indeed, we have that:

Pr(|χ(G)− Ẽ(χ(G))| ≥ λ + ε) ≤ 2exp
(
−2λ 2

n

)
.

This is because

Pr(|χ(G)− Ẽ(χ(G))| ≥ λ + ε) ≤ Pr(|χ(G)−E(χ(G))| ≥ λ )

and, because of Theorem 2, this probability is less than or equal to 2exp
(
−2λ 2/n

)
.

Thus, if |χ̃(G)− Ẽ[χ(G)]| ≤ λ + ε holds, then we can stop the iteration, otherwise
we have to reiterate the algorithm until it outputs an acceptable value.

For a direct application of this result, we can consider a system configuration
with |UP | = x. If λ = y, the probability that |χ(G)−E[χ(G)]| ≤ y is greater than
2exp

(
−2y2/x

)
. We do not know E[χ(G)], but since |Ẽ[χ(G)]−E[χ(G)]| ≤ ε we

can conclude that |χ(G)−Ẽ[χ(G)]|< y+ε with probability at least 2exp
(
−2y2/x

)
.

For instance, we have considered the real case of a large size company, with 500,000
user-permissions assignments. With λ = 1,200 and ε = 100, the probability that
|χ(G)−Ẽ[χ(G)]|< λ +ε is at least 99.36%. This means that, if Ẽ[χ(G)] = 24,000,
with the above probability the optimum is between 22,700 and 25,300. If a proba-
bilistic role mining algorithm outputs a value χ̃(G) that is estimated quite from this
range, then it is appropriate to reiterate the process in order to find a better result.
Conversely, let us assume that the algorithm outputs a value within the given range.
We know that the identified solution differs, from the optimum, by at most 2(λ +ε),
with probability at least 99.36%. Thus, one can assess whether it is appropriate to
continue investing resources in the effort to find a better solution, or to simply ac-
cept the provided solution. This choice can depend on many factors, such as the
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computational cost of the algorithm, the economic cost due to a new analysis, and
the error that we are prone to accept, to name a few.

There is also another possible application for this bound. Assume that a company
is assessing whether to renew its RBAC state, just because it is several years old [19].
By means of the proposed bound, the company can establish whether it is the case to
invest money and resources in this process. Indeed, if the cost of the RBAC state in
use is between Ẽ[χ(G)]−λ −ε and Ẽ[χ(G)]+λ +ε , the best option would be not
to renew it because the possible improvement is likely to be marginal. Moreover,
changing the RBAC state requires a huge effort for the administrators, since they
need to get used to the new configuration. In our proposal it is quite easy to assess if
a renewal is needed. This indication can lead to important time and money saving.

Note that in our hypothesis, we assume that the value of Ẽ[χ(G)] is known.
Currently, not many researchers have addressed this specific issue in reference to a
generic graph, whereas plenty of results have been provided for Random Graphs. In
particular, it has been proven [2, 13] that for G ∈ Gn,p:

E[χ(G)]∼ n
2log 1

1−p
n

We are presently striving to apply a slight modification of the same probabilistic
techniques used in this paper, to derive a similar bound for the class of graphs used
in our model.

6 Conclusions and Future Works

In this paper we proved that the optimal administration cost for RBAC, when striv-
ing to minimize the number of roles, is sharply concentrated around its expected
value. The result has been achieved by adopting a model reduction and advanced
probabilistic tools. Further, we have shown how to apply this result to deal with
practical issues in administering RBAC; that is, how it can be used as a stop condi-
tion in the quest for the optimum.

This paper also highlights a few research directions. First, a challenge that we are
currently addressing is to derive an estimate of the expected optimal number of roles
(E[χ(G)]) from a generic system configuration. Another research path is applying
both the exposed reduction and the probabilistic tools to obtain similar bounds while
simultaneously minimizing more parameters.
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