
Dynamic Translator-based Virtualization

Yuki Kinebuchi1, Hidenari Koshimae1, Shuichi Oikawa2, and Tatsuo Nakajima1

1 Department of Computer Science, Waseda University
{yukikine, hide, tatsuo}@dcl.info.waseda.ac.jp

2 Department of Computer Science, University of Tsukuba
shui@cs.tsukuba.ac.jp

Abstract. Microkernels and virtual machine monitors are both utilized
as platforms for running operating systems. Although there are many
similarities in their designs and features, they have opposite advantages
and drawbacks. A microkernel based system is highly portable. How-
ever, the interface it exposes is inflexible and incompatible with other
real hardware interfaces. In contrast, a virtual machine monitor inter-
face is identical to a specific real hardware interface. However, the im-
plementation of virtual machine monitors highly depends on processor
architectures and specific hardwares.
In this paper, we present a new model of virtual machine monitor, a
flexible dynamic translator constructed on a portable microkernel. Our
model offers both high portability and compatibility. Moreover, its flexi-
ble interface could be reconfigured to support various types of hardware
interfaces. The results of the evaluation show that the performance of
our prototype system is unsatisfactory, so we propose some techniques
to improve its performance as future work.

1 Introduction

Microkernels and virtual machine monitors (VMMs) have common purpose which
is to run operating systems on them. There are many similarities in their designs
and features. However, since their primary aims differ from each other, they have
opposite advantages and drawbacks in a point of portability and compatibility.

Microkernels started with the redesigning of conventional operating systems.
In order to reduce the size and the complexity of a kernel, the number of its
functions was minimized and some traditional kernel functionality were moved
to the application level. The resulting system realizes a moduled and highly
portable structure. Since their interfaces differ from real hardwares interface,
there is a drawback that a guest operating system needs to be modified to run
on a microkernel.

In contrast, VMMs aim to the reuse of commodity operating systems. Like
a microkernel, VMM is a small and simple program running in privileged mode,
but provides an interface identical or almost identical to the underlying real hard-
ware. Thus, operating systems can run on VMM without any or with minimum
modification. Since its implementation highly depends on a processor architec-
ture and a specific hardware, the portability of itself is low.



2

In this paper, we propose a new model of constructing a VMM, which is a
flexible dynamic translator constructed on a portable microkernel. The past vir-
tual execution platforms have implemented their interfaces directly on hardware
interfaces. They have a hardware dependent, not portable and inflexible inter-
face implementation. In our model the hardware dependent layer is split from
the interface implementation. The underlying hardware interface is abstracted by
the microkernel, which provides a uniform interface on different architectures to
the machine emulator running on it. The machine emulator provides an flexible
interface implementation, which enables the execution of unmodified operating
systems and can be reconfigured to support different hardware interfaces. We im-
plemented a prototype system by porting an existing portable machine emulator
to an existing microkernel, and made some evaluations on its performance.

The next section compares microkernels and VMMs. Section 3 introduces
some related work. Section 4 introduces the implementation of our prototype
system. Section 5 proposes some applications using our model. Section 6 intro-
duces the results of the evaluation. Section 7 discusses some performance issues
and future directions. Finally Section 8 concludes the paper.

2 Microkernel vs VMM

This section compares advantages and disadvantages of microkernels, VMMs,
and propose our new virtualization model which integrates the advantages of
both of them.

A microkernel is a small operating system supporting only a minimum set
of API. Microkernels are used as bases for constructing operating systems. The
interface provided by a microkernel is an abstract hardware interface, which is
different from any existing hardware interfaces. Therefore, when running an ex-
isting operating system on a microkernel, its architecture dependent part must
be modified as shown in Figure 1 (a). This is the drawback of the microkernel-
based approach. The advantage of using microkernels is their portability. Since a
microkernel-based system splits the hardware dependent layer and operating sys-
tem services, the system could be supported on a different hardware by porting
only a part of the microkernel.

A virtual machine monitor is a software that enables multiple operating sys-
tems to run on a single hardware by giving the illusion of using a whole hardware
to each operating system. The interface provided by a virtual machine monitor
is almost identical to a specific existing hardware interface. The advantage to use
VMMs is that they do not require the modification of guest operating systems to
be run on it. Figure 1 (b) shows the operating system for architecture A running
directly on the hardware of architecture A. The operating system could run on
the virtual machine monitor without modifying its architecture dependent part
as shown on in Figure 1 (c). The drawback of the virtual machine monitor-based
approach is strong dependency to the underlying hardware interface. Moreover,
the architecture offered by the virtual machine monitor and the interface of the
underlying hardware should be the same.



3

Fig. 1. OS on VMM and a microkernel

Fig. 2. Machine Emulator on a microkernel

We propose a new virtualization architecture, which has the advantages of
both microkernels and virtual machine monitors, the portability and the compat-
ible interface with existing hardware architectures. Figure 2 shows the overview
of our model. Flexible machine emulators are running on a portable microker-
nel. The emulator provides an interface compatible with an existing architecture
interface. The emulator on the lefthand side of the figure offers the interface of
architecture A, which executes an unmodified operating system. In addition, the
emulator could be reconfigured to execute operating systems on various differ-
ent architectures. The emulator on the lefthand side of the figure is reconfigured
to offer the interface of architecture B. The implementation of the emulator de-
pends on the microkernel interface but not the host architecture. The underlying
microkernel hides the hardware interface from the emulator and offers a uniform
interface. When the underlying hardware changes, only the small architecture
dependent part of the microkernel is modified. Therefore the porting cost of the
system is decreased dramatically.



4

3 Related Work

In this section, we introduce an existing machine emulator and some existing
virtual machines.

Bochs[6] is a machine emulator which emulates the x86 architecture machine.
It has a capability to run guest operating systems built for the x86 architecture
without any modifications. The code of Bochs is written in C++, which can
be compiled to run on various operating systems. Although it supports a high
portability over operating systems, the portability of supporting new hardware
platform depends on the host operating system implementation.

Xen[1] is VMM leveraging a virtualization technique called para-virtualization.
Using para-virtualization increases the performance of guest operating system,
but it requires the modification of guest operating systems to be virtualized. In
addition, the implementation of Xen highly depends on the x86 architecture, it
has low portability.

VMware Workstation[8] is VMM that can run unmodified operating systems
built for the x86 architecture. It runs as an application running on commodity
operating systems such as Linux and Windows. It installs VMM running in the
privileged level as a device driver in order to use privileged level instructions.
This is to increase the performance of running guest operating systems. At the
same time it increases the dependency on both the host operating system and
the host hardware architecture.

4 Constructing Machine Emulator on Microkernel

4.1 Overview

We implemented a prototype system of our proposed model by porting the
QEMU machine emulator[2] to the L4Ka::Pistachio microkernel[9] (L4 for short)
with the Kenge[4] environment. The architecture of the prototype system is
shown in Figure 3. QEMU, originally running on Linux, is modified to run as
an application on L4. Each of QEMU can run a single guest operating system
on it. By running multiple QEMU, multiple guest operating systems can run
simultaneously on a single hardware. Kenge provides some libraries and servers
that facilitate the constructions of applications on L4.

The following subsections briefly introduce QEMU, L4 and Kenge followed
by the description of virtual devices.

4.2 QEMU

QEMU is a portable machine emulator, which emulates entire computer inter-
face including CPU, memory and hardware devices. It runs as an application
on commodity operating systems such as Linux, Windows, Mac OS X and Free
BSD. Since QEMU emphasizes a portability, it supports various processor ar-
chitectures as the host and the guest architecture. Currently, it supports x86,



5

Fig. 3. A machine emulator on a microkernel

x86 64, ARM, SPARC, PowerPC and MIPS for the guest architecture, x86,
x86 64 and PowerPC for the host architecture. In addition, the host and the
guest architecture can be different.

In order to provide a virtual CPU running guest programs, QEMU leverages
the technique of a dynamic translation. It splits a guest instruction into pseudo
microcodes that consists of host instructions. The translation is continued up to
the next jump instruction, and the chunk of translated codes is put in a buffer
as a unit of translated block (TB). TBs are reused when corresponding codes are
executed again. Each microcode is written in the C language that is compiled
to native code by GCC on the building stage of QEMU. Since the C codes can
be compiled for various architectures by using different compilers, the porting
costs are kept low.

QEMU also provides virtual devices that offer interfaces of existing hardware
devices. The virtual devices for original QEMU are implemented using functions
and libraries of the host commodity operating system. For example, data con-
tained in a virtual hard disk is saved to a file on a host filesystem as a hard-disk
image. In addition, the inputs and outputs of a guest operating system for a dis-
play, keyboard and mouse are processed using host graphic libraries and window
systems. Since these libraries are not supported on L4, we modified the virtual
devices to run in the L4 environment. The implementation of virtual devices on
L4 is described in Section 4.5.

4.3 L4Ka::Pistachio

L4Ka::Pistachio is a portable microkernel. L4 itself only provides primitive func-
tions to support thread management, address space management and IPC. Fa-
cilities supported by modern operating systems are moved to the user level and
implemented as servers and libraries. For example, device management is moved
to the user level, and implemented as device servers. Applications running on
the microkernel interface with device servers to access hardwares.



6

4.4 Kenge and Iguana

Since L4 offers only primitive functions, we worked on the Kenge environment
which helps the development of applications for L4. Kenge consists of a system
build environment, libraries and servers, including the Iguana server[3] and some
device servers. The libraries provide some POSIX functions, device drivers and
some RPC stubs to interact with servers. The detail of device servers is described
in the next section.

Iguana is a privileged server which manages resources such as memory, CPU
and capabilities to access those resources. It also provides some high-level func-
tions for applications running in L4 to create and delete threads, map and unmap
memory regions.

QEMU on L4 uses some POSIX functions provided by these libraries, but
not all the POSIX functions used by QEMU are provided by Kenge. Therefore
we added some POSIX functions used by QEMU to help the porting.

4.5 Virtual Devices

This section describes the two different models of virtual hardware implementa-
tion. The first implementation is the model which virtual devices interact with
device servers running beside QEMU and other applications. The second imple-
mentation is the model which links virtual devices with device driver libraries
which let them directly interact with hardwares.

Device Server. A device server is a special application running on L4 which
manages a device I/O to a specific hardware device. Although device servers are
running in unprivileged mode, they are given a permission to access hardware
devices. Therefore device drivers contained in device server can directly interact
with hardware devices.

QEMU interact with device servers through the IPC function provided by
L4. When a guest operating system writes to a virtual hardware, it transfers
the written data to a corresponding device server using IPC. The device server
receives the data, it invokes the device driver function, and perform an actual
device output (Figure 4 (a)).

When multiple guest operating systems are sharing a single real device, the
device server should arbitrate inputs and outputs. For example, the console
server we made, can switch to which QEMU it transfers data, and let multiple
guest operating systems to share a single display and keyboard. The drawback
of this model is that frequent IPC between a guest operating system and device
servers triggers frequent context switch.

Internal Device Driver. The other is the model using device driver library.
QEMU, using the module linked to itself, interfaces with hardware directly (Fig-
ure 4 (b)). In this model there is no overhead of IPC because the data does not
go through the device server, however a real device cannot be shared among



7

multiple guest operating systems. For example, the ported QEMU accesses the
VGA device using VGA device driver library. In this case, the guest operating
system directly writes to real VRAM.

Fig. 4. The implementation of virtual devices

5 Applications Using QEMU on L4

This section propose some applications using our system.

5.1 Emulating Multiple Architectures

The primary use of our system is the reuse of existing operating systems on top
of various types of architectures. Since QEMU exposes an interface compatible
with existing hardwares, guest operating systems can run on top of it without
any modifications. QEMU can run a guest operating system even if the host
and the guest architecture are different as shown in Figure 5. The console server
splits the monitor into four parts and makes each guest Linux to use one of them.

5.2 Anomaly Detection/Recovery

Alex Ho et al. proposed a taint-based protection using a machine emulator[5]. In
normal times, an operating system runs on VMM. When the CPU is executing
a code that interacts with data downloaded through the internet, the execution
is dynamically switched on to the machine emulator. In this way, it reduces the
performance degradation and protect the system from tainted data.

Using our system, we propose a similar system that offers an anomaly de-
tection and recovery (Figure 6). In normal times, applications run directly on
L4. When the system finds the symptom of application anomaly, the application
is migrated to run on QEMU. QEMU runs the application and analyzes it in
detail. When it detects an anomaly, it stops the execution of the application,
and if possible, it recovers the application and puts it back to run directly on L4
again. In this way, the system can realize the anomaly detection and recovery
with near-to-native performance.



8

Fig. 5. SPARC, PowerPC, ARM and
x86 Linux on the prototype system

Fig. 6. Anomaly detection

Table 1. LMbench measurement result

x86(Native) x86 ARM SPARC

lat syscall (µsec) 0.2634 3.0967 18.9526 3.0504
lat ctx (µsec) 0.54 48.10 80.13 83.09

bw mem rd (MB/s) 9328.49 1051.80 618.39 508.50
bw mem wr (MB/s) 5509.96 597.21 436.50 379.23
bw file rd (MB/s) 1557.27 36.29 45.42 41.47

6 Evaluation

In this section, we evaluate the performance of Linux running on QEMU on
L4. We used LMbench[7] to measure their performance. LMbench is a cross
platform benchmark to measure the performance of operating system primitives.
We built LMbench for three different architectures; x86, SPARC and ARM.
The measurements were performed on non-virtualized (native) Linux for x86
architecture, virtualized Linux for x86, ARM and SPARC. For non-virtualized
and virtualized Linux for x86, we used the same kernel and root filesystem. The
machine we used for the measurement is IBM ThinkPad R40, with 1.3GHz CPU
and 768MB memory. Dynamic frequency control is disabled for accuracy.

Table 1 shows the result of the measurement. We measured the system call
latency, context switch latency, the bandwidth of reading from and writing to
the memory, and the bandwidth of reading a file. The first row of the table shows
the system call performance. Comparing non-virtualized and virtualized Linux
for x86, the performance is decreased by a factor of 11. The second row shows
the latency of the context switch. The performance decreased by approximately
a factor of 90. The third and forth row show the bandwidth of reading and
writing a memory. The throughput decreased by a factor of 10. The memory
access speed of programs running on QEMU is the one of the major overhead of
QEMU, which we describe in more detail in Section 7.2. The last row shows the
bandwidth of reading a file. Comparing non-virtualized and virtualized Linux
for x86, the performance is decreased by approximately a factor of 40.



9

7 Discussion

Running QEMU on L4 realizes the running of multiple operating systems simul-
taneously on a single hardware, isolation between the guest operating systems
with giving them the illusion of using a hardware by itself, and the reuse of
operating systems without modification even for the operating system for dif-
ferent architectures. However, as shown in Section 6, the performance of guest
operating systems is degraded comparing to native Linux. In this section we
propose techniques to improve the performance of dynamic translators running
on microkernels. Furthermore we propose future directions of this research.

7.1 Hypercall

As described in Section 4.2, QEMU translates guest codes to host codes with
dynamic translation before executing them. The dynamic translation produce
two types of overheads, the direct and the indirect. The direct overhead is the
processing time of dynamic translation itself. Since every single instruction is
translated to corresponding microcodes at the execution time, the execution of
a code is significantly delayed. When the guest code is executed again, it is
executed without any translation by reusing TB. The indirect overhead derives
from the inefficient code contained in TB. Since the guest code is translated
to microcode which consists of several host codes, the number of instructions
contained in TB is longer than the corresponding original guest code.

In order to reduce these overheads, we propose to implement a hypercall
by extending an instruction set provided by QEMU. In time of execution an
extended instruction is translated to a host instruction which directly calls a
QEMU function. For instance, we propose the implementation of efficient device
driver for guest operating systems using these extended instructions. We replace
the code included in a function exposed by the device driver, say write(), with
a single extended instruction. When the function is executed, the instruction is
translated to a host instruction which directly invokes a function in QEMU which
may be a device driver function or RPC stub calling a device server function. In
this way, the direct and the indirect overhead of the dynamic translation can be
decreased.

7.2 MMU with Map Function

Since many modern processors has MMU, virtual machines and emulators needs
to support a function equal to MMU in some fashion.

QEMU provides software MMU which emulates MMU only with software
function. Software MMU interposes every single memory access done by guest
programs running on top of QEMU. When the guest program accesses a mem-
ory, software MMU perform a lookup through the page tables constructed by a
guest operating system and translates a virtual address to a physical address.
Therefore, single memory access expands to multiple memory accesses including



10

the access to page tables. The resulting time for memory access would be factor
of ten.

Unlike commodity operating systems, L4 provides APIs to manage address
spaces. Using these APIs, an application on L4 can create new address spaces
and map memory section into them. We propose the implementation of new
virtual MMU which employs L4 APIs. The virtual MMU creates and maps
memory regions into the space according to page tables constructed by a guest
operating system. A guest program is executed in a separate address space,
so it can access memory directly without interposed by software MMU. The
implementation should dramatically decrease the overhead of software MMU.

8 Conclusion

In this paper, we proposed the model of running a dynamic translator on a
microkernel and implemented the prototype system. We also proposed some
sample applications using our model and evaluated the performance.

The model we proposed has a greater flexibility and higher portability than
existing VMMs and microkernels. The prototype has shown it by running multi-
ple guest operating systems for different architectures simultaneously on a single
hardware. Our model is expected to be useful for the basis for reusing existing
operating systems and applications, debugging and a system that requires high
degree of security and reliability.

References

1. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03: Proceedings
of the nineteenth ACM symposium on Operating systems principles, pages 164–177,
New York, NY, USA, 2003. ACM Press.

2. F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the
USENIX Annual Technical Conference, FREENIX Track, June 2005.

3. Embedded, Real-Time, and Operating Systems. Iguana. http://www.ertos.nicta.
com.au/software/kenge/iguana-project/latest/.

4. Embedded, Real-Time, and Operating Systems. Kenge. http://www.ertos.nicta.
com.au/software/kenge/.

5. A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical taint-based
protection using demand emulation and intel research cambridge. In Proceedings of
the EuroSys 2006, Leuven, Belgium, Apr. 18–21 2006.

6. K. P. Lawton. Bochs: A portable pc emulator for unix/x. Linux J., 1996(29es):7,
1996.

7. L. McVoy and C. Staelin. Lmbench - tools for performance analysis. http://www.

bitmover.com/lmbench/.
8. J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O devices on

VMware workstation’s hosted virtual machine monitor. In Proceedings of the Gen-
eral Track: 2002 USENIX Annual Technical Conference, pages 1–14, Berkeley, CA,
USA, 2001. USENIX Association.

9. System Architecture Group. L4Ka::Pistachio microkernel. http://l4ka.org/

projects/pistachio/.


