
On the Security Validation of
Integrated Security Solutions ∗

Andreas Fuchs and Sigrid Gürgens and Carsten Rudolph

Abstract Combining security solutions in order to achieve stronger (com-
bined) security properties is not straightforward. This paper shows that
security-preserving alphabetic language homomorphisms can be used to de-
rive security results for combined security solutions. A relatively simple ex-
ample of the combination of two different authentication properties (device
authentication using a trusted platform module and user authentication us-
ing SSL) are integrated. Using security-preserving language homomorphisms
it is shown that previously proposed combinations of solutions do not satisfy
the desired integrated security properties. Finally, an improved integration
of the two solutions is shown to satisfy the desired properties.

1 Introduction

Complex security properties can often not be realised by one single security
mechanism in which case it is necessary to combine several mechanisms. This
combination is usually far from trivial for several reasons. First, the complex
security property is often different (stronger) than the union of the properties
of the separate solutions. Furthermore, solutions need to be integrated in the
correct way. This paper provides a relatively small example of two integrated
security solutions where one intuitive approach does not satisfy the desired
security properties. The security goal in this example is the combination of
client authentication by using a secure channel, namely SSL, with the iden-
tification of the end-points of the channel based on TPM attestation. A for-

Andreas Fuchs · Sigrid Gürgens · Carsten Rudolph
Fraunhofer Institute for Secure Information Technology,

e-mail: {andreas.fuchs,sigrid.guergens,carsten.rudolph}@sit.fraunhofer.de

∗ Part of this work was accomplished within the project SERENITY 27587 funded by

the European Commission.

1



2 Andreas Fuchs and Sigrid Gürgens and Carsten Rudolph

mal approach based on formal languages and security-preserving alphabetic
language homomorphisms is used to prove the security properties of the inte-
gration. Remarkably, this formal approach shows that two existing proposals
for integrating TPM attestation with secure channel establishment [1, 5] do
not satisfy the desired combined security property.

Formal methods have been extensively studied and used for the security
analysis of single security mechanisms like cryptographic protocols (see for ex-
ample [13, 12, 9]). However, combinations of security solutions have mainly
been studied in the context of additional attack possibilities derived from
combining protocols [2, 11] and refinement for security properties, in particu-
lar non-repudiation [10, 14]. In contrast to these approaches, this paper shows
a pragmatic way of applying formal methods to verify the security proper-
ties of integrated security solutions. This approach is based on an existing
framework for security property specification [7, 8]. This framework is briefly
revisited in the following section before discussing the example of integrating
SSL channels with TPM attestation.

2 The Underlying Framework for Security Property
Specification

In this section we first give a very brief summary of the necessary concepts
of formal languages to describe system behaviour and abstractions.

The behaviour B of a discrete system can be formally described by the set
of its possible sequences of actions (traces). Therefore B ⊆ Σ∗ holds where
Σ (called the alphabet) is the set of all actions of the system, Σ∗ is the set
of all finite sequences (called words) of elements of Σ, including the empty
sequence denoted by ε, and subsets of Σ∗ are called formal languages. Words
can be composed: if u and v are words, then uv is also a word. For a word
x ∈ Σ∗, we denote the set of actions of x by alph(x). For more details on the
theory of formal languages we refer the reader to [3].

Different formal models of the same application/system are partially or-
dered with respect to different levels of abstraction. Formally, abstractions
are described by so called alphabetic language homomorphisms. These are
mappings h∗ : Σ∗ −→ Σ′∗ with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and
h∗(Σ) ⊆ Σ′ ∪ {ε} which implies h∗(B) ⊆ (Σ′)∗. So they are uniquely de-
fined by corresponding mappings h : Σ −→ Σ′ ∪ {ε}. In the following we
denote both the mapping h and the homomorphism h∗ by h.

We further extend the system specification by two components: agents’
initial knowledge about the global system behaviour and agents’ view. The
initial knowledge WP ⊆ Σ∗ of agent P about the system consists of all traces
P initially considers possible, i.e. all traces that do not violate any of P ’s
assumptions about the system. Every trace that is not explicitly forbidden
can happen in the system. Further, in a running system P can learn from



On the Security Validation of Integrated Security Solutions 3

actions that have occurred. Satisfaction of security properties obviously also
depends on what agents are able to learn. After a sequence of actions ω ∈ B
has happened, every agent can use its local view of ω (denoted by λ) to
determine the sequences of actions it considers to be possible. For a sequence
of actions ω ∈ B and agent P ∈ P (where P denotes the set of all agents),
λ−1

P (λP (ω)) ⊆ Σ∗ is the set of all sequences that look exactly the same
from P ’s local view after ω has happened. Depending on its knowledge about
the system B, underlying security mechanisms and system assumptions, P
does not consider all sequences in λ−1

P (λP (ω)) possible. Thus it can use its
knowledge to reduce this set: λ−1

P (λP (ω)) ∩ WP describes all sequences of
actions P considers to be possible when ω has happened.

Security properties can now be defined in terms of the agents’ initial knowl-
edge and local views. For more details we refer the reader to [7].

Our definition of authenticity (see [7]) uses the above described concepts
and essentially states that a set of actions Γ ⊆ Σ is authentic for agent P if
in all sequences that P considers possible after a sequence of actions ω has
happened, some time in the past an action of Γ must have happened.

Definition 1 A set of actions Γ ⊆ Σ is authentic for P ∈ P after a se-
quence of actions ω ∈ B with respect to WP if alph(x) ∩ Γ 6= ∅ for all
x ∈ λ−1

P (λP (ω)) ∩WP .

The following definition (see again [7]), specifies sufficient conditions for a
homomorphism to preserve authenticity.

Definition 2 Let h : Σ∗ → Σ′∗ be an alphabetic language homomorphism
and for P ∈ P let λP : Σ∗ → Σ∗

P and λ′P : Σ′∗ → Σ′∗
P be the homomorphisms

describing the local views of P on Σ and Σ′, respectively. The language
homomorphism h preserves authenticity on B if for each P ∈ P exists a
mapping h′P : λP (B) → λ′P (B′) with λ′P ◦ h = h′P ◦ λP on B.

f ◦ g denotes the composition of functions f and g, while Σ∗
P and Σ′∗

P

denote the images of the respective local views (the actual sets can only be
determined for concrete local views).

Finally the next theorem provides the link between authenticity properties
of systems on different levels of abstraction (see [7] for more details and for
the proof of the theorem).

Theorem 1 If Γ ′ ⊆ Σ′ is authentic for P ∈ P after ω′ ∈ h(B) with respect
to W ′

P ⊆ Σ′∗, and if h preserves authenticity on B, then Γ = h−1(Γ ′) ∩ Σ
is authentic for P ∈ P after each ω ∈ h−1(ω′) ∩ B with respect to each WP

with WP ⊆ h−1(W ′
P ).



4 Andreas Fuchs and Sigrid Gürgens and Carsten Rudolph

3 Example: Integration of Two Security Solutions

3.1 The System Model

The system that we consider here consists of a server S, two clients C1, C2, two
devices d1, d2, and an arbitrary number of channels chj , j ∈ IN. The devices
and the server are connected via some kind of network and the clients may
use any of these devices to send messages to the server. In this notion, the
clients are human beings or applications, whilst the server and the entities
denoted as devices are computer systems.

The system shall meet two security requirements: Messages of a client to
the server shall be authentic for the server, and at the same time the server
shall be able to identify the device the message was sent from. For each of
these requirements there are standard solutions available.

3.1.1 User Authentication

The chosen scheme for user authentication is a simplified version of an au-
thentic channel establishment as provided by SSL [4]. It is well-known that
SSL with client certificate and signature can be used to provide authenticity
of the client. Security analyses of SSL or of particular SSL implementations
are not considered in this paper. We assume that SSL indeed establishes a
secure authentic channel.

An abstract system can be modeled by introducing two actions: ssl-init(Ci,
chj(S)) models the initiation of the SSL handshake with server S by one of
the clients Ci on channel chj , and ssl-rec(S, chj(Ci)) models the completion
of the SSL handshake by the server which establishes channel chj . Although
the reduction of the SSL model to these two actions presents a considerable
abstraction of the complex nature of the SSL session key establishment (e.g.
we do not model the freshness of the channel) it is sufficient for our purposes.

This system provides the property that each time the server performs
ssl-rec for a channel chj(Ci), the handshake initialisation ssl-init(Ci, chj(S))
by client Ci is authentic for the server as defined in Definition 1.

3.1.2 Device Identification

The solution that we choose for device identification is based on trusted
computing technology as specified by the Trusted Computing Group [6]. The
Trusted Platform Module (TPM) can be used to attest the integrity of soft-
ware running on the platform it is integrated in. For this the software is
measured (hashed) and the resulting value is stored in so-called Platform
Configuration Registers (PCR) which are only accessible by the TPM. Then



On the Security Validation of Integrated Security Solutions 5

the TPM Quote command instructs the TPM to calculate a signature over
these PCR values. By associating the signature key with the TPM, the result
of the TPM Quote can be used to identify the platform. This description
omits many details of the very complex process, for more information see
[15].

A very abstract model of this solution uses three actions: Action att-gen(dk,
quote(dk)) models the generation of quote(dk) (the signature on the PCR
values) using device dk, att-send(dk, S, quote(dk)) models the sending of the
quote message to the server, and att-rec(S, quote(dk)) models the reception
of the quote message by the server. This system provides the property that
each time the server performs att-rec for a quote(dk) message, the genera-
tion of this message by device dk is authentic for the server as defined in
Definition 1.

3.2 Specification of the Abstract Integrated System

We will now model an idealized abstract system behaviour B that provides
both user authenticity and device identification simultaneously by defining
the following actions in Σ:
• ssl-init(Ci, chj(S), dk) models the initiation of the SSL handshake with

server S by one of the clients Ci on channel chj using one of the devices dk.
• ssl-rec(S, chj(Ci, dk)) models the completion of the SSL handshake by

the server which establishes channel chj . The parameters Ci and dk of the
channel denote that server S considers the channel to be initiated by client
Ci and that the end-point of the channel should be dk.

The abstract system shall satisfy the property that every time the server
completes an SSL handshake for a channel chj(Ci, dk), the channel was indeed
initiated by client Ci using device dk. This can be formalized as follows:

Property 1 ∀ω ∈ B holds if ssl-rec(S, chj(Ci, dk)) ∈ alph(ω) then ssl-init(Ci,
chj(S), dk) is authentic for S.

For the abstract model we assume the existence of a security mechanism
that simultaneously authenticates client and device during establishment of a
channel. Since for expressing this property we only need the view of server S,
we define the assumptions for the system behaviour B in terms of the initial
knowledge of the server:

B = Σ∗ \ (W 1
S ∪W 2

S ∪W 3
S)

where W 1
S , W 2

S and W 3
S describe those sequences of actions that violate the

properties we want the abstract system to provide:
W 1

S =
⋃

j∈IN,i,k,l∈{1,2}

(Σ \ {ssl-init(Ci, chj(S), dk)})∗{ssl-rec(S, chj(Ci, dl)}∗ Σ∗



6 Andreas Fuchs and Sigrid Gürgens and Carsten Rudolph

describes that each handshake performed by the server on channel chj(Ci,
dl) corresponds to a handshake initiation by the same client Ci on the same
channel chj on some device dk.

W 2
S =

⋃
j∈IN,i,k,l,m∈{1,2}

Σ∗{ssl-init(Ci, chj(S), dk)}Σ∗{ssl-init(Cm, S, chj(S), dl)}Σ∗

describes that a channel can only be initiated once.
Finally, we assume that the server S recognizes the device on which the

client started the handshake:
W 3

S =
⋃

j∈IN,i,k,l∈{1,2}

(Σ \ {ssl-init(Ci, chj(S), dk)})∗{ssl-rec(S, chj(Cl, dk)}∗ Σ∗

describes that each time the server performs a handshake that was pre-
sumably initiated on device dk, some client indeed initiated the handshake on
this device. In other words, the device that was used to initiate the handshake
is authentic for the server.

It is easy to show that this system provides Property 1.

3.3 Specification of the Concrete Integrated System

3.3.1 A Naive Integration

The two mechanisms described in Sections 3.1.1 and 3.1.2 connect the client
to a channel and the quote message to a device, respectively. By integrat-
ing these mechanisms one would expect to achieve a link between client,
channel and device simultaneously. The most obvious approach of such an
integration is to first start up an SSL-connection and then send the result of
a TPM Quote Attestation over that channel. In the following we will show
that this approach does not satisfy the desired properties.

To this end we define a concrete system B . It has the same participants
C1, C2 and S, and uses the same channels chj , j ∈ IN, and devices d1, d2 as
does the abstract system but uses a set of refined actions.

In the following, we use italic font for the abstract system and actions
while using italic boldface font for the concrete system and actions.

Thus Σ contains the following actions:
• ssl-init(Ci, chj(Ci, S), dk) As in the abstract system, this action models

the initiation of the SSL handshake on channel chj by one of the clients Ci,
using one of the devices. The channel has both endpoints as parameters.
• ssl-rec(S, chj(Ci, S)) models the completion of the SSL handshake by

the server which establishes channel chj(Ci, S). Note that here S cannot tell
to which device the end-point of the channel is connected. This information
shall be provided in the subsequent attestation.
• att-gen(di, quote(dk)) This action models the generation of quote(dk)

using device di.



On the Security Validation of Integrated Security Solutions 7

• att-send(Ci, quote(dk), chj(Ci, S)) This action models the sending of
the attestation message quote(dk) on channel chj(Ci, S).
• att-rec(S, quote(dk), chj(Ci, S)) models the reception of the attestation

message by the server on channel chj(Ci, S).
For the refined system B we assume that SSL and TPM attestation are

used to provide authenticity of the client and device identification, respec-
tively. Thus, the system behaviour can be restricted through adequate as-
sumptions representing the assumed properties for these solutions. Thus, we
construct the system behaviour B based on the initial knowledge of the server
S in the concrete system as B = Σ∗ \ (W 1

S∪W 2
S∪W 3

S∪W 4
S∪W 5

S) where
the W i

S describe those sequences of actions that violate the properties we
assume the concrete system to provide:

Assumption 1 In analogy to the abstract system B we assume that the two
SSL actions provide authenticity of the client to the server. It seems reason-
able to assume that in combining the two solutions no SSL keying information
is revealed by the TPM attestation process.
W 1

S =
⋃

j∈IN,i,k∈{1,2}

(Σ \ {ssl-init(Ci, chj(Ci, S), dk)})∗{ssl-rec(S, chj(Ci, S)} Σ∗

Assumption 2 For the two SSL actions we can also assume that a channel
is only established once. This is justified by the fact that both communication
parties involved in an SSL-communication influence the session secret and
even if only one (the server S) uses a reliable random number generator, the
session secret will be virtually unique to this communication session.
W 2

S =
⋃

j∈IN,i,k,l∈{1,2}

(Σ∗{ssl-init(Ci, chj(Ci, S), dk)} Σ∗{ssl-init(Ci, S, chj(Ci, S),
dl) Σ∗

Assumption 3 By the nature of an SSL channel, if some message is received
on it, there must be a respective send action on this channel. In analogy to
Assumption 1 we further assume that this send action is authentic. Hence we
assume that whenever the server receives an attestation message quote(dk)
on channel chj(Ci, S), the message must have been sent on this channel by
the client Ci.
W 3

S =
⋃

j∈IN,i,k∈{1,2}

(Σ \ {att-send(Ci, quote(dk), chj(Ci, S))})∗{att-rec(S, quote(dk),
chj(Ci, S))} Σ∗

Assumption 4 We assume that the three attestation actions provide authen-
ticity of the device for the server. Each time the server receives an attestation
message quote(dk) on some channel chj(Ci, S), in all sequences it considers
possible indeed this device generated the message.

W 4
S =

⋃
j∈IN,i,k∈{1,2}

(Σ \ {att-gen(dk, quote(dk))})∗{att-rec(S, quote(dk),
chj(Ci, S))}Σ∗

Assumption 5 SSL channels can only be used after a successful handshake.
Thus, whenever a client sends the attestation message on channel chj(Ci, S),
the server has established this channel before.

W 5
S =

⋃
j∈IN,i,k∈{1,2}

(Σ \ {ssl-rec(S, chj(Ci, S))})∗{att-send(Ci, quote(dk),
chj(Ci, S))}Σ∗



8 Andreas Fuchs and Sigrid Gürgens and Carsten Rudolph

4 Security Validation

In this section we will show that the concrete system defined in the previous
section does not provide simultaneous authenticity of client and identification
of device. We do this by formulating a proposition to Theorem 1 and trying
to prove it using security preserving language homomorphisms as explained
in Section 2.

Proposition 1 For all ω ∈ B with att-rec(S, quote(dk), chj(Ci, S)) ∈
alph(ω) holds that ssl-init(Ci, S, chj(Ci, S), dk) is authentic for S after ω.

In order to prove this proposition we need to find a language homomor-
phism that maps the concrete system B to the abstract system B and pre-
serves authenticity. Then we can conclude on the authenticity properties that
hold in the refined system.

4.1 Local Views and a Possible Homomorphism

Since we are interested in a security property concerning the server we only
define its respective local views and disregard those of the clients. In a dis-
tributed system it is appropriate to assume that S can only see its own
actions:

λS(a) =
{

a if a ∈ Σ/S

ε else
λS(a) =

{
a if a ∈ Σ/S

ε else
We now define homomorphism h to relate the two systems. In the concrete

model, att-rec shall establish the binding of the channel to the device. Thus,
this action is mapped to ssl-rec in the abstract system.

h(ssl-init(Ci, chj(Ci, S), dk)) = ssl-init(Ci, chj(S), dk)
h(att-rec(S, quote(dk), chj(Ci, S))) = ssl-rec(S, chj(Ci, dk))
h(ssl-rec(S, chj(Ci, S))) = ε
h(att-gen(dk, quote(dk))) = ε
h(att-send(Ci, quote(dk), chj(Ci, S))) = ε

4.2 Proof Attempt

According to Theorem 1, in order to prove that h preserves authenticity we
need to find a homomorphism h′S : λS(B) → λS(B) that is compliant both
with h and the local views of the server in the abstract and concrete system,
respectively. It is easy to see that the homomorphism defined in the following
has this property:

h′S(ssl-rec(S, chj(Ci, S))) = ε
h′S(att-rec(S, quote(dk), chj(Ci, S))) = ssl-rec(S, chj(Ci, dk))



On the Security Validation of Integrated Security Solutions 9

So in order to be able to apply Theorem 1 we need to show that h(B) ⊆ B.

Proof 1 We show the reverse, namely that for ω 6∈ B, i.e. for ω ∈ W 1
S ∪

W 2
S∪W 3

S , it follows for all x ∈ h−1(ω) that x 6∈ B . For ω ∈ W 1
S , the assertion

can easily be shown using Assumptions 3, 5 and 1, for ω ∈ W 2
S the assertion

follows from Assumption 2.
The interesting case is ω ∈ W 3

S . Then ω contains ssl-rec(S, chj(Ci, dk))
with no action ssl-init(Cl, chj(S), dk) before. For x ∈ h−1(ω) it follows that
x contains att-rec(S, quote(dk), chj(Ci, S)). With Assumption 3 we can con-
clude that there is an action att-send(Ci, quote(dk), chj(Ci, S)) before. As-
sumption 5 allows to conclude ssl-rec(S, chj(Ci, S)) ∈ alph(x) and Assump-
tion 1 leads to ssl-init(Ci, chj(Ci, S), dl) ∈ alph(x). Since h maps this action
onto ssl-init(Ci, chj(S), dl) and x ∈ h−1(ω) and ω ∈ W 3

S , it follows dl 6= dk.
In order to show x 6∈ B we need an assumption that refers to the devices
being used in the actions. However, the only such assumption we have avail-
able is Assumption 4 which only allows to conclude that the generation of the
message quote(dk) indeed happened on device dk. We cannot prove x 6∈ B
because there is no link between att-gen(dk, quote(dk)) and the channel used
in att-send(Ci, quote(dk), chj(Ci, S)).

Failing to show that the mapping defined in Section 4.1 indeed maps the
concrete system B onto the abstract system B indicates that the concrete
system might after all not provide the desired property.

4.3 Analysis of the Proof Attempt

Taking the failure of the proof as an input for a manual security evaluation
indicates that the device establishing the handshake does not necessarily have
to be the device that generates the quote message. The failed proof identifies a
counter example: ssl-init(Ci, chj(Ci, S), dl)ssl-rec(S, chj(Ci, S))att-gen(dk,
quote(dk)) att-send(Ci, quote(dk), chj(Ci, S)) att-rec(S, quote(dk), chj(Ci,
S)) is one of the sequences of actions that h maps onto ω 6∈ B but that do
not violate any of the assumptions for B .

A possible attack scenario that exploits the missing link between the hand-
shake initialization and the quoting device is the following: A company policy
restricts access to its server to on-site or home offices, but disallows mobile
access with laptops from trains or internet-cafes. A malicious client wants to
connect to the server from e.g. a train. He uses SSL and e.g. a smart-card
to authenticate himself. Then he establishes a connection to the home office
PC, generates a quote message by this PC, and sends the quote message
back to the server using the SSL channel. Even if the quote verification did
not allow manual quote calls, it is still possible to use dns-spoofing for a
man-in-the-middle attack and proceed similarly.



10 Andreas Fuchs and Sigrid Gürgens and Carsten Rudolph

4.4 A Fixed Concrete System

In order to formally add the missing link between the device and the channel
(in the next section we will discuss possible realizations) we add the channel
to the quote message. We further assume that the channel contained in a
quote message is always connected to the device that produced this message.
Thus we obtain the following changes to the attestation actions:
• att-gen(dk, quote(dk, chj(Ci, S)))
• att-send(Ci, quote(dk.chj(Ci, S)), chj(Ci, S))
• att-rec(S, quote(dk, chj(Ci, S)), chj(Ci, S))

Assumption 6 The channel that is contained in the quote message is initi-
ated on the device that generates this message. Thus the sequences specified
below can not be part of the concrete system:

W 6
S =

⋃
j∈IN,i,k∈{1,2}

(Σ \ {ssl-init(Ci, chj(Ci, S), dk)})∗{att-gen(dk, quote(dk,
chj(Ci, S))}Σ∗

Further assumptions regarding the chronology of att-gen can be made
but are not necessary for the proof.

Our fixed system Bfix is now defined as
Bfix = Σ∗ \ (W 1

S ∪W 2
S ∪W 3

S ∪W 4
S ∪W 5

S ∪W 6
S)

Using these assumptions we can now prove that the concrete fixed system
simultaneously provides client authentication and device identification. We
use the homomorphism hfix equivalent to the one used for the flawed sys-
tem that maps ssl-init(Ci, chj(Ci, S), dk) onto ssl-init(Ci, chj(S), dk) and
att-rec(S, quote(dk, chj(Ci, S)), chj(Ci, S)) onto ssl-rec(S, chj(Ci, dk)), and
all other actions onto the empty word.

Clearly, also this homomorphism preserves authenticity. It remains to show
that hfix(Bfix) ⊆ B. Again, we will show that for ω 6∈ B, all x ∈ h−1

fix(ω) are
not elements of Bfix.

Proof 2 The cases ω ∈ W 1
S and ω ∈ W 2

S are analogous to the proof attempt
presented in Section 4.2. The interesting case is the one were our first proof
failed:

Let ω ∈ W 3
S . As in the previous proof, Assumptions 3, 5, and 1 imply the

existence of a sequence x ∈ h−1
fix(ω) with actions ssl-init(Ci, chj(Ci, S), dl),

ssl-rec(S, chj(Ci, S)), att-send(Ci, quote(dk, chj(Ci, S)), chj(Ci, S)), and
att-rec(S, quote(dk, chj(Ci, S)), chj(Ci, S)) in this order. Furthermore, from
att-rec(S, quote(dk, chj(Ci, S)), chj(Ci, S)) ∈ alph(x) we can conclude, us-
ing Assumption 4, that att-gen(dk, quote(dk, chj(Ci, S))) must have hap-
pened before, and Assumption 6 implies that ssl-init(Ci, chj(Ci, S), dk) must
have happened before att-gen(dk, quote(dk, chj(Ci, S))). Finally Assump-
tion 2 implies dl = dk. By the definition of hfix this implies ssl-init(Ci, chj(S),
dk) ∈ ω, a contradiction to the assumption we started with. Hence one of the
assumptions for the concrete system is violated and thus x 6∈ Bfix.



On the Security Validation of Integrated Security Solutions 11

The proof also shows that the quote message does not need to be sent
on the SSL-Channel because the proof still holds with a respectively altered
Assumption 4, as the link between the channel and the device results from
the quote generation. However confidentiality concerns may imply to use the
SSL channel nonetheless.

5 Practical Realisation of a Secure Integration

A possible realisation for the fixed system Bfix could be to reserve a PCR
on the TPM for the sole purpose of authenticating the device’s connections:
Whenever an SSL connection is being established, the device would save the
handshake messages into this PCR. The attested chain of integrity measure-
ment values could prove that the platform will only extend the PCR by
handshake messages for SSL sessions on this device. A local daemon on the
platform could control the measurement of SSL session establishment on the
platform.

Previously proposed approaches to construct a secure remote attestation
fail to satisfy the non-obvious Assumption 6. In [5] a PCR dedicated to store
the SSL client Public Key or Certificate and an additional Platform Prop-
erty Certificate is proposed. This fails if the SSL private key is compromised
and the client is tricked into providing a TPM Quote. More importantly, it
also fails if the client wants to pretend the use of a different device. In this
case Assumption 6 is not justified since the client’s certificate can very well
be available on more than one device. The Network Interface Monitoring
Agent (NIMA) introduced in [1] links the channel endpoint in terms of the
IP-Address to the TPM Quote by storing it in a PCR. This will also fail be-
cause a second platform could pretend to have the IP-Address of the attested
platform.

6 Conclusions

In this paper we have shown that the combination of formal security protocol
specifications with security-preserving language homomorphisms can indeed
provide new insight into the properties of integrated security solutions. Al-
though we used a very simplified model of the integration of TPM-based
attestation with SSL security channels we were able to show that previously
proposed integrations do not provide the desired security properties while
a more sophisticated integration does. The example in this paper addresses
only two very similar security properties. However, our framework allows to
handle other important security properties such as different instantiations of
confidentiality and non-repudiation.



12 Andreas Fuchs and Sigrid Gürgens and Carsten Rudolph

Our method emphazises the importance of assumptions made on a par-
ticular system. While the assumptions used to prove the desired properties
are reasonable with respect to the practical realisation of the integration we
discussed, any further assumption for the trivial system that would allow a
proof can not be argued.

Furthermore, the assumptions used in a proof can be the basis for design-
time or run-time monitoring checks to verify their justification. This provides
information about the applicability of an integrated security solution.

References

1. S. Choi, J. Han, and S. Jun. Improvement on TCG Attestation and Its Implication
for DRM. LECTURE NOTES IN COMPUTER SCIENCE, 4705:912, 2007.

2. C. Cremers. Feasibility of multi-protocol attacks. In Proc. of The First International

Conference on Availability, Reliability and Security (ARES), pages 287–294. IEEE
Computer Society, 2006.

3. S. Eilenberg. Automata, Languages and Machines. Academic Press, New York, 1974.
4. A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol. Netscape Communications

Corp., Nov 1996.
5. K. Goldman, R. Perez, and R. Sailer. Linking remote attestation to secure tunnel

endpoints. In STC ’06: Proceedings of the first ACM workshop on Scalable trusted

computing, pages 21–24, New York, NY, USA, 2006. ACM.
6. Trusted Computing Group. TCG TPM Specification 1.2 revision 94.

www.trustedcomputing.org, 2006.
7. S. Gürgens, P. Ochsenschläger, and C. Rudolph. Authenticity and provability, a for-

mal framework. In Infrastructure Security Conference InfraSec 2002, volume 2437 of
Lecture Notes in Computer Science, pages 227–245. Springer Verlag, 2002.

8. S. Gürgens, P. Ochsenschläger, and C. Rudolph. On a formal framework for security

properties. International Computer Standards & Interface Journal (CSI), Special
issue on formal methods, techniques and tools for secure and reliable applications,

27(5):457–466, June 2005.
9. S. Gürgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga. Security evaluation

of scenarios based on the TCG’s TPM specification. In Joachim Biskup and Javier

Lopez, editors, Computer Security - ESORICS 2007, volume 4734 of Lecture Notes in
Computer Science. Springer Verlag, 2007.

10. H. Mantel. Preserving Information Flow Properties under Refinement. In IEEE Sym-

posium on Security and Privacy, Oakland, pages 78–91. IEEE Computer Science,
2001.

11. A. Mathuria, A. Singh, P. V. Shravan, and R. Kirtanka. Some new multi-protocol

attacks. In ADCOM – Proceedings of the 15th International Conference on Advanced
Computing and Communications, pages 465–471. IEEE Computer Society, 2007.

12. C. Meadows. Analyzing the Needham-Schroeder Public Key Protocol: A Comparison

of Two Approaches. In Proceedings of ESORICS, Naval Research Laboratory, 1996.
Springer.

13. L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6:85–128, 1998.

14. T. Santen. Preservation of probabilistic information flow under refinement. Informa-

tion and Computation, 206(2-4):213–249, 2008.
15. Trusted Computing Group. TPM Main - Part 1 Design Principals, July 2007. Spec-

ification Version 1.2, Level 2 Revision 103.


