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Abstract. This paper proposes an efficient heuristic for solving the
minimum-intracommunication clustering problem in energy- and resource-
constrained ad hoc networks. The heuristic organizes the network in clus-
ters aiming to minimize a given cost function. The function used mea-
sures the total communication cost between all nodes within the cluster,
keeping a minimum amount of resources per cluster.
The clusterhead selection of the proposed heuristic is based on the di-
vision of labor encountered in social insects. The idea is that each node
has probabilistic tendencies to assume a determined role in the network.
For example, nodes with good connectivity and high energy level are
good candidates for being clusterheads. The probability of assuming a
determined role is based on a node’s fitness for the specific role and the
actual necessity (reflected by stimulus) of the role in the current network
context. After becoming clusterhead, a node starts recruiting members in
order to reach a minimum amount of resources that have to be available
in the cluster. The procedure is based on a membership fitness function
that evaluates the suitability of a node for the cluster.
The realized simulations demonstrate that the proposed heuristic per-
formance was about in average 25% inferior to the global optimum.

1 Introduction

Wireless ad hoc networks enable a myriad of novel applications ranging from
human-embedded sensing to ocean data monitoring. Given current hardware lim-
itations of wireless nodes, e.g. commercial off-the-shelf sensor nodes, approaches
for the management of ad hoc networks have to be designed to function using
only a low amount of resources and communication overhead.

In general, there are two heuristic design approaches for management of ad
hoc networks at different levels (e.g. topology control, network layer, applica-
tion). The first method is to have all nodes maintain knowledge of the network
and manage themselves. This encurse a large amount of overhead. An alterna-
tive is to clustering the nodes, identifying a subset of nodes, and vest them with
the extra responsibility of being a leader (clusterhead) of certain nodes in their
proximity. The aim of this approach is to reduce communication and memory
overhead.



In this paper, we present a new heuristic to organize an ad hoc network into
clusters. Our proposal addresses the problem of partitioning the nodes of the
network in multi-hop groups with a guaranteed minimum amount of resources
q in each one of them. This kind of clustering is useful in various scenarios. An
example is the operating system (OS) we are currently developing in our research
group, called NanoOS [1].

NanoOS is a small distributed OS for sensor networks. In order to provide
more functionality on hardware constrained nodes, we are distributing the OS
and application services among the nodes of the network. We use the heuristic
presented here to organize the network in clusters. After this, each OS and
application instance (a set of services) is distributed inside one cluster. We set the
resource requirement (q) to the worst-case resource utilization of one instance of
the OS and application. Therefore, it is guaranteed that each cluster has enough
resources for an instance of our distributed OS.

This paper is organized as following: Section 2 reviews the state-of-the-art
in clustering algorithms for ad hoc networks. Section 3 describes the proposed
architecture, before Section 4 discusses simulation results. Finally, Section 5
presents the conclusions.

2 Related Work

There are several clustering algorithms that aim to find the Maximum inde-

pendent set (MIS) of a network modeled as an undirected graph. This is often
combined with the dominance property, which means that the following proper-
ties should be satisfied: independence (no two clusterheads can be neighbors) and
dominance (every ordinary node has at least a clusterhead as direct neighbor).
There are several algorithms that satisfy these properties ([2–6]). Different from
our approach, they result in a 1-hop distance to the clusterheads of clusters.

Several approaches have been proposed for multi-hop clustering with different
construction objectives. Here we have the Max-Min D-Cluster Formation [7]
that aims to construct the cluster with nodes at most d hops away from the
clusterhead.

Other heuristics that pursue different objectives are the Budget Approach [8]
which tries to divide the ad hoc network in a set of clusters whose size is close
to a given one. Beyond this, the Upper and under bound approach [9] works with
superior and inferior size limits. It tries to construct clusters that respect these
limits. Nevertheless, the approach allows a small overlap among the clusters.

In contrast to above heuristics, our clustering algorithm pursues a different
objective: all clusters should posess a minimum amount of resources (i.e., the
under bound limit is not given by a size in nodes, but by an amount of resources),
and we try to minimize the internal cluster communication cost. This will be
discussed in detail in the next sections.



3 The minumum-intracommunication clustering

problem

In this section, a formal definition of our clustering problem (we call it minumum-

intracommunication clustering) is described.
The ad hoc network is modeled by an undirected graph G = (V,E), where V

is the set of wireless nodes and an edge {u, v} ∈ E if and only if a communication
link is established between nodes u ∈ V and v ∈ V . Each node v ∈ V has a
unique identifier (IDv).

For each link, a weighting function attributes a positive weight w : E → [0, 1]
that represents the quality of a wireless link. In the work [10], we presented a
method to estimate the quality of a wireless link based on our combined metric.
We call this metric virtual distance and smaller values represent better connec-
tion links. We define for each edge not in the graph ({u, v} /∈ V ), w(u, v) = ∞.

For each node, an additional weighting function r is responsible to charac-
terize the amount of resources available in the node. r : E → ℜ∗. This models
the resource capacity of the node.

We aim to create multihop clusters with a minimum amount of resource per
cluster minimizing the intra-cluster communication cost.

The considered optimization problem is modeled as follows:

Input: A graph with weighted nodes and links (G,w, r) and a resource require-
ment q ∈ ℜ∗ that must hold in each cluster

Constraints: For every input instance (G,w, r, q), M(G,w, r, q) = {C1, C2, .., Ck|Ck

is the kth cluster configuration, where the following proprieties holds }
Ck =

{

ck1, ck2, .., ck(nk)

}

is the kth possible cluster configuration of the
graph, where k = {1, 2, .., n} (n is the number of possible configurations,
nk is the number of clusters in the kth configuration, nk = #Ck)

cki =
{

v1
ki, v

2
ki, .., v

#cki

ki

}

∈ Pot(V ) is the ith cluster of the kth configuration,

where vj
ki is the jth element of the cluster cki

For each configuration Ck, k = 1, 2, .., n, the following proprieties must hold:
1.
⋃

i=1,2,..,nk cki = V (cluster definition constrain)
2.
⋂

i=1,2,..,nk cki = ∅ (no overlapping constraint)

3. Let P (u, v) =
{

p
(u,v)
1 , p

(u,v)
2 , .., p

(u,v)
m

}

be the set of all possible paths

between nodes u and v. p
(u,v)
h ∈ Pot(E) is the hth possible path where

p
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{u, xh
1}, {x

h
1 , xh

2}, .., {x
h
g−1, x

h
g}, {x

h
g , v}

}

, xh
f ∈ V , f = 1, 2, .., g,

g ∈ IN

For each {u, v} ∈ E∧u, v ∈ cki, i = 1, 2, ..., nk, ∃p
(u,v)
h ∈ P (u, v)|xh

f ∈ cki

for f = 1, 2, .., g. (Connectivity constraint)

4.
∑#cki

j=1 r(vj
ki

) ≥ q, for each i = 1, 2, ..., nk (minimum amount of resource
per cluster)

Costs: For every cluster configuration Ck = {ck1, ck2, .., ck(nk)} ∈ M(G,w, r, q),

the cost is cost(Ck, (G,w, r, q)) =
∑nk

i=1

∑

u,v∈cki
Dcki

(u, v)·
(

α·r(u)+(1−α)
)

,
where D(u, v) is the virtual distance between u, v ∈ V . Dcki

(u, v) is the



virtual distance between u, v using the shortest path that includes just links
that are inside the cluster cki (sum of the link weights of the shortest path
inside the cluster) . α ∈ [0, 1] controls how much the amount of resources
influences the distance metric. For α = 0, just the distances between cluster
members are incorporated into the metric; α = 1 means that nodes with n
times more resources have an n times stronger influence.

PCost(p
(u,v)
h ) = w(u, xh

1 ) +
∑g−1

f=1 w(xh
f , xh

f+1) + w(xh
g , v)

D(u, v) = PCost(p
(u,v)
h ), where PCost(p

(u,v)
h ) = min

(

PCost(p
(u,v)
b )

)

for

b = 1, 2, ..,m Dcki
(u, v) = PCost(p

(u,v)
h ), where p

(u,v)
h ∈ P (u, v)|xh

f ∈ cki

and PCost(p
(u,v)
h ) = min

(

PCost(p
(u,v)
b )

)

for b = 1, 2, ..,m

Goal: Minimum (i.e. min{cost (Ck, (G,w, r)) | for k = 1, 2, .., n})

It is important to note that we are trying to minimize the sum of the link
costs over all clusters. In each cluster, this cost is given by the sum of the link
costs from every node to all other ones.

4 Emergent Clustering

The heuristic presented aims to find good clustering configuration in a net-
work with a low amount of mobility. It reacts by stronger changes through re-
execution.

4.1 Clusterhead selection

In the initial state, all nodes of the network are ordinary nodes, i.e., there is no
cluster structure in the network. The variable statev describes the actual state of
a node v (statev ∈ {CH,Me,Nm}) and ci is set of the current members of the
cluster i ∈ IN . For the sake of simplicity, we define that clusterID = i. Initially,

for i = 0, 1, .., n, ci =. The response function TθCHv
(sCHv

) =
s

β

CHv

s
β

CHv
+θ

β

CHv

is

responsible for the transition from an ordinary (Nm) node v ∈ V to clusterhead.
θCHv

is the threshold of the node v to become clusterhead and sCHv
is the

stimulus of v to assume the clusterhead role.
The threshold indicates how appropriate a node is for a role. Smaller θCHv

means that the node v is very well suited to carry out the role of a clusterhead.
The definition of the threshold can be seen in (1).

θCHv
= k1

(
∑

u∈NgbNm(v) w(u, v)

#NgbNm(v)

)

+ k2(1−Ev)+ k3

(

1 −
#NgbNm(v)

Max Nm

)

(1)

Where Ev ∈ (0, 1) describe the energy level of the node v, such that 1 means
the battery is full and 0 that it is depleted. Let Ngb(v) be the set of nodes that
are directly connected with v, i.e. u ∈ Ngb(v) iff {u, v} ∈ E. A node u is in the



set NgbNm(v) iff u ∈ Ngb(v) and stateu = Nm. This means that NgbNm(v) is
the set of neighbors of v that do not yet belong to any cluster.

The idea of this threshold function is that nodes with high energy level
and high connectivity are good candidates for becoming elected as clusterhead.
The energy is an important factor because clusterheads assume administrative
(among other) tasks within the cluster and have a special status in the network.
Good connectivity comes from the greedy assumption that starting a cluster
from well-connected nodes will result in a relatively small clustering cost.

The stimulus function is given (for k1 + k2 = 1) by sCHv
= k1

telapsed

trequired
+

k2

(

1 − NgbMe(v)+NgbCH(v)
Ngb(v)

)

. The elapsed time is telapsed and trequired is the

maximum running time of the algorithm.
A node u is in the set NgbMe(v) iff u ∈ Ngb(v) and stateu = Me. Similarly,

u ∈ NgbCH(v) iff u ∈ Ngb(v) and stateu = CH. With simple words, NgbMe(v)
is the set of neighbors of v that are members of some cluster. NgbCH(v) is the
set of neighboring nodes that are already clusterheads.

The underlying idea is that nodes that are not belonging to any cluster for
a longer period of time and nodes without clusters in their vicinity should have
a higher stimulus to become clusterhead. With the response function given by
TθCHv

(sCHv
), spontaneously, some nodes will start to change the role to cluster-

head based on the stimulus function. When a node decides to be clusterhead, it
selects a random ClusterID.

4.2 Members Selection

Influencing parameters During membership selection by the clusterheads the
following paramenters help to evaluate the suitability of a node b:

1. The distance to the closest node already in the cluster : This parameter helps
to reduce the communication cost within the cluster. It is given by Db

ci
=

min{w(b, e)|e ∈ Ngb(b)∩ci}, i.e., the smallest vertice weight that is adjacent
to node b and to a member of the cluster ci. If a node is not directly connected
to a cluster member, Dci

d = ∞.
2. The distance to the clusterhead : This parameter is responsible for shaping

the cluster in order to constrain its diameter.
3. Connectivity to nonmembers: This parameter is important when there is a lot

of resources still missing in the cluster. Given by Cnb
Nm =

∑

e∈NgbNm(b)(1−

w(b, e)), i.e., the sum of the “proximity” (1−w(b, e)) of the set of the neigh-
bors of b that have nonmember status. Figure 1 illustrates the effect of this
term.

4. Connectivity to members of the cluster : This parameter helps to reduce the
communication cost within the cluster. It is given by Cnb

ci
=
∑

e∈{Ngb(b)∩ci}
(1−

w(b, e)) where ci is the current set of members of the cluster i ∈ IN .
5. The resource availability of the node: Aim of communication cost reduction

based on the idea that nodes with higher resource availability will reduce
the cost of the cluster to a greater extent since fewer of them are needed.



These aspects will be explicitly or implicitly considered by the Membership-

Select algorithm presented here.

Membership-Select algorithm For the membership selection, we use the
statev variable describing the actual state of a node v with an additional state:
the deciding (Dd) state (statev ∈ {CH,Me,Nm,Dd}). Let ∆q be the amount
of additional resources needed by a cluster in order to fulfill the requirement q
at a certain point of time. The Membership-Select algorithm is an incremen-
tal process, i.e., at beginning, the cluster has just the clusterhead (CH) node
and during the clustering process, more and more nodes are added until the
cluster achieves an appropriate size (

∑

v∈ci
r(v) ≥ q). At the beginning of the

clustering process of the cluster i, just one node belongs to the cluster: the
clusterhead. We will call it node hi (hi ∈ ci, stateh = CH). When a node be-
comes part of the cluster (including the clusterhead), immediately a message is
broadcasted to the neighboring nodes signalizing the new status and requesting
new members (Call Members message). Each nonmember and deciding node d
(statusd ∈ {Nm,Dd}) that receives this message changes its state to deciding
(statusd = Dd).

Deciding nodes are the potential new members of the cluster. Nevertheless,
not all nodes are the best choice to be included into the cluster. In order to
privilege nodes potentially contributing to a low global cluster cost, each node
b in the decision state estimates its own fitness value 0 ≤ Fitnessb

ci
≤ 1. This

value will be defined later. Fitnessb
ci

describes the suitability of the inclusion of
node b ∈ V into the cluster ci.

At this point, the node b waits using a delay which is proportional to the
1 − Fitnessb

ci
value. When the waiting time has elapsed, the node sends a

Membership Request message to the clusterhead, informing it that it is will-
ing to be included into the cluster. Now the clusterhead, based on ∆q and the
availability of resources of the candidate, can decide whether the node will be
accepted as member. If accepted, the clusterhead includes the new node in a
table with all members of the cluster. A message is sent back to the node con-
firming/refusing the entrance into the cluster. When receiving the response mes-
sage, the requester changes its status accordingly (stateb = Me, if accepted and
stateb = Nm if refused). If accepted, this new status is broadcasted immediately
in a message calling for new members (Call Members) to the neighborhood of
b, starting the process again.

When ∆q 6 0, i.e., the cluster is complete, all additional receiving requests
will be rejected.

Consider the example depicted in Figure 3. We colored the nodes according
the state; white nodes are nonmembers, black nodes members (or clusterhead,
i.e. status ∈ {Me,CH}) of the cluster ci being formed and gray members are
deciding nodes.

In Figure 3 (a), the initial state with a one member cluster (clusterhead,
selected by the response function) is shown. The clusterhead broadcasts the
Call Members message transmitting its state (3 (b)). At this point, all nodes
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Fitnessci
(v) =

=

8

>

>

>

<

>

>

>

:

1 −
`

k1 · D
v
ci

+ k2 · min{
D(v,Clusterheadci

)

Max dist
, 1}+ if r(v) < q

+k3 · min{
Cnb

Nm

Max connect
, 1} + k4 · min{

Cnb
ci

Max connect
, 1}+

+k5
r(v)

q

´

0 if r(v) > q

Fig. 4. Definition of the fitness function



that receive the message change to the deciding state. A timer is set based on
the calculated fitness for each node. In Figure 3 (c), the programmed time of
node 2 has already elapsed. The node now asks for membership. As the total
resource request (q) is not satisfied by the current cluster size, the node 2 is
included in the cluster. Now it also broadcasts a Call Members message to the
neighborhood (Figure 3 (d)). When node 4 and 5 receive the broadcasted mes-
sage, they start a timer related to the computed fitness (1 − Fitnessci

(4) and
1 − Fitnessci

(5)). Due to the fact that node 4 has already a timer, just the
timer with the shortest deadline is kept. In Figure 3 (e), the programmed time
of node 4 has elapsed and it requests for membership. It receives permission to
enter into the cluster. Since the cluster is already complete, node 4 does not
broadcast a new Call Members message. Finally, the waiting time for nodes 5
and 3 is over. They request membership, but due to the fact that the cluster has
enough resources, the permission to integrate the cluster is refused.

Now we will integrate the already presented heuristic hints (see Section 4.2)
that should guide the member selection. The first point says that the heuristic
should privilege nodes with a small distance to some of the nodes inside the
actual cluster. In order to observe that, two aspects must be addressed: (1)
Include the distance to the next cluster member in the fitness function with the
aim of reducing communication costs. (2) An implicit behavior of the heuristic
makes that nodes far away from the clusterhead, but with good connection to
the cluster are penalized since starting the timer in a later stage.

This should be addressed together with the point number two in our influ-
ence parameters list: the distance to the clusterhead. This point is aided by the
implicit behavior of algorithm. The two aspects are important for reducing the
cluster cost. Nodes near to the cluster are suitable because the connection cost is
smaller, nevertheless, to keep clusters with smaller diameter also helps to reduce
the total cost.

The distance to clusterhead is also addressed by two points: (1) Including
the distance to the clusterhead in the fitness function. (2) Implicit behavior of
the heuristic. To show that we can reuse the example shown in Figure 3. The
fact that nodes near to the clusterhead started the timer earlier implicitly helps
to get small diameter clusters.

Analyzing these two different requisites, the following method was created
in order to penalize the distance to the clusterhead and reward the distance to
the cluster (i.e. the distance to the closest node in the cluster). We will now
count the rounds that the algorithm has already executed. Using the example
presented in Figure 3, (b) represents the first round of the algorithm and (d) the
second one. Each time that a new member was selected and made a broadcast
to the neighborhood, the variable roundv, v ∈ V is increased.

We define the waiting time of a node v to request to be included in the
cluster ci as WaitingT imev

ci
= k · (1 − Fitnessci

(v)) · 1
κ roundv+(1−κ) , where

v ∈ V, κ ∈ [0, 1], k ∈ ℜ∗ and 0 ≤ Fitnessci
(v)) ≤ 1. It uses the fitness function

and the current round to calculate the waiting time.



Using this equation, for bigger rounds, the time that should be waited is
shortened. With the κ parameter, the amount of reward given to the distance
to the cluster versus penalization of distance to clusterhead can be controlled.

The fitness function that takes into account all points presented in the Section
4.2 is presented in Figure 4 (for

∑5
i=1 ki = 1), where k1, ..., k5 define how each

of the terms influences the fitness metric. It is important to remark that 0 ≤
Fitnessci

(v) ≤ 1. For two nodes v, u ∈ V and Fitnessci
(v) < Fitnessci

(u)
means that the node v is less suitable for the cluster ci than the u. Max dist
describes the minimum distance to the clusterhead that should be considered the
maximum penalty, Max connect is the same for the connection measurements.
We should remark that for nodes with more resources than required, the fitness
is always 0 because they should form a cluster with one member.

5 Simulation and Results

We implemented our emergent clustering heuristic using Shox [11], a Java-based
wireless ad hoc network simulator. As input, we generated 40 instances of the
problem with 13 nodes in a field of 25m by 25m. These instances were generated
by random selection of the nodes’ position.

Our link metric used the received signal strength (RSSI) that was calculated
using the free space model for an isotropic point source in an ideal propagation
medium. The limits of the RSSI were determined using two thresholds, having
the meaning of maximum signal (w = 0.1) strength and no signal (w > 1).
We adjust the radio power in order to achieve a maximum transmission range of
10m. The RSSI was the only metric used to calculate the virtual distance. In our
simulation, we adjust several parameters of the described equations such that
every part of the equation has the same weight. In order to calculate the opti-
mum cost of a problem instance, we model our minimum-intracommunication

clustering as an integer linear programming problem and for each generated
instance, we solve it using the lp solve program.

Figure 2 shows the results of the 40 runs for our distributed heuristic and the
respective optimal solution. The picture also shows the confidence interval of the
obtained average. The average communication cost of the emergent clustering
was 30.72 with a standard deviation of 6.07. The optimum solution has a mean
of 24.42 with a standard deviation of 4.26.

6 Conclusion

In this paper, we introduce a useful clustering problem and develop an efficient
heuristic to solve it. The heuristic is based on the response functions derived from
the division of labor in social insects. On the basis of the response function, the
most suitable nodes in terms of connectivity, energy and resources are selected
for the clusterhead role. After emerging spontaneously, each clusterhead starts
gathering members for the clusters until a resource requirement q is satisfied.
The membership candidates are evaluated using a fitness function taking into



consideration their distance to the cluster and its clusterhead, connectivity and
resource availability. After evaluating those items, a node delays its response
by a time related to its fitness. Therefore, the higher fitness nodes announce
themselves earlier, having higher priority for entering the cluster.

Using simulations in the Shox network simulator, we show that our approach
performs well in average. It uses just local information and it is capable of
starting in an unorganized ad hoc network, finding a cluster configuration that
is in average just 25% above the optimum one. Further, the proposed emergent
clustering approach obtains a performance of at least 1.5 times the optimal for
60% of the test cases. There are no test cases with a performance inferior to 2
times the optimum result.

Our results demonstrate once again that a principle from natural systems can
be successfully transferred to an efficient algorithm for ad hoc networks solving
a problem which is NP-complete in good aproximation.
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