
An Efficient Location Index for the Semantic Search of
Moving Objects

Dong-Oh Kim, Jung-Su Shin, Hong-Koo Kang, Ki-Joon Han

School of Computer Science & Engineering, Konkuk University,
1, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea

{dokim, jssinn, hkkang, kjhan}@db.konkuk.ac.kr

Abstract. In moving object databases, researches on the spatio-temporal access
method are very important for the efficient search of moving object location in
ITS, LBS, and Telematics. Recently, researches are being made actively on the
efficient management of the current location of moving objects and on the
estimation of future location using information such as the current location and
moving pattern of moving objects. In this paper, we propose Map-Based R-
tree(MBR-tree), which is a new current location index structure for indexing the
current location of moving objects in an urban area, a 2-dimentional space.
MBR-tree is an index which forms the MBR(Minimum Bounding Rectangle) of
R-tree nodes using static objects(or fixed objects) on the map. Because moving
objects generally moves within a static object, if the MBR is formed using static
objects, we can reduce the cost of updating the index of the current location of
moving objects. In addition, it shows superior performance in semantic search
that searches in a specific building or place (e.g. “Who are in Konkuk
university?”) rather than in an arbitrary area. Finally, to test the index proposed
in this paper, we compared its performance with that of hashing technique and
Lazy Update R-tree using various datasets and proved the superiority of its
performance.

Keywords: Location Index, Semantic Search, Moving Object, MBR, MBR-tree

1 Introduction

With the development of location positioning systems such as GPS(Global
Positioning System), application systems using the location of moving objects are
widely used including ITS(Intelligent Transportation System), LBS(Location Based
Service) and Telematics. In addition, a moving object database has emerged to
manage the location of moving objects efficiently in application systems. In particular,
researches are being made actively on the spatio-temporal access method for the
efficient search of moving object location[2,4].

In general, spatio-temporal access methods are divided into past location index,
current location index and future location index according to the type of query.
Recently, hashing technique[6], Lazy Update R-tree(LUR-tree)[1], etc. have been
proposed for the efficient management of the current location of moving objects.
However, hashing technique, though its update cost is low, has low search

performance due to node chaining that takes place on overflow. LUR-tree improves
the update performance of R-tree, which is superior in the search performance, but
still has high update load from node reconstruction.

Thus, we propose Map-Based R-tree(MBR-tree), which is a new current location
indexing technique for indexing the current location of moving objects(e.g. persons)
in an urban area, a 2-dimensional space. MBR-tree is an index that forms the
MBR(Minimal Bounding Rectangle) of R-tree[3] nodes using static objects(e.g.
buildings) on the map. Because moving objects generally move within a static object,
if the MBR is formed using static objects, we can reduce the cost of index update for
the current location of moving objects.

In addition, MBR-tree shows superior performance in semantic search that
searches in a specific building or place(e.g. “Who are in Konkuk University?”) rather
than in an arbitrary area. Lastly, to test the index proposed in this paper, we compare
its performance with that of hashing technique and LUR-tree using various datasets[7].
According to the results, MBR-tree is superior in the search and update performance
and particularly excellent in semantic search.

The structure of this paper is as follows. Chapter 2 reviews related works,
examining hashing technique and LUR-tree as well as semantic search. Chapter 3
explains MBR-tree in detail, and Chapter 4 analyzes the results of performance
evaluation using various datasets. Finally, Chapter 5 draws conclusions.

2 Related Works

This chapter reviews hashing technique and LUR-tree, whose performance will be
compared with that of MBR-tree. In addition, it examines semantic search.

2.1 Hashing Technique

In order to reduce the cost of update, hashing technique uses a location pre-processing
module that plays the role of a filter between a database and moving objects reporting
their locations[6]. The location pre-processing module synchronizes its own hashing
function with the hashing function used in the database and stores the location of
moving objects into the database using bucket information obtained by entering the
location of moving objects into the hashing function. When moving object location is
updated, if new bucket information obtained using the hashing function is the same as
existing bucket information, the new information is not reported to the database but is
recorded only in the location pre-processing module.

Hashing functions used in hashing technique are composed of an overlap-free
space partition function that removes redundant hashing nodes while maintaining
constant the number of moving objects managed in the bucket, an augmented space
partition function that allows the overlapping of hashing nodes and expands hash
nodes to the specified size, a quad-tree hashing function that utilizes quad-tree
division to resolve the uneven distribution of moving objects, etc.

Hashing technique improves the scalability and the performance of update because
it is possible to do distributed processing of moving objects using multiple location

pre-processing modules, but if the number of moving objects managed in a bucket is
large, the search performance is lowered due to node chaining on overflow.

2.2 LUR-tree

LUR-tree is an index that can reduce update cost by improving an update algorithm
and, as a result, reducing the number of times of index reconstruction in R-tree[1].
LUR-tree is composed of R-tree for indexing the current location of moving objects
and Direct Link for direct reference to leaf nodes of the index where moving objects
are stored. Direct Link, which is an auxiliary index that uses the ID of moving objects
as the key, refers to the leaf node in R-tree where the moving object of the
corresponding ID is stored. Therefore, it effectively reduces the cost of tree search
caused by update of R-tree.

In addition, LUR-tree reduces the cost of updating moving objects that travel
zigzag using the extended MBR, which extended the MBR value of index nodes.
When updating the location of a moving object, LUR-tree can directly refer to the
index node containing the corresponding object using Direct Link. Thus, if the new
location of the moving object is in the extended MBR of the current extended node,
R-tree is not reconstructed and only information in the node is changed and, in this
way, the cost of update can be reduced. LUR-tree has lower update cost than R-tree
but its search performance is lowered by node redundancy and its update load
increases due to node reconstruction.

2.3 Semantic Search

A semantic space can correspond to a physical space expressed with one or more
coordinates, and the expression of the semantic space is easily understandable to users.
That is, it has a logical name like “Konkuk University” or “National Road No. 13”
corresponding to a physical space expressed with coordinates like “15,13,18,17”. The
semantic space is often used as a search keyword in the database[5]. Figure 1 shows
examples of correspondence between physical spaces and semantic spaces.

Fig. 1. Correspondence between Physical Spaces and Semantic Spaces

Semantic search is generally used to execute a query which contains semantic
spaces in the query condition. Examples of query for semantic search are “Who are in
Konkuk University?”, “What cars are on the road where car K is running?”, “Who are
passing by Konkuk University?”, etc.

3 MBR-tree

This chapter explains motivation for MBR-tree proposed in this paper as well as its
index structure and data structure. Lastly, it examines the insert, update, delete, and
search algorithms of MBR-tree in detail.

3.1 Motivation

Real moving objects do not move in a free space as in Figure 2(a) but their movement
is restricted by surrounding environments as in Figure 2(b). That is, the movement of
a moving object is restricted by buildings and roads on the map. Thus, if the MBR of
nodes in R-tree is formed with the MBR of static objects on the map, the index on the
location of moving objects is not updated in case the moving object moves within a
static object.

Fig. 2. Movement of Moving Objects

Figure 3 shows differences in insert and update between R-tree and MBR-tree.
Figure 3(b) shows the result of inserting O1 to R-tree in Figure 3(a). In Figure 3(b), R1
is expanded to minimize the MBR of the node to which O1 was inserted. Figure 3(f)
shows the result of creating the MBR in MBR-tree with static objects in Figure 3(e)
and inserting O1. Because the MBR is fixed in MBR-tree, the index is not
reconstructed.

Fig. 3. Insert and Update in R-tree and MBR-tree

In the same way, R-tree is reconstructed as location is updated as in Figure 3(c)
and Figure 3(d), but only the location of O1 is updated in MBR-tree without changing

the information of R2 when updating the location of O1 within a static object as in
Figure 3(g) and Figure 3(h) and, by doing so, it can reduce the cost of update. In
addition, because the MBR that manages moving objects uses static objects that have
semantic spaces, MBR-tree can be more efficient in semantic search than R-tree.

3.2 Structure of MBR-tree

Figure 4 shows the overall structure of MBR-tree. MBR-tree is composed of Base R-
tree and Quad-tree. Base R-tree is an index constructing the nodes of R-tree using
the MBR of static objects on the map. Quad-tree is an index, connected to Base R-tree,
to store the ID and location of moving objects, enabling efficient search even when a
leaf node in Base R-tree manages a large number of moving objects. The Secondary
Index is an auxiliary index for high-speed update using the ID of moving objects as
the key, pointing the nodes of Base R-tree to which moving objects are inserted.

Fig. 4. Structure of MBR-tree

In Base R-tree in Figure 4, moving objects are divided into two types: an In-
Object moving inside a static object, and an Out-Object moving outside static
objects. The In-Object is managed in BRANCH of the leaf node containing the object
in Base R-tree, and the Out-Object is managed in the node with the smallest MBR
size containing the object among the nodes of Base R-tree.

Figure 5 shows the data structure of MBR-tree. In Figure 5, RNODE is the data
structure of Base R-tree nodes. RNODE has ParentPt a pointer to the parent node,
Level information on node level, Branch information on child nodes, Count the
number of child nodes, and MObjCount the number of moving objects inserted into
the child nodes. It also has OutMObjQuad a pointer to a Quad-tree node to store Out-
Objects.

BRANCH has ChildPt a pointer to the child node of RNODE, mbr to store the
MBR of child nodes, and InMObjQuad a pointer to a Quad-tree node to store In-
Objects. QUADNODE, which is the data structure of Quad-tree nodes, has Count the
number of moving objects stored, MObj a pointer to the first moving object, and
ChildPt a pointer to the child node of Quad-tree. MOBJECT, which is the data
structure to store information on moving objects, has Oid the ID of the object, Loc
location information, and NextPt a pointer to the next moving object.

Fig. 5. Data Structure of MBR-tree

3.3 Algorithms

This section examines the insert, update, delete, and search algorithms of MBR-tree in
detail.

3.3.1 Insert Algorithm
The insert algorithm of MBR-tree is as in Figure 6. It is executed with input oid the
ID of a moving object and loc the location of the object.

Fig. 6. Insert Algorithm Fig. 7. Update Algorithm

The insert algorithm inserts a moving object, distinguishing it between In-Object
and Out-Object. As in Figure 6, if the input moving object is an In-Object, the
algorithm finds the leaf node in Base R-tree containing loc using Find_InNode(loc)
function and inserts the moving object into the InMObjQuad of the corresponding
branch. If the moving object is an Out-Object, it finds the node with the smallest
MBR among Base R-tree nodes containing loc using Find_OutNode(loc) function and
inserts the moving object into OutMObjQuad. After insertion, it increases
MObjCount by 1 from the root node to the node to which the object has been inserted.

3.3.2 Update Algorithm
The update algorithm of MBR-tree is as in Figure 7. It is executed with input oid the
ID of a moving object and new_loc the new location. The update algorithm does not
reinsert the moving object to be updated within the same static object into MBR-tree.

As in Figure 7, the update algorithm finds the pointer to the corresponding node and
Branch ID in the secondary index using oid. If the input moving object is an In-Object
and the updated location does not deviate from the MBR of the corresponding branch,
the object is not reinserted into InMObjQuad but only the location information of the
moving object is updated. However, if it deviates from the MBR, the moving object is
reinserted. If the input object is an Out-Object, it is reinserted into MBR-tree.

3.3.3 Delete Algorithm
The delete algorithm of MBR-tree is as in Figure 8. It is executed with input oid the
ID of a moving object.

Fig. 8. Delete Algorithm Fig. 9. Search Algorithm

The delete algorithm accesses the corresponding node using the secondary index
and deletes the moving object. As in Figure 8, the delete algorithm finds the pointer to
the corresponding node and Branch ID in the secondary index using oid. If the
moving object is an In-Object, it is deleted from InMObjQuad of the corresponding
branch, and if it is an Out-Object, it is deleted from OutMObjQuad of the
corresponding node. After deletion, it decreases MObjCount by 1 from the node from
which the object has been deleted to the root node.

3.3.4 Search Algorithm
The search algorithm of MBR-tree is as in Figure 9. It is executed with input RNodePt
a node pointer in Base R-tree and Rectangle a window range. The search algorithm
retrieves all moving objects included in Rectangle among nodes managing moving
objects. As in Figure 9, the search algorithm retrieves Out-Object included in
Rectangle if there are moving objects in OutMObjQuad of input RNodePt. Next, it
checks if the current node is a leaf node and, if it is, the algorithm retrieves moving
objects included in Rectangle among In-Objects stored in MObjQuad of the branches.
If the current node is not a leaf node, it checks if there are moving objects in its child
nodes, and the search algorithm is executed recursively for child nodes.

4 Performance Evaluation

This chapter compares MBR-tree with LUR-tree and hashing technique through
evaluating their performance. Performance evaluation was made by comparing update
performance, window query performance and semantic search performance in terms
of time and memory usage.

4.1 Experiment Environment

Performance evaluation was made using a PC with Intel Pentium4 2.53GHz CPU and
1GB memory. Data used in performance evaluation was generated from City
Simulator and GSTD. Figure 10(a) shows the map used in City Simulator and data
generated from it, and Figure 10(b) shows data generated from GSTD.

Fig. 10. Data Generated from City Simulator and GSTD

In performance evaluation, we used hashing with 144 buckets (12X12) and hashing
with 324 buckets (18X18) to compare with MBR-tree. The number of buckets in
hashing (12X12) is similar to the number of leaf nodes in MBR-tree.

4.2 Update Performance Evaluation

Update performance evaluation uses trajectory data in which 1000/3000/5000 moving
objects move 300 times as generated from City Simulator and GSTD. Figure 11
shows graphs that compare the index update performance according to the number of
moving objects.

Fig. 11. Update Performance

The results of performance evaluation show that MBR-tree is much superior to
LUR-tree in the update performance and not much inferior to hashing, which
generally has high update performance.

4.3 Query Performance Evaluation

Query performance evaluation was made using the data of 50,000 moving objects
generated from City Simulator and GSTD.

4.3.1 Window Query Performance Evaluation
Figure 12 shows graphs that compare the window query performance according to
window size.

Fig. 12. Window Query Performance

The results of performance evaluation show that the window query performance of
MBR-tree is 2.1 times higher than that of hashing on the average and higher than that
of LUR-tree based on R-tree, which generally has high window query performance.

4.3.2 Semantic Search Performance Evaluation
Figure 13 is a graph that compares the semantic search performance.

Fig. 13. Semantic Search Performance Fig. 14. Memory Usage

The results of performance evaluation show that the semantic search performance
of MBR-tree is 2.1 times higher than that of LUR-tree and 3.4 times higher than that
of hashing on the average.

4.4 Memory Usage

Because memory usage is closely related to the number of moving objects regardless
of the type of dataset, we use data of 1000/3000/5000 moving objects generated from
GSTD. Figure 14 is a graph that compares the size of memory usage according to the
number of moving objects.

In the comparison of memory usage, MBR-tree shows a slight difference from
LUR-tree in memory usage but uses 1.4 times larger memory space than hashing,
which generally uses a small size of memory.

5 Conclusions

This paper proposed MBR-tree that can index location data of moving objects by
forming R-tree nodes using the MBR of static objects on the map. MBR-tree reduced
update cost and improved the semantic search performance by managing moving
objects in the unit of static object.

In the results of performance experiment, hashing showed advantage in memory
usage and update speed but was much inferior in the search performance, and LUR-
tree showed advantage in the search performance but its update cost was high. MBR-
tree reduced update cost effectively compared to LUR-tree while guaranteeing search
speed higher than hashing. Particularly in semantic search, MBR-tree showed much
higher performance than all the other methods. Accordingly, MBR-tree can have high
utility in the environment where search transactions are as important as update
transactions and where high semantic search performance is required.

Acknowledgements

This research was supported by the Seoul Metropolitan Government, Korea, under the
Seoul R&BD Program supervised by the Seoul Development Institute.

References

1. Kwon, D.S., Lee, S.J., and Lee, S.H.,: Indexing the Current Positions of Moving Objects
Using the Lazy Update R-tree. Proc. of the Third International Conference on Mobile Data
Management, (2002) 113-120.

2. Inam, O., and Matin, A.,: A Survey of Indexing Techniques for Moving Object Trajectories.
Technical Report, University of Waterloo, (2003).

3. Mokbel, M.F., Ghanem, T.M., and Aref W.G.,: Spatio-Temporal Access Methods. IEEE
Data Eng. Bull., Vol.26, No.2 (2003) 40-49.

4. Roddick, J.F., Hoel, E., Egenhofer, M.J., and Papadias, D.,: Spatial, Temporal and Spatio-
Temporal Databases: Hot Issues and Directions for PhD Research. ACM SIGMOD Record,
Vol.33, No.2 (2004) 126-131.

5. Roth, J.,: Novel Architectures for Location-Based Services. Annual Meeting for Information
Technology & Computer Science, (2004) 5-8.

6. Song, Z., and Roussopoulos, N.,: Hashing Moving Objects. Proc. of the 2nd International
Conference on Mobile Data Management, (2001) 161-172.

7. Theodoridis, Y., Silva, J.R.O., and Nascimento, M.A.,: On the Generation of Spatiotemporal
Datasets. Proc. of the 6th International Symposium on Advances in Spatial Databases,
(1999) 147-164.

