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Abstract. The increasing success of mobile-enabled, embedded devices
is stressing the need for software architectures facing mobility-related
issues. This paper proposes a simple yet effective mobility management
scheme to ease the development of mobile, ubiquitous applications. The
scheme seamlessly handles handoff events and provides ubiquitous appli-
cations with both location-awareness and mobility prediction support.
An implementation prototype has been developed on real-world, Blue-
tooth enabled devices. Experimental results are then obtained from the
prototype, showing the effectiveness of the proposed scheme.

1 Introduction

Mobility management has widely been recognized as one of the most challenging
problems for a seamless integration of embedded, mobile devices (MDs) into the
physical world. Such integration is an important step towards the ubiquitous
view of computing, where computation resources are spread into small devices
which pervasively interact each other “all the time and everywhere” by means
of wireless communication infrastructures [1].
One of the key aspects of mobility management is the handling of handoff pro-
cedures, i.e., the set of operations that need to be performed to guarantee a MD
to be connected with one or more wireless Access Points (APs) while it roams
across the ubiquitous environment. Specifically, a handoff procedure is composed
of two basic steps: i) the initiation, which detects and triggers a handoff event
from the old AP to a new one, and ii) the decision, where a new AP is selected
among the available ones.
Several handoff management schemes have been proposed over the last years,
addressing different flavors of wireless networks, from cellular networks, to the
wireless Internet. However, when facing mobility-related issues for ubiquitous
environments, several new challenges arise which are not generally supported by
current software architectures for ubiquitous applications.
First, to achieve the “all the time and everywhere” view of mobility, handoff



management should provide high connection availability to each MD. Second,
ubiquitous devices typically offer limited computation and storing capabilities,
and rely upon batteries. The mobility management support should thus take
into account MDs and APs constrained resources by managing the handoff in a
lightweight fashion. Third, ubiquitous applications would greatly benefit from a
handoff management architecture able to provide mobility prediction. The abil-
ity of predicting both the handoff event and the next MD location enables to
implement proactive resource allocation schemes which can have a significant
impact on the overall performance.
Connection availability and mobility prediction can be obtained by implementing
“soft” handoff procedures, where the MD is always connected to more than one
AP, in order to minimize unavailability periods and to oversee the movements.
However, this type of strategy may involve unacceptable resource consumption
at both MD and AP sides.
This paper addresses these problems by proposing a novel, hybrid approach to
handoff management, which requires the MD to be connected to a single AP,
while guaranteeing soft handoffs and providing mobility prediction. The novel
contribution, namely “Octopus”, is a lightweight handoff scheme which extends
our previous Last Second Soft Handoff Scheme (LSSH) [2, 3]. In particular, even
if LSSH provides soft handoffs while reducing unavailability periods (please refer
to [2] for a quantitative evaluation), it presents the drawback of long decision
periods, which may in turn degrade the accuracy of the location awareness sup-
port. Moreover, LSSH does not embody mobility prediction schemes.
The novel handoff scheme has been implemented and integrated in a mobility
management architecture, running over Bluetooth wireless networks. Experimen-
tal results have been run on the actual implementation, demonstrating how the
novel mobility prediction support offered by Octopus can significantly improve
the decision latency and the location accuracy.

2 Related Work

Handoff strategies can be classified as reactive and proactive. Reactive strategies,
such as [4, 5], look for other available APs only after the current AP signal is
lost.On the other hand, proactive strategies continuously monitor channel condi-
tions and start communication-level handoff before losing current AP signal, at
the cost of higher battery consumption. Several criteria are based on the Receiver
Signal Strength Indicator (RSSI) [6–9].Some of them, such as [6, 9] are based on
a fixed threshold mechanism, that is, the handoff is initiated when the RSSI falls
below a certain threshold. It is simple to argue how this kind of initiation leads
to a poor availability. Indeed, noisy environments and shadowing problems can
lead to transient RSSI degradations, which do not strictly require any handoff.
Fore this reason, other solutions use a more complicated RSSI processing, such
as fuzzy controllers [7], or mobility prediction [8].We can further distinguish two
types of handoff: hard handoff, where the MD is connected to only one AP at



time, minimizing signaling overhead but increasing latency and packet losses;
and soft handoff that activates the new data path to the destination AP before
client disconnection from the origin AP [10]. It is worth noting that none of the
mentioned solutions is able to answer to the needs outlined in previous section.

3 Handoff Management and Mobility Prediction

3.1 The LSSH scheme

The LSSH scheme is a hybrid approach that tries to exploit the advantages of
both hard and soft solutions. The initiation phase takes place using uniquely the
information about the AP currently in use, as in hard handoff, and only in the
decision phase multiple connections are established, as in soft handoff.

LSSH initiation. The initiation phase can be performed using diverse sets of
information and techniques, such as broken link recognition and AP monitor-
ing through RSSI or other measures and metrics. Our solution is RSSI based,
for several reasons: i) it allows the handoff to be proactive, ii) the RSSI pa-
rameter is often already provided by the wireless interface, without performing
intrusive measures, and iii) RSSI is an indication of the device position with
respect to APs; this helps to achieve load balancing on APs depending on de-
vice distribution in the environment. Furthermore, locationing techniques can
be implemented. According to the LSSH scheme, the initiation has to be per-
formed using only the RSSI of the AP in use. It is thus crucial to carefully
discriminate transient signal degradations, from permanent ones. Indeed, tran-
sient signal degradations can trigger unnecessary handoff procedures. To this
aim, the LSSH scheme adopts the α-count mechanism due to the clear and
simple mathematical characterization, the thorough analysis already conducted,
and the minimal computational complexity which properly answers lightweight
needs [11]. The α-count function α(L) is a count and threshold mechanism. It
takes the L-th measured RSSI as an input, then α(L) is incremented by 1 as the
current RSSI falls below the threshold SRSSI . Similarly, α(L) is decremented by
a positive quantity dec if the L-th measured RSSI is greater than the SRSSI .
A handoff is triggered as soon as α(L) becomes greater than a certain threshold
αT . The function α(L) is thus defined as follows:

α
(L) =







α
(L−1) + 1 if RSSI

(L)
< SRSSI

α
(L−1) − dec if RSSI

(L) ≥ SRSSI and α
(L−1) − dec > 0

0 if RSSI
(L) ≥ SRSSI and α

(L−1) − dec ≤ 0

(1)

In our previous work we outlined how the values of αT , dec and SRSSI parameters
can be tuned in order to achieve a trade-off between early and late handoffs.

LSSH decision During the decision phase, the MD sequentially connects to all
the neighboring APs of the old AP. The decision is then taken by evaluating the
RSSI of all the links to the neighbors and by choosing the best AP among them.
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Fig. 1. The LSSH scheme
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Fig. 2. The Octopus scheme

Let {ng1, ..., ngn} be the set of neighbors. During the scanning, the scheme keeps
track of the best visited AP, let say ng∗. When it connects to ngi, if the RSSI of
ngi is greater than the ng∗ one, then ng∗ = ngi. At the end of the scanning, the
resulting ng∗ is selected as the new AP. It is simple to argue that such sequen-
tial scanning may require long decision latencies. As for locationing issues, we
assume that a mobile device is in a zone x when it is attached to a AP covering
the zone x. Being the RSSI strictly related with the distance between antennas,
the scheme enforces devices to be connected to the closest AP. However, even
if pathological situations can lead to the selection of a wrong AP, poor values
of the signal strength, which are measured on the selected AP, will eventually
result in the initiation of a new handoff, thus correcting the error.
For more information on the LSSH scheme, please refer to our previously pub-
lished work [2]. Figure 1 summarizes the LSSH scheme in the simplistic case of
three APs.

3.2 The novel Octopus scheme

The Octopus scheme has been introduced to overcome LSSH’s main drawbacks,
that is, long decision periods, which may affect the locationing accuracy, and the
lack of a mobility prediction support able to predict with reasonable anticipation
the next AP the device is going to be connected to.
The basic idea behind Octopus is the same of LSSH, i.e., exploiting the ad-

vantages of both hard and soft handoff. The main difference lays in the deci-
sion phase, which is anticipated and concurrently performed with the initiation.
During its normal operation, the MD monitors only one connection, as in hard
handoff (panel A in figure 2). When a handoff event becomes probable, the MD



starts to monitor its neighboring APs, as in soft handoff. Specifically it connects,
i.e., concurrently attaches “tentacles”, to all them, hence the name “octopus”
(panel B). During this phase, the device still keeps using the old AP. In addition,
thanks to the multiple, concurrent connections, it can predict the AP it is going
to be shortly connected to. Finally, when the handoff event is triggered, the MD
can quickly decide the next AP, and release connections (panel C).

Octopus Initiation Differently from the LSSH scheme, the Octopus initiation
is based on two α-count functions, which are evaluated concurrently on the same

RSSI signal. The first function, called α
(L)
LSSH and based on αTLSSH

, dec and
SRSSILSSH

parameters, has the same purpose of the LSSH α-count: it triggers

the handoff event as soon as α
(L)
LSSH becomes greater than αTLSSH

. The second

function, called α
(L)
Oct and based on αTOct

, dec and SRSSIOct
parameters, triggers

the anticipated decision phase as soon as α
(L)
Oct becomes greater than αTOct

. Since
the decision phase has to be triggered before the handoff event, it results:

αTOct
=

αTLSSH

KT

, KT ≥ 1 (2)

In other terms, the threshold on the α
(L)
Oct (for the anticipated decision) has to

be lower than the threshold on α
(L)
LSSH (for the initiation). The value of the KT

constant tunes the earliness of the anticipated decision phase: the bigger KT ,
the earlier the decision phase will be undertaken. Similarly, it has to be:

SRSSIOct
= KS · SRSSILSSH

, KS ≥ 1 (3)

that is, α
(L)
Oct has to be less tolerant to RSSI degradations than α

(L)
LSSH .

Figure 3 depicts how the octopus scheme defines two “zones” surrounding every
AP: i) the pure initiation zone (the first circle surrounding the AP), where both

α
(L)
LSSH and α

(L)
Oct are below their respective thresholds and where only the source

AP RSSI is monitored, and ii) the decision+initiation zone (between the first and

the second circle surrounding the AP), where α
(L)
LSSH is below its threshold, while

α
(L)
Oct already reached its threshold, and where the monitoring of the neighboring

APs is performed. In figure it is evidenced that α
(L)
Oct increases faster than α

(L)
LSSH .

This is due to the fact that SRSSIOct
≥ SRSSILSSH

, or equivalently, to the lower

tolerance that α
(L)
Oct has with respect to RSSI degradations.

Octopus Decision and Mobility Prediction Support The decision phase
is performed concurrently with the initiation phase. This way, the final decision
is already available once the initiation phase ends, hence reducing the decision
latency. During the decision phase, multiple connections are created to the neigh-
boring APs {ng1, ..., ngn}. Each connection is monitored by a separate worker
thread (the tentacle). The i-th worker thread is responsible to periodically i)
read the RSSI level of the ngi neighbor, ii) perform a moving average of the
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Fig. 3. The zones defined by the Octopus scheme and their relationship with α
(L)
LSSH

and α
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Oct

functions

current reading with past readings (in order to filter out transient degradation
phenomena), and iii) store the moving average in a shared structure. A man-
ager thread (the octopus itself) periodically evaluates the best neighbor ng∗ by
getting the RSSI average of all neighbors from the shared structure. Once the

α
(L)
LSSH triggers the handoff event, the current best neighbor ng∗ is selected as

the next neighbor. Consequently, all the worker threads are stopped and all the
connections to other neighbors are dropped. If the decision cannot be made (e.g.,
the device movements are too fast to let the octopus create all the needed con-
nections), the LSSH decision is performed as a back up mode.
The manager thread owns the information about the best neighbor during all
the decision phase. The best neighbor can of course change during the decision
phase, due to natural MD movements. In other terms, the manager thread “fol-
lows” device movements and it is thus able to know in advance, i.e., prior to
the handoff execution, which is the device direction and hence the next AP that
will be likely selected. Therefore, the octopus decision scheme naturally holds
precious mobility prediction information, that can be easily provided to appli-
cations as soon as the decision phase starts, that is, while the device lays in the
initiation+decision zone.

4 Experimental Results

This section shows the effectiveness of the novel Octopus scheme as compared
to the LSSH scheme. In particular, the main objectives of the experiments are:
(i) to show how Octopus practically eliminates the decision latency, and (ii)
to demonstrate that Octopus obtains better location accuracy as compared to
LSSH. To follow such objective, two are the parameters that need to be mea-
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Fig. 4. RSSI reference traces, registered at a 1 m/s speed

sured: the decision time, both with Octopus and with LSSH, and the location
estimate accuracy, which can be measured in terms of the percentage of location
errors, both with Octopus and with LSSH. The percentage of location errors can
be evaluated as:

% of location errors = 100 ·
Nwl

Nreq

(4)

where Nwl is the number of times that the handoff management scheme (either
LSSH or Octopus) returns a wrong location information with respect to the
actual device location, and Nreq is the total number of location requests. This
parameter is particularly sensible to the device speed. The faster the device, the
more is likely that the location estimate is wrong. In other terms, the faster the
device, the less the handoff management scheme is able to follow device move-
ments and to choose the right AP. Our experiments evidence how the Octopus
scheme is more robust to device movements than the the LSSH scheme.

4.1 Prototype and Experimental Setting

The Octopus scheme has been implemented and integrated in a preexisting mo-
bility management architecture, which is thoroughly described in our previous
work [3]. Please refer to our web site: www.mobilab.unina.it/Prototypes.htm
if you wish to download the last release of CLM and NCSOCKS including the
Octopus scheme. Current implementation has been sufficiently tested only on
Bluetooth wireless networks. Experimental results have been thus conducted
over such networks.
In order to perform the above mentioned measures, we set up a simple testbed
composed of three Bluetooth antennas acting as APs and one roaming, Bluetooth-
enabled MD. In order to let each AP have two neighbors, we adopted a triangular
topology. This way, every handoff procedure requires a decision between two APs.
The distance between the antennas is set to 15 meters. Since we adopted Class
2 Bluetooth devices (with 10 meters transmission range), the overlapping zone
between every couple of APs is set to 5 meters. To ease the measurement pro-
cess at different device speeds, we adopted emulated RSSI readings by exploiting
RSSI reference traces. The reference traces have been obtained by measuring ac-
tual RSSI values while the MD was moving around the testbed with a 1 m/s



Table 1. LSSH and Octopus decision latency
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Fig. 5. LSSH and Octopus location accuracy as a function of the device speed

speed. The resulting traces are shown in figure 4. The emulated reading takes
place by reading the RSSI value from the registered trace, rather than from the
channel. To emulate different speeds, the reading from the traces is performed
with different sampling periods. The sampling period is inversely proportional
to the device speed. To exemplify, the double the sampling period, the half the
emulated speed.

4.2 Results

Table 1 reports the decision latency we obtained with both LSSH and Octopus,
with a 1 m/s speed. Due to its anticipated decision strategy, Octopus practi-
cally eliminates the decision latency. In particular, Octopus leads to a 99.99%
improvement for the decision latency, which only accounts for the time spent
by the manager thread to stop all worker threads and to return the last best
neighbor estimate. In addition, as confirmed by the standard deviation latency
estimates, the Octopus decision latency is by far more predictable than the LSSH
decision latency. It is worth mentioning that the high decision latency value ob-
tained for LSSH is particularly influenced by the Bluetooth technology, which
involves relatively long connection set-up times.
As for the location accuracy, figure 5 shows the percentage of location errors

as a function of the device speed. As expected, the percentage of location errors
increases with the device speed. However, the figure clearly shows how Octopus
outperforms LSSH by exhibiting a better robustness with respect to device fast
movements. Specifically, Octopus starts to exhibit errors (about 30% errors on



Table 2. Octopus decision latency as a function of the device speed
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the total number of location estimates) when the MD speed approaches 4 m/s
(e.g., the average speed of a running human being). On the other hand, LSSH
starts to deliver wrong estimates even for relatively slow speeds, around 2 m/s.
This is basically due to the long decision latency. For relatively high speeds, e.g.
from 6 m/s to 10 m/s, Octopus roughly exhibits half the errors of LSSH.
As a last result, table 2 shows the Octopus decision latency as a function of

the speed. From a certain speed on (e.g. 5 m/s), the decision latency starts to
assume higher values. Fast movements may indeed induce the Octopus decision
to fail: for instance, the Octopus fails to establish all the needed connections on
time. In these cases, the basic LSSH back-up scheme is adopted, leading to longer
decision latencies. However, it is worth noting that performances are good for
human walking/running speeds, that is, from 1 m/s up to 4 m/s. This means that
the Octopus scheme can be successfully adopted in all those scenarios where the
ubiquitous infrastructure “moves” at a human speed, e.g., wearable and portable
devices embedded into human activities. However, it is worth recalling that the
actual measures are relative to a Bluetooth-based scenario, where the results
are partially influenced by long connection set-up times. Hence, the actual num-
bers (and the speed at which Octopus can successfully operate) depends on the
adopted wireless technology. Besides actual numbers, we can reasonably claim
that the improvement introduced with Octopus is valid in general terms.

5 Conclusions

This paper presented the driving ideas behind Octopus, a novel mobility pre-
diction and soft handoff support for mobile ubiquitous applications. The novel
scheme builds upon a previously proposed scheme, namely LSSH, and improves
it by eliminating the need for time-consuming decision periods. This result has
been made possible by the integration of mobility prediction, which also leads
to the improvement of the locationing accuracy. Such improvements have been
quantitatively demonstrated by means of experimental results on a real-world
prototype.
Future efforts will concern a thorough evaluation of the Octopus scheme for other
widely adopted wireless technologies, such as Wi-FI and ZigBee.
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