JITDefender: A Defense Against JIT Spraying Attacks

Ping Chen, Yi Fang, Bing Mao, Li Xie

State Key Laboratory for Novel Software Technology, Nanjing University
Department of Computer Science and Technology, Nanjing University, Nanjing 210093
{chenping,fangyi,maobing,xieli } @nju.edu.cn

Abstract. JIT spraying is a new code-reuse technique to attack virtual machines
based on JIT (Just-in-time) compilation. It has proven to be capable of circum-
venting the defenses such as data execution prevention (DEP) and address space
layout randomization(ASLR), which are effective for preventing the traditional
code injection attacks. In this paper, we describe JITDefender, an enhancement
of standard JIT-based VMs, which can prevent the attacker from executing arbi-
trary JIT compiled code on the VM. Thereby JITDefender can block JIT spraying
attacks. We prove the effectiveness of JITDefender by demonstrating that it can
successfully prevent existing JIT spraying exploits. JITDefender reports no false
positives when run over benign actionscript/javascript programs. In addition, we
show that the performance overhead of JITDefender is low.

1 Introduction

In recent years, attackers have resorted to code-reuse techniques instead of injecting
their own malicious code. Typical techniques are Return-oriented Programming (ROP)
[21], BCR [12] and Inspector [11]. Different code-reuse attacks launch the attack based
on different codebases, including the application, shared libraries or even the kernel.
However, all the techniques need to find useful instruction sequence in the codebase,
and the task is tedious and costly in practice.

Recently, a new code-reuse attack named JIT (Just-In-Time) spraying was proposed
by Blazakis [10]. It reuses JIT-compiled code on the Flash VM’s heap in accordance
with the attacker’s wish to construct the attack. Later, Sintsov published several real-
world JIT spraying attacks on Flash VM [26] and further proposed advanced shellcode
which leverages the code on Safari’s Javascript engine [25]. JIT spraying can circum-
vent the techniques such as data execution prevention (DEP) [6] and address space
layout randomization (ASLR) [6, 9], which are effective for preventing the traditional
code injection attacks. The JIT compiler improves the runtime performance of the VM
by translating bytecodes into native machine code. A JIT spraying attack is the pro-
cess that it coerces the JIT compiler to generate native code with the malicious code
on the heap of VM, then it exploits the bugs in the browser or its plug-ins to hijack the
control and uses the injected malicious code to achieve the attack. JIT spraying attack
have become a big threat to Web Security, because the browser often enables dynamic
languages (e.g., actionscript and javascript). JIT spraying attacks have two advantages
compared with other code-reuse techniques: First, the malicious code is generated by
the JIT compiler, so the attacker needs not to piece up useful code snippets for con-
structing the attack in the codebase. Second, malicious code is generated on the heap.

This can be combined with heap spraying techniques [29] to increase the probability of
the attack.

In this paper, we describe JITDefender, a defense of JIT spraying attacks, which en-
forces the JIT-code execution control policy for the VM. To defend against JIT spraying
attacks, JITDefender changes the VM in the following way: the VM’s heap is gener-
ally set non-executable so that W & X protection applies. If a specific part of JIT-code
has to be executed on the VM based on the definition of the program, the heap is set
to be executable, before the code is executed, and immediately set to non-executable
afterwards. This paper makes the following contributions:

— We propose JITDefender, an effective technique for defending JIT spraying attacks
by controlling the execution of the JIT-code. This techniques distinguishes the be-
nign usage of JIT-code from malicious usage of the attacker.

— We implement and evaluate JITDefender on several commonly used VMs that use
JIT compilation (Tamarin flash VM, the V8 javascript engine and Safari’s javascript
engine). We show that JITDefender can defend against JIT spraying attacks on VMs
based on JIT compilation, although the performance overhead of JITDefender is
less than 1%.

— We also show that JIT spraying attacks are not only available on flash/javascript
VMs, but also available on other VMs based on a JIT compiler, such as QEMU.
Our technique is effective for defending against JIT spraying on arbitrary VMs
based on JIT compilation.

2 Background: JIT Spraying

JIT Spraying is a code-reuse technique that uses the code generated by the VM based on
JIT compilation to launch the attack. By writing the objects using dynamic languages
(e.g., javascript, actionscript), the attacker coerces the JIT compiler to generate the ma-
licious code on the heap of VM, and hijacks the control flow to the malicious code
snippet. However, different from the existing code reuse techniques, the malicious code
does not need to be found within an existing codebase (e.g., libraries, kernel), instead,
the attacker predictably defines the objects which are intended to be compiled into the
malicious code on the heap of VM, and uses the heap spraying technique to populate the
heap with a large number of objects containing the malicious code. Therefore, when the
attacker drives the control flow to arbitrary addresses on the heap, with high probability
the jump will land inside one of malicious code snippets.

Figure 1 illustrates the JIT spraying attack on Flash VM. First, the attacker de-
fines the actionscript object (ret in Figure 1) which contains many uniform statements
(XOR in Figure 1) with dedicated constructed integers (0x3c909090 in Figure 1) in
the source code. Then the JIT compiler will dynamically translate the source code and
generate the native code. In this example, the flash VM will translate the XOR as 0x35
and the integer as the original value in the native code. If the attacker carefully con-
structs the integer value, the native code may be transferred into the malicious code
with one byte offset. Suppose the attacker lays out many such objects on the heap, and
the attacker can turn the control flow to the malicious snippet (e.g., through a buffer
overflow attack), finally this results in the JIT spraying attack.

var ret=(0x3C909090* 90 NOP

0x3C909090~ 90 NOP
0x3C909090~ 90 NOP
0x3C909090~ 3C35 cMP AL, 35

)

Native Code with one byte offset

Flash Object m

pad \ pad
shellcode pad shellcode
359090903C XOR EAX, 3C909090
359090903C XOR EAX, 3C909090 Sallole
359090903C XOR EAX, 3C909090
359090903C XOR EAX, 3C909090 pad pad
shellcode shellcode
Native Code The heap of VM

Fig. 1: JIT Spraying Attack

The JIT spraying example illustrated in Figure 1 shows that the code translated by
the JIT compiler can be leveraged to launch the JIT Spraying attack. In fact, many other
VMs based on a JIT compiler have the same problem. Furthermore, browsers such
as IE8 and Chrome are particularly vulnerable to JIT spraying because actionscript/-
javascript programs embedded in a web page greatly simplify such attacks.

3 Overview of JITDefender

VMs based on JIT compilation (e.g., Flash VM, Javascript VM) often dynamically
translate the source code into the native code on the heap. They necessarily have to
mark the page containing the JIT-code as executable and reuse the code repeatedly
without re-compiling or interpreting in order to boost the performance. This mecha-
nism implicitly turns the W @& X protection off and gives the attacker the opportunity
to launch JIT spraying attacks which were illustrated in Section 2. In this paper, we
describe the idea of JITDefender, a method to prevent the compiled code from being
executed by the attacker. The main idea is to re-enforce W @ X protection within the
VM. More precisely, we generally mark the native code pages as non-executable. When
the VM executes JIT-code, we change the corresponding code pages to executable, after
executing the code, the code pages are reset to non-executable again.

When designing JITDefender, we need to identify two points in the the code base of
the JIT execution: (1) the code compilation point, i.e., the point when the JIT compiler
generates the native code, and (2) the code execution point, the point when the VM ex-
ecutes the native code. The workflow of JITDefender is that we mark the code pages as
non-executable at the first point. Shortly before the second point we mark the pages as
executable, and shortly after we mark the pages as non-executable again. This mecha-
nism can be applied to arbitrary VMs based on JIT compiler. Under this protection of

.abc/.swf parser -
JIT Compiler
A
Bytecode Verifier MIR Code Generator
v
f MD Code Generator
v
Interpreter Native Code

\ Execution Controller

Runtime System

v

Memory Manager / Garbage Collector

Fig. 2: Tamarin Flash Engine

JITDefender, if the attacker hijacks the control flow to the code snippet on the heap for
JIT spraying attack the access will be blocked because the VM keeps the code pages
non-executable. In fact, JITDefender provides different views of the compiled code for
the VM and the attacker with the native code execution control policy.

4 Design and Implementation

In this section, we firstly take the Flash VM as an example to illustrate our method. We
identify code parts in the VM that define code compilation and code execution points.
Then we demonstrate that our method can be applied to Javascript VM.

4.1 Introduction of the Flash Engine

The source code of flash is written in the actionscript language. Through the differ-
ent actionscript compilers, the source code is translated into the actionscript byte code
(ABC) or the ShockWave File (SWF). The code can be JIT compiled or interpreted on
the flash engine. Flash engine handles the ABC or SWF file in the following steps as
shown in Figure 2: first it passes through the ABC or SWF files, translates them into
the objects which are stored in the object pool. Then it steps into the compiling phase
or interpreting phase. In this paper, we only focus on the compiling phase where the JIT
compiler fetches the object from the pool, then compiles it into the native code. This is
the code compilation point defined above. JIT compiling can be divided into MIR code
generation and Machine Code (MD) generation. The native code is stored in the newly
allocated heap memory of flash VM. Third, the flash VM provides the loop monitoring
whether there is the compiled code on the heap. If so, it will execute the native code.

This is the code execution point defined above. In order to prevent JIT spraying attack,
we manipulate the Native Code Execution Controller on VMs, which is between the
MD code generation and Runtime code execution. In the following subsection, we will
illustrate the mechanisms implemented in Flash/Javascript VMs in details.

4.2 Adapting the Flash Engine

In Flash Engine Tamarin, when an ABC or SWF file is loaded, the JIT compiler will
translate the source code into native code at the unit of a function. More specifically,
Tamarin uses the class MethodInfo to store the information of the functions that can
be executed by the VM, including user-defined functions, native functions and so on.
Another key class named CodeMgr is used to manage memory for compiled code,
including the code itself (in a nanojit: :CodeAlloc), and any data with code life-
time (in a nanojit::Allocator), such as debugging info and inline caches. In
order to set the attributes of the code pages, we should get the the compiled code in-
formation at the unit of function. Therefore, we add the variable CodeMgr* mgr in
the MethodInfo class. It will provide us the convenience for setting attributes of the
code pages, because we can get the information of the function including the native code
generated by this function. We now give more details how to set the page attributes.

First, we need to get related information at the code compilation point when native
code has been generated. We find that, after Tamarin generates the compiled code for
one function, it will store the compiled code information in the codeMgr which is the
member variable of the class PoolObject, and PoolObject is a container for the
pool of resources decoded from an ABC file. Therefore, we will transfer the compiled
code information into the new variable mgr we defined in MethodInfo. Then we
extract the start and end address of the compiled code memory, and invoke the function
named VMPI_setPageProtection to set the related pages as non-executable.

Second, we need to find the code execution point. As mentioned in Section 3,
we should set the related code pages as executable before executing the compiled
code, and after executing the compiled code, we set the compiled code pages as non-
executable again. In the Tamarin flash engine, the function coerceEnter is used to
execute the compiled code, at the end of this function, the specific handler function
is invoked by endCoerce (argc, ap, ms). As such, we leverage the function
VMPI_setPageProtection to set the related pages as executable, and after execut-
ing the function, we use the same function to set the related pages as non-executable.
Note that we calculate the related pages based on the recorded information of mgr in
the MethodInfo.

The method mentioned above can successfully protect the compiled code on the
heap of the VM. Because the compiled code can be only executed by the VM itself, but
can not be executed by the attacker.

4.3 Javascript Engine

Sintsov [25] shows that JIT Spraying can be also mounted on the Javascript Engine in
Safari [4]. Similar to the flash engine, the attacker can construct the Javascript object
using the XOR operation with the specific integer operands. Then the Javascript Engine

will compile the Javascript objects into the native code which contains the malicious
code. We find that the same problem occurs in the V8 Javascript engine — the javascript
engine of Chrome [18]. We could leverage a known buffer overflow [1] to launch a JIT
spraying attack. In this section, we demonstrate that JITDefender can be implemented
on both Javascript engines.

V8 Javascript Engine As we mentioned in Section 3, we need to identify the code
compilation and the code execution point. The V8 Javascript engine provides two API
function for compilation and execution respectively. The Compi 1e function is used to
compile the Javascript program into the native code on the heap, and the Run function
is used to execute the compiled native code.

In the compilation phase, the V8 Javascript engine parses the Javascript files and
divides the code into two parts, one is the specific function such as the eval, the
global function, and other functions are regarded as the shared function. Then it com-
piles the Javascript code into the native code according to the function categories.
And the native code is stored as SharedFunctionInfo at the unit of the func-
tion. SharedFunctionInfo is the child class of HeapOb ject, which maintains
the information of the Javascript objects.

In the execution phase, V8 gets the compiled code by using the Code: : GetCode
method, and finds the entry to the code by the Code : : ent ry method, then it jumps to
the code entry to execute the code on the heap using Execution: :Call. Note that
the class Code is the child class of HeapOb ject, it contains the native code generated
at the compilation point. Similar with the flash engine, the compiled code is laid out on
the heap and its page is marked as executable, which is independent of whether the code
is executed by the Javascript engine or not.

We applied our code control policy to the V8 javascript engine. First, at the end of
Compiler: :Compile, we use the Windows API function VirtualProtect to
set the compiled code pages as non-executable. Then before the Execution: :Call,
weuse VirtualProtect to set the code pages as executable, and after executing the
compiled code, we set the code pages as non-executable again.

Safari’s Javascript Engine Similar to the V8 Javascript Engine, at the code com-
pilation point, Safari’s Javascript Engine compiles the Javascript code into the native
code according to the function definition. The native code is saved in the structure of
JITcode. At the code execution point, Safari Javascript Engine will query the na-
tive code base, invoke the entry to the current executed function and then execute it.
We modify Safari’s Javascript Engine (JavascriptCore) at these two points: First, Sa-
fari’s Javascript Engine gets the JITed code by the method JIT: : compile in memory
space in the form of JITcode. Then we set the code pages as non-executable. Second,
the Javascript Engine executes the JITed code by using the method JITStubCall::call.
Before we invoke this function to execute the JIT-code, we first set the code pages as
executable. After we executed the code, we reset the code page as no-executable again.

5 Evaluation

In this section, we describe the experimental evaluation of our JITDefender prototype.
First, we test JITDefender’s ability to dynamically defend the JIT spraying attack. Sec-
ond, we measure the performance overhead of JITDefender. The evaluation is per-
formed on an Intel Pentium Dual E2180 2.00GHz machine with 2GB memory and
Windows 7. Tested programs are compiled by Microsoft Visual Studio 2008.

Table 1: JIT Spraying Attacks Tested on JITDefender

VMs JIT Spraying Attacks LOC(K) Description JITDefender
Tamarin SAR—Logon7—Syslem [24] 3K SaveVievaoSessionFi ActiveX Buffer Overflow v
QuikSoft-STAGEO [23] 3K SubmitToExpress ActiveX Buffer Overflow v
V8 SaveAs-JITSpray 3K “SaveAs” Buffer Overflow in Chrome v
Safari’s JS Engine | Safari_parent_close_sintsov [22]| 3K Safari 4.0.5 parent.close() (memory corruption) v

5.1 Effectiveness

Since JIT spraying is a new attack, there are little attack samples published. Therefore
we used existing JIT spraying attacks published by Sintsov for Tamarin flash engine and
Safari’s Javascript engine and wrote samples for the V8 javascript engine by ourselves.
More specifically, we chose two JIT spraying attack samples written by Sintsov to eval-
uate Tamarin flash engine: “SAP-Logon7-System” [24] and “QuikSoft-STAGEO” [23].
The two JIT spraying attacks leverage the buffer overflow vulnerability in SAPGUI
7.10 ActiveX and Oracle Document Capture (EasyMail Objects EMSMTP.DLL 6.0.1)
ActiveX Control respectively, and can successfully launch attacks on IE8. Note the two
original JIT spraying attacks leverage Flash Player 10’s flash engine [26]. In our exper-
iment, we use the Tamarin Flash engine instead. For Safari, we chose the JIT Spraying
attack “Safari_parent_close_sintsov”” published by Sintsov [22]. It exploits the vulner-
abilities in Safari 4.0.5 parent.close () to launch attacks. In addition, in order to
test the effectiveness of our tool on the V8 Javascript engine, we wrote one JIT spraying
code by leveraging the buffer overflow “SaveAs” in Chrome [1]. We named the attack
as “SaveAs-JITSpray”. With all the attacks mentioned above, we tested the effective-
ness of JITDefender for detecting the JIT spraying attacks, including Tamarin, V8, and
Safari’s javascript engine. Experimental results in Table 1 show that JITDefender can
successfully defend JIT spraying in VMs based on JIT compilation. We also tested JIT-
Defender on benign code, namely the performance benchmarks embedded in the JIT
VMs. The actionscript/javascript programs are listed in Table 2. Overall, we found no
false positives.

5.2 Performance Overhead

We also measured the performance overhead of JITDefender. Because JITDefender
modifies the JIT-code page attributes of the VM at runtime, it will bring some overhead

Table 2: Performance Overhead of the JIT VMs under JITDefender

VMs Benchmarks |LOC(K)|Original VM |JITDefender|Performance Overhead
SOR.as 3 72.844s 72.999s 0.2%
Heapsort.as 3 9.980s 10.325s 3.5%
SparseMatmult.as 4 0.958s 0.983s 2.6%
FFT.as 5 10.334s 10.552s 2.1%
Series.as 6 4.661s 4.763s 2.2%
Tamarin LUFact.as 12 27.827s 27.989s 0.6%
Moldyn.as 14 6.101s 6.276s 2.9%
Crypt.as 15 0.314s 0.322s 2.5%
RayTracer.as 22 1.566s 1.573s 0.4%
Euler.as 81 0.246s 0.249s 1.2%
Average 13.483s 13.603s 0.9%
crypto.js 48 5.189s 5.196s 0.1%
richards.js 16 2.107s 2.112s 0.2%
deltablue.js 26 2.100s 2.113s 0.6%
V8 raytrace.js 28 2.129s 2.134s 0.2%
earley-boyer.js 195 5.198s 5.213s 0.3%
regexp.js 105 4.274s 4.287s 0.3%
splay.js 11 3.575s 3.629s 1.5%
Average 3.510s 3.526s 0.5%
crypto.js 48 5.336s 5.419s 1.6%
richards.js 16 2.277s 2.288 0.5%
deltablue.js 26 2.246s 2.301s 2.4%
. . raytrace.js 28 4.309s 4.339s 0.7%
Safari’s JS Engine o poverjs | 195 | 12.49s | 12.792s 2.4%
regexp.js 105 15.944s 15.959s 0.1%
splay.js 11 4911s 4.918s 0.1%
Average 6.788s 6.859s 0.1%

to the VM. In this section, we chose the three VMs based on JIT compilation to evalu-
ate the performance overhead of JITDefender, including Tamarin Flash Engine, Safari’s
Javascript Engine and V8 Javascript Engine. Table 2 shows the performance overhead
of JITDefender when it is applied to the VMs when executing the actionscript/javascript
programs. For each VM, we run the benchmark of it, and compare the time costs when
the tested program running on the original VMs and the modified VMs. By comparison,
we can see that JITDefender has less than 1% costs on VMs. Generally speaking, the
performance overhead is proportional to the number of function chunks in the program.
This is because the more function chunks of the program exist, the more frequently
JIT VMs will transfer the JIT objects into different functions’ native code and execute
these codes individually. Since we modify the code pages’ attributes, the more function
chunks of the programs there are, the more performance overhead will be introduced to
program’s execution. Take the experimental results in Table 2 for instance, the test case
“Heapsort.as” uses recursion techniques to sort arrays. It frequently invokes the small
function NumHeapSort, which performs a heap sort on an array. Therefore, when the
Tamarin flash engine compiles “Heapsort.as” into native code, the code pages will be

marked as “non-executable” or “executable” alternatively. This is the reason why the
performance overhead of executing “Heapsort.as” under JITDefender is 3.5%, which is
more than the average.

6 Discussion

6.1 JITDefender on Other VMs

QEMU [3] is the commonly used CPU-emulator, which leverages the JIT techniques.
We discovered that the programs running in QEMU will cast their code on the heap
and mark it as executable. We note that JIT spraying attacks may be constructed on it
too. To perform such an attack, we need to install a VM on QEMU. Within the VM,
we need to construct a malicious program, which contains the shellcode. Then we fork
several processes for running the program that keep on spraying malicious code on
the heap of QEMU. In order to construct the attack, we need to leverage one of the
bugs in QEMU and drive control to the malicious code [28]. Since QEMU is used as
CPU-emulator in KVM [2], this effectively means that the approach can be leveraged
to construct an attack on Cloud Computing. So JIT spraying may threaten the security
of the Clouds. Similarly with to flash and javascript engine, it should be possible to
implement JITDefender on QEMU. In fact, we believe JITDefender can be applied to
arbitrary VMs based on a JIT compiler to defend against JIT Spraying exploits.

6.2 Circumventing JITDefender

The method proposed in this paper addresses the problem that most Just-In-Time com-
pilers leave a large window of opportunity for exploiting code “sprayed” into the com-
piled code. We reduce the window to the minimum time so that only the VM based
on JIT compilation can set the compiled code as executable at page granularity. People
may argue that is it possible that the attacker exploits the vulnerability within the win-
dow which spans from VM setting the page as executable to VM executing the code
on the page. We think this potential JIT spraying attack is feasible in theory but we did
not find it in practice. The potential JIT spraying attack is that the malicious code is on
the same page with the code that is executing on VM when the attacker exploits. In that
case, JITDefender will keep the page as executable, as such, JIT spraying will make JIT-
Defender ineffective. Although we did not find such attacks till now, we consider the
attack is possible. For example, the attacker introduces the delay method (e.g., loop)
in certain function to keep the code executing and the page containing the malicious
code. Even worse, if the program is asynchronous, for example, it uses multi-threaded
methods to load multiple objects on the heap, and keep all the pages executable by the
delay method, it will give a big opportunity for the attacker to circumvent JITDefender.
Although nobody has proposed the attack till now, in theory, it will be a threat to JIT-
Defender. To counter the attack, we consider to add some optimization to the VM, for
example, we can pre-calculate the XOR operation, and get the result directly without
translating its operands on the heap.

7 Related Work

7.1 Heap Spraying Defenses

Heap spraying [29] is a technique that will increase the probability to land on the desired
memory address. The act of spraying simplifies the JIT spraying attack and increases
its likelihood of success. There are several defenses specifically designed against heap-
spraying attacks [14, 16, 20]. Nozzle [20] is the countermeasure specifically designed
against heap-spraying attacks by the analysis of the contents of any object allocated
by the Web browser. Similarly, Egele et al. [14] propose an emulation method to de-
tect heap spraying attacks with drive-by downloads. Based on libemu [5], it emulates
the code download and checks whether there is malicious code. Bubble [16] is the
Javascript engine level countermeasure against Heap-spraying attacks. It introduces the
diversity of the heap by inserting special interrupting values in strings at random posi-
tions when the string is stored in memory and removing them when the string is used
by the application. All the existing Heap spraying defenses all rely on the assumption
that the malicious code is introduced from the outside (network, keyboard), therefore
they may be circumvented by JIT spraying attack.

7.2 JIT Spraying Mitigation

Concurrently and independently, Bania [8] proposed a heuristic detection method, based
on the assumption that JIT spraying attacks use arithmetic operations. They detect JIT
spraying by calculating the number of bad instructions. However, JIT spraying may not
use the arithmetic operations to generate the malicious code. Tao et al. [27] propose
the code randomization techniques on VMs based on JIT compilation. However, it has
5.9% space and 5% runtime overhead. In addition, they currently implemented the pro-
totype on V8 engine only. Our techniques are quite different compared to theirs. First,
we do not assume any particular form of JIT spraying attack (e.g., using XOR). Second,
our method can prevent JIT spraying with less performance overhead (less than 1%).
Third, our method has been implemented and tested on different VMs, and proved to be
easily deployed on other VMs in practice. Most recently, de Groef et al. [17] proposed
a kernel patch JITsec that defeates JIT spraying based on testing certain restrictions
when invoking a system call. Different from JITDefender, JITsec can only defeat the
malicious code that uses the system call not general code.

7.3 Other Defenses

Most recently, Payer [19] summarized the different attack types and defenses. Gener-
ally speaking, all the attacks leverage software bugs and maliciously craft the control or
non-control objects to achieve malicious behavior. To defeat these attacks, researchers
proposed CFI [7] and DFI [13] that protect against sensitive objects. XFI [15], a ker-
nel module, leverages static analysis for the guard and checks the jump’s target, in
addition, it uses two stacks to guarantee the return address. There are intrinsic differ-
ences between XFI and JITDefender. First, JITDefender prevents the code snippet in the
function from being reused from outside, while XFI controls the function callsites and

prevents it being maliciously invoked. Second, JITDefender prevents the JIT spraying
attack, while XFI prevents the code injection attacks.

8 Conclusions

In this paper, we present the design, implementation, and evaluation of JITDefender,
a tool for defeating JIT spraying attacks. JITDefender applies code execution control
on the VMs, and to the best of our knowledge, it is the comprehensive defense for JIT
spraying. The evaluation of JITDefender shows that it has no false positives, and the
performance overhead is low.

9 Acknowledgements

We thank our shepherd Felix Freiling for his help on the final paper. We also thank
the anonymous reviewers for their constructive and helpful feedbacks and suggestions.
This work was supported in part by grants from the Chinese National Natural Science
Foundation (60773171, 61073027, 90818022, and 60721002), the Chinese National
863 High-Tech Program (2007AA01Z448), and the Chinese 973 Major State Basic
Program(2009CB320705).

References

1. Google chrome 0.2.149.27 ’saveas’ function buffer overflow vulnerability.

http://seclists.org/bugtraq/2008/Sep/70

KVM. www.linux—-kvm.org/

. QEMU. http://wiki.gemu.org/Main_Page

. The Webkit open source project. webkit .org/

. x86 shellcode detection and emulation. http://libemu.mwcollect.org/

. The Pax project (2004). http://pax.grsecurity.net/

. Abadi, M., Budiu, M., Ligatti, J.: Control-flow integrity. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security (CCS). pp. 340-353. ACM, New
York, NY, USA (2005)

. Bania, P.: JIT spraying and mitigations. (2010). http://arxiv.org/abs/1009.1038

9. Bhatkar, E., Duvarney, D.C., Sekar, R.: Address obfuscation: an efficient approach to com-
bat a broad range of memory error exploits. In: Proceedings of the 12th USENIX Security
Symposium. pp. 105-120 (2003)

10. Blazakis, D.: Interpreter exploitation. In: Proceedings of tth USENIX Workshop on Offen-
sive Technologies (WOOT’10). pp. 1-9 (2010)

11. Kolbitsch, C., Holz, T., Kruegel, C., Kirda, E.: Inspector gadget: Automated extraction of
proprietary gadgets from malware binaries. Proceedings of the 30th IEEE Symposium on
Security and Privacy. pp 29-44 (2010)

12. Caballero, J., Johnson, N.M., McCamant, S., Song, D.: Binary code extraction and inter-
face identification for security applications. Proceedings of the 17th Annual Network and
Distributed System Security Symposium (2010)

13. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow integrity. In: Pro-
ceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation
- Volume 7. pp. 11-11. USENIX Association, Berkeley, CA, USA (2006)

e

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-by down-
loads: Mitigating heap-spraying code injection attacks. In: Proceedings of Detection of In-
trusions and Malware and Vulnerability Assessment (DIMVA). pp. 88106 (2009)
Erlingsson, U., Valley, S., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: Software
guards for system address spaces. In: Proceedings of the 7th USENIX Symposium on Op-
erating Systems Design and Implementation - Volume 7. pp. 6-6. USENIX Association,
Berkeley, CA, USA (2006)

Francesco, G., Yves, Y., Wouter, J.: Bubble: A javascript engine level countermeasure against
heap-spraying attacks. In: Proceedings of the 2010 ESSoS (2010)

de Groef, W., Nikiforakis, N., Younan, Y., Piessens, F.: Jitsec: Just-in-time security for code
injection attacks. In: Benelux Workshop on Information and System Security (WISSEC
2010) pp. 1-15. (2010)

Google Inc.: V8 javascript engine. code . google.com/apis/v8/intro.html
Payer, M.: I control your code attack vectors through the eyes of software-based fault isola-
tion. In: 27C3 (2010)

Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: A defense against heap-spraying code
injection attacks. In: Proceedings of 18th USENIX Security Symposium (2009)

Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86). In: Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security(CCS). pp. 552-561. ACM, New York, NY, USA (2007)

Sintsov, A.: JIT spraying attack on safari. http://www.exploit—db.com/exploits/12614/

Sintsov, A Oracle document capture (easymail objects
emsmtp.dll 6.0.1) activex control bof - JIT-spray exploit.
http://dsecrg.com/files/exploits/QuikSoft-reverse.zip

Sintsov, A.: SAP GUI 7.10 webviewerdd Activex - JIT-spray exploit.
http://dsecrg.com/files/exploits/SAP-Logon7-System.zip

Sintsov, A JIT-spray attacks & advanced shellcode
(2010). http://dsecrg.com/files/pub/pdf/HITB %20-%20JIT-

Spray%20Attacks%20and%20Advanced%20Shellcode.pdf

Sintsov, A.: Writing JIT-spray shellcode for fun and profit. In: Technical Report of Digital
Security (2010)

Tao, W., Tielei, W., Lei, D., Jing, L.: Secure dynamic code generation against spraying. In:
CCS 10 poster. pp. 738-740. ACM, New York, NY, USA (2010)

Wang, T.: Integer overflow on QEMU. http://lists.nongnu.org/archive/html/qemu-
devel/2008-08/msg01052.html

Wikipedia: Heap spraying (2010), http://en.wikipedia.org/wiki/Heap_spraying

