
Probabilistic Optimization and Assessment of Voting
Strategies

 for X-By-Wire Systems

Markus Kucera1, Hans Mauser2

1University of Applied Sciences, Regensburg
markus.kucera@informatik.fh-regensburg.de

2Siemens AG, München
hans.mauser@siemens.com

Abstract. Signal voting of redundant sensor values and communication chan-
nels is of central importance in today’s X-by-wire systems. The required degree
of sensor redundancy, the type of redundancy, and finally the voting strategy
must be designed to meet the system's dependability requirements. These de-
sign decisions depend on an analysis of the probabilities and effects of all un-
derlying fault scenarios. Given a probabilistic fault model and a communication
model, the voting step can be formally stated as a maximum-likelihood estima-
tion of the correct input signal. With an example of an X-by-wire system we
show how GTEFT can be used to derive the failure probabilities of different
fault scenarios for various systems architectures and different voting strategies.
Thus the capability of GTEFT to support system development and system as-
sessment is demonstrated.

Keywords. Fault-tolerance, Dependability, Voting, Embedded System, Auto-
motive

1. Introduction

The driving innovation force in today’s cars has become the area of Information
Technology. Powerful new vehicle systems like Brake-by-Wire, Steer-by-Wire, or
Park-Assistant are not viable without powerful functionality in software and electron-
ics [1]. This increase in functionality comes together with an increase in system com-
plexity.
Complexity is thus one major challenge to face when dealing with future embedded
systems.

The increasing ubiquitous use of embedded systems directs many applications into
an area where problems regarding human health and life emerge. This leads to the
topic of dependability and safety in particular. Safety has become a topic of special
importance in the automotive area, where system cost, penetration rates, and short in-
novation cycles are the driving factors.

Thus, meeting dependability requirements whilst meeting cost targets and develop-
ment schedule is the second major challenge to face in that area.

The idea to support dependability assessment by tools is not new. Many ap-
proaches exist to evaluate dependability figures for distributed systems [7-10].
However, two main problems remain when dealing with above mentioned challenges:
(1) countering the state space explosion problem
(2) efficient integration into a product development cycle to allow for professional use

In [3] an approach is presented that synthesizes dynamic fault trees from UML Sys-
tem Models. The author’s main motivation to use UML as modelling and specifica-
tion language was to integrate into their sponsor’s development toolchain. In [4] an-
other approach is presented, that aims at efficient integration into the product
development cycle. For that purpose Matlab/Simulink is used for system modelling.
Both approaches provide semi-automatic fault tree synthesis for reliability assess-
ment. In [6] Grunske and Kaiser present an approach that offers the possibility for
automatic fault tree generation by providing a special Transformation Notation be-
tween interacting components. The state space explosion problem, however is not
countered following above presented approaches.

In [11] a method is presented that relieves the problem of state space explosion by
combining formal and informal techniques. Amari et al. [5] propose a method to ana-
lyze dynamic fault trees in order to find the best strategy for avoiding or minimizing
the state space explosion problem. The problem of efficient integration into the prod-
uct development cycle, however is not solved following these methods.

In contrast to these approaches, we presented GTEFT in [2]. GTEFT is an ap-
proach that solves both of above mentioned challenges. To do so, we combine simula-
tive and analytic techniques. GTEFT makes use of a COTS GUI (Matlab/Simulink)
for efficient integration into the product development cycle. For dependability evalua-
tion GTEFT makes use of classical Markov theory. The problem of state space explo-
sion is avoided by means of a dependability module that uses locality traversing.
GTEFT not only allows to derive reliability figures for a given system architecture
automatically. It also generates and analyses all failure sequences possible in a given
system. New system development or system optimisation is thus strongly supported.

Voting strategies are a central part of today’s safety related systems. In general, vot-
ing strategies, and thus voting decisions, can be classified as exact, or probabilistic.
The distinction between probabilistic and exact voting decisions depends on the un-
derlying fault-model. If the fault-model contains complex faults like conspiracy sce-
narios, then every voting strategy can be corrupted and exact voting decisions become
impossible.

For safety-related systems the question whether a voting strategy can guarantee ex-
act decisions for a reasonable fault-model is crucial.

On the other hand, the questions whether probabilistic voting decisions can be ap-
plied, and what error-probabilities are acceptable, depend on the system under inves-
tigation. In some cases probabilistic voting decisions are acceptable as a last resort to
make best-effort decisions in the presence of severe fault scenarios. If the system and
consequently the voter output has a safe state, it is advisable to vote ambiguous input
signal combinations to the safe-state signal.

In this paper we present a way to derive probabilistic voting strategies with GTEFT.
Given a probabilistic fault model and a communication model, the voting step is for-
mally stated as a maximum-likelihood estimation of the correct input signal. This es-
timation can then be exploited in order to develop a suitable voting strategy.

2. Signal Voting

We show the usefulness of exhaustive fault-state-space enumeration in the context of
the generation and analysis of voting strategies. The necessity of voting arises in re-
dundant systems, when input signals are transmitted over several independent com-
munication channels. Ultimately, the redundant communication signals have to be
voted into one authoritative signal that drives an actuator.

We state the voting problem as a channel-decoding problem as follows:

source signal

channel 1

voter
VS

C1

C2

Ck

channel 2

channel k

A source signal S is generated by a sensor, by manual input or by an automated
control system and has to be transmitted to an actuator which reacts upon the value of
the signal. In order to achieve fault-tolerance, the source signal S is split and commu-
nicated redundantly over k independent communication channels. The outputs of
these channels are denoted C1 … Ck and are processed by a voter which generates an
output V. In the fault-free case all signals S, C1 … Ck and V agree. We assume that
faults can affect the communication channels, such that the voter input signals C1 …
Ck can differ from S. In this case the voter has to make its decision based on faulty
input data. The voter decision is correct if the value of the output signal V is identical
to S. A voting strategy is a function V(C1 , …, Ck) that maps all possible input signal
values to a voted output signal.
We classify the voting decisions for a given input signal combination C1 , …, Ck as
follows:

• exact voting decisions: The value of the source signal S can be inferred with
absolute certainty from the voter input. This means that no fault-combination
will cause the voting strategy to make a wrong decision.

• Probabilistic voting decisions: The combination of input signals does not
allow to infer the correct source signal with absolute certainty. Based on the
values of the input signals, however, the correct value of the source signal
can be reconstructed with a high probability. The decision involves an error-
probability which should be small.

Note that even in the case of probabilistic voting decisions, the voting strategy re-
mains a deterministic function.

The distinction between probabilistic and exact voting decisions depends on the
underlying fault-model. If the fault-model contains complex faults like conspiracy
scenarios between independent communication channels, then every voting strategy
can be corrupted and exact voting decisions become impossible. Conversely, by add-
ing redundant communication channels the voting strategy can be made more robust
to communication faults and more combinations of input signals can be voted by an
exact voting decision.

In the following we present a general approach that employs exhaustive fault-state-
space exploration to automatically generate voting strategies for a given system archi-
tecture. For every input-signal combination an optimal voting decision is found. Fur-
thermore, for every voting decision we derive whether the decision is exact or calcu-
late the conditional probability of the voting decision being correct given the correct
value of the source signal.

3. System Description

We present a simple system architecture as a case study for constructing and analyz-
ing the voting strategy. The example was chosen to be simple enough for an exhaus-
tive treatment, yet to contain the key elements and features of a real-world system.

Vcc2

Vcc1

switch1

switch2

switch3

connector1

connector2

cable11
cable12
cable13

cable21
cable22
cable23

system_bus

voter1

voter2

voter1

voter2

V1

V2

The system has a typical dual-channel architecture as is frequently employed in X-by-
wire applications. A switch unit generates the source signal from a mechanical input
by an array of three redundant switches. The switches have normally-closed (NC)
contacts, the switch unit has redundant power supply. The three redundant signals
from the switches are transmitted to two independent actuators, which react upon the
signals after a voting decision has been made. The input stages of the voters are as-
sumed to have pull-down resistors so that open input lines are read as logical 0. The
independent actuators also communicate over a system bus and transmit their individ-
ual input signal over the system bus to each other. Hence, the voter receives 6 input
signals: Three input signals S1, S2, S3 directly from the switch unit and three signals
R1, R2, R3 relayed from the peer voter.

For the system we consider the following fault model:
fault identifier fault description failure-rate

[fit]

vcc1_down voltage supply from channel one
insufficient 10

vcc2_down voltage supply from channel two
insufficient 10

switch1_stuck_open the switch has always
disconnected terminals 4

switch1_stuck_closed the switch has always
connected terminals

1

switch2_stuck_open … same for other switches 4
switch2_stuck_closed 1
switch3_stuck_open 4
switch3_stuck_closed 1

connector1_disconnected the connector1 disconnects all
cables 5

connector2_disconnected the connector2 disconnects all
cables 5

cable11_disconnected cable11 is open 5
cable12_disconnected cable12 is open 5
cable13_disconnected cable13 is open 5
cable21_disconnected cable21 is open 5
cable22_disconnected cable22 is open 5
cable23_disconnected cable23 is open 5

The failure rates are stated in fit, i.e. failures / 109 hours of operation. All faults are
assumed to be independent and to have exponential lifetime distributions. Obviously
stuck_open and stuck_closed failure modes are mutually exclusive.

Since the system architecture and the fault-model were simplified to allow a self-
contained and comprehensive presentation, we conclude with some comparative re-
marks on real-world applications:

Usually a sensor unit should have diverse sensors and generate dynamic signals
which can easily be checked for validity. The fault model for a real system must be
developed systematically by an FMEA (failure mode and effect analysis) of the sys-
tem and all its components. We have omitted system-bus failures. Since the system-
bus communication will be protected by CRC-codes, communication errors will be
detected with a high probability. The voter would then have to process detectably un-
available signals at its input. Though this poses no conceptual problem, it increases
the set of possible input combinations. Shorted communication lines were also omit-
ted.

4. Automatic Generation of Voting Strategies

In order to construct a voting strategy, we explore the failure-state-space exhaustively
and analyse how the different failure-scenarios affect the communication of the
source signal to the voter input. This allows to determine which failure combinations
can affect the communication in such a way that a given input signal combination ar-
rives at the voter.

We have presented efficient methods for enumerating the failure states and calcu-
lating their corresponding time-dependent probabilities in [2]. The method is based on

a depth-first exploration of all possible component-fault-sequences beginning from
the global intact state, where all components are intact.

Vcc1_down

Vcc2_down

switch1_stuck_open

switch1_stuck_closed

The diagram shows a part of the generated state space. Nodes represent failure states,
edges represent component faults and are labelled with the fault identifier. By replac-
ing the edge labels with the associated failure rates, the event graph can be analysed
as a Markov-Chain to calculate the state probabilities.

Brute-force attempts at exhaustive state-space exploration suffer from the problem
of state-space explosion. It is necessary to define reasonable truncation criteria where
the exploration of further fault-events is aborted. The following truncation criteria are
useful:

• If we reach a failure state where the continued operation of the system be-
comes impossible, we can truncate the depth-first search, because the system
will have to be repaired immediately and therefore will not encounter further
faults before the repair.

• It is reasonable to limit the length of considered fault-sequences. This is pos-
sible because long fault-sequences have small probabilities and can therefore
be neglected in the sense of a rare-event-approximation. Also to meet a
specified safety and integrity level it suffices to consider fault sequences up
to a required length.

With these truncation criteria it is possible to analyse a realistic fault model with sev-
eral hundred single component faults up to a reasonable search depth.

For the example model we have analyzed all fault-sequences of length up to three
and calculated their time-dependent probabilities. What we get from this analysis is a
set of fault scenarios F = {f1, f2, …, fn} and their associated probabilities P(f1), P(f2),
… P(fn). Since X-by-wire systems usually have to survive a given mission time with-
out repair, the probabilities P(fi) are calculated for the time at the end of the mission
assuming that all components were intact at the beginning of the mission and that
there was no repair during the mission. Reasonable mission times can be inspection
periods, maintenance periods or for non-safety-critical systems warranty periods. For
the purpose of this study we have chosen a mission time of 2 years of continued op-
eration.

Note that the correct procedures for calculating the probabilities P(fi) depend on
the system under investigation. Alternative methods and assumptions for calculating
P(fi) can be perfectly suited for other systems and do not affect the following proce-
dure for constructing voting strategies.

Given the set of considered fault scenarios F and the associated probabilities P(fi),
the voting strategy is constructed as described in the following pseudo code:

Initialize the following array data-structures to zero:
n[s, C1, …, Ck]
p[s, C1, …, Ck]
// traverse fault scenarios
For all fault scenarios f in F
 {
 For all values s of the source signal
 {
 Calculate the input signal combination
 (C1, …, Ck) to the voter, resulting from
 f and s.
 increment n[s, C1, …, Ck] by 1
 increment p[s, C1, …, Ck] by P(f)
 }
 }
// output voting strategy
For every input signal combination (C1, …, Ck)
 {
 if (0 < n[s, C1, …, Ck]
 and for all t != s: 0 == n[t, C1, …, Ck]
)
 {
 The exact voting decision is s
 }
 else if (for all t != s:
 p[t, C1, …, Ck] < p[s, C1, …, Ck]
)
 {
 The probabilistic voting decision is s
 }
 else
 {
 No voting decision possible
 }
 }

The values of the arrays can be readily interpreted:

• n[s, C1, …, Ck]
represents the number of considered fault scenarios that cause the input sig-
nal combination C1, …, Ck to appear at the voter input given the condition
that s is the correct input signal. This is used to make exact voting decision
by ruling out all possible source signal values but one.

• p[s, C1, …, Ck]
is the conditional probability that the input signal combination C1, …, Ck ap-
pears at the voter input given the condition that s is the correct input signal.
This is used to make probabilistic voting decisions by maximum likelihood
estimation of the true source signal value. This maximum likelihood decision
is optimal, if we make no a priori assumptions on the probability of the
source signal values.

The above procedure includes the possibility that for a given input combination C1,
…, Ck to the voter no well-justified voting decision can be made. This can be the case
if:

• The input combination C1, …, Ck does not arise for any source signal s and
any considered fault scenario f.

• The input combination C1, …, Ck is equally likely for different values of the
source signal. This can occur if the system architecture shows a certain de-
gree of symmetry.

If no voting decision can be made, we recommend to refine the fault model or to set
the voter output to a safe state for unresolvable voter inputs.

For the example system model we show the complete voting table. Since the voters
are symmetric their voting strategies will be identical up to the naming convention of
the input signals. The constructed voting table can easily be coded into software or
hardware for a real system implementation.

The analysis has been explicitly carried out for first-fault scenarios, double-fault sce-
narios and triple-fault scenarios separately.

For the source signal the signal values 0 and 1 have the following interpretation:
0: button released, i.e. switches closed
1: button applied, i.e. switches open

For the communication signals si, ri the values 0 and 1 have the following interpreta-
tion:
0: signal from switch unit connected to ground.
1: signal from switch unit connected to Vcc.

The following values are reported in the table:
n(0) corresponding to n[0, C1, …, Ck]
n(1) corresponding to n[1, C1, …, Ck]
p(0) corresponding to p[0, C1, …, Ck]
p(1) corresponding to p[1, C1, …, Ck]

The column ‘exact’ marks all exact voting decisions with the label ‘exact’ and all
probabilistic decisions with ‘-‘.

Note in interpreting the n(0), n(1) values that our implementation counts all permuta-
tions of a fault sequence individually.

voter input single component fault scenarios double component fault scenarios triple component fault scenarios
s1 s2 s3 r1 r2 r3 V n(0) p(0) n(1) p(1) exact n(0) p(0) n(1) p(1) exact n(0) p(0) n(1) p(1) exact
0 0 0 0 0 0 0 1 0 13 1,26E-03 exact 4 3,83E-08 169 1,26E-03 - 178 3,84E-08 1975 1,26E-03 -
1 0 0 0 0 0 1 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
2 0 0 0 0 1 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
3 0 0 0 0 1 1 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
4 0 0 0 1 0 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
5 0 0 0 1 0 1 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
6 0 0 0 1 1 0 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
7 0 0 0 1 1 1 0 1 8,75E-05 0 exact 17 8,75E-05 0 exact 185 8,75E-05 0 exact
8 0 0 1 0 0 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
9 0 0 1 0 0 1 1 0 1 1,75E-05 exact 2 4,91E-09 17 1,75E-05 - 56 4,91E-09 179 1,75E-05 -

10 0 0 1 0 1 0 0 0 0 0 0 6 5,37E-13 0 exact
11 0 0 1 0 1 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
12 0 0 1 1 0 0 0 0 0 0 0 6 5,37E-13 0 exact
13 0 0 1 1 0 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
14 0 0 1 1 1 0 0 0 0 0 0 6 6,71E-13 0 exact
15 0 0 1 1 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
16 0 1 0 0 0 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
17 0 1 0 0 0 1 0 0 0 0 0 6 5,37E-13 0 exact
18 0 1 0 0 1 0 1 0 1 1,75E-05 exact 2 4,91E-09 17 1,75E-05 - 56 4,91E-09 179 1,75E-05 -
19 0 1 0 0 1 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
20 0 1 0 1 0 0 0 0 0 0 0 6 5,37E-13 0 exact
21 0 1 0 1 0 1 0 0 0 0 0 6 6,71E-13 0 exact
22 0 1 0 1 1 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
23 0 1 0 1 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
24 0 1 1 0 0 0 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
25 0 1 1 0 0 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
26 0 1 1 0 1 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
27 0 1 1 0 1 1 0 1 7,00E-05 0 exact 15 7,00E-05 2 3,07E-10 - 129 7,00E-05 32 3,07E-10 -
28 0 1 1 1 0 0 0 0 0 0 0 6 6,71E-13 0 exact
29 0 1 1 1 0 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
30 0 1 1 1 1 0 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
31 0 1 1 1 1 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
32 1 0 0 0 0 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
33 1 0 0 0 0 1 0 0 0 0 0 6 5,37E-13 0 exact
34 1 0 0 0 1 0 0 0 0 0 0 6 5,37E-13 0 exact
35 1 0 0 0 1 1 0 0 0 0 0 6 6,71E-13 0 exact
36 1 0 0 1 0 0 1 0 1 1,75E-05 exact 2 4,91E-09 17 1,75E-05 - 56 4,91E-09 179 1,75E-05 -
37 1 0 0 1 0 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
38 1 0 0 1 1 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
39 1 0 0 1 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
40 1 0 1 0 0 0 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
41 1 0 1 0 0 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
42 1 0 1 0 1 0 0 0 0 0 0 6 6,71E-13 0 exact
43 1 0 1 0 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
44 1 0 1 1 0 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
45 1 0 1 1 0 1 0 1 7,00E-05 0 exact 15 7,00E-05 2 3,07E-10 - 129 7,00E-05 32 3,07E-10 -
46 1 0 1 1 1 0 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
47 1 0 1 1 1 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
48 1 1 0 0 0 0 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
49 1 1 0 0 0 1 0 0 0 0 0 6 6,71E-13 0 exact
50 1 1 0 0 1 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
51 1 1 0 0 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
52 1 1 0 1 0 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
53 1 1 0 1 0 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
54 1 1 0 1 1 0 0 1 7,00E-05 0 exact 15 7,00E-05 2 3,07E-10 - 129 7,00E-05 32 3,07E-10 -
55 1 1 0 1 1 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
56 1 1 1 0 0 0 0 1 8,75E-05 0 exact 17 8,75E-05 0 exact 185 8,75E-05 0 exact
57 1 1 1 0 0 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
58 1 1 1 0 1 0 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
59 1 1 1 0 1 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
60 1 1 1 1 0 0 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
61 1 1 1 1 0 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
62 1 1 1 1 1 0 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
63 1 1 1 1 1 1 0 5 4,02E-04 0 exact 23 4,02E-04 0 exact 65 4,02E-04 6 5,37E-15 -

5. Analysis of the Voting Strategy

The derived voting strategy can make exact voting decisions for all single component
fault scenarios. This means that no single fault from our fault-model can defeat the
voting strategy.

In the columns for double component fault scenarios we find some input signal com-
binations were the voting strategy cannot make exact decisions. This could be ex-

pected, since the degree of redundancy of our system is two with respect to power
supply and connectors and the degree of redundancy is three with respect to switches.
By probabilistic voting the voter can, however, make a best-effort decision for all in-
put signal combinations.

Note that the voting strategy makes exact decision, where a simple majority voter
would have failed: In line number 24 the majority of four input signals has value 0 in-
dicating that the button of the switch unit is applied. The exact voting result, however,
is 0, indicating a released button.

The columns for the triple component fault scenarios show that the voter can still
make exact decisions for half the input signal combinations.

The error probability of the derived voting strategy can be analyzed by summing up
the probability of all states were the voter makes wrong decisions for either value of
the source signal. For the example model the time-dependent error probabilities are
plotted in the following diagram. The voter output shows a bias towards the applied
switch position (voter output v = 1). Obviously there are more fault combination
which simulate an applied switch than a released switch. An inspection of the critical
fault sequences shows that identical stuck-at faults at two switches defeat the voting
strategy. In addition, the voter_stuck_at_1 error can also be caused by double faults in
the power supply (Vcc1_down, Vcc2_down) or in the two connectors (connec-
tor1_disconnected, connector2_disconnected).

Replacing the normally-closed switches by normally-open switches would allow to
shape the error probabilities.

Since the error-probabilities approach 0 for short mission times, the total failure
rate of the system can be kept acceptably low by enforcing short inspection and main-
tenance intervals to detect and remove first component faults.

1,0E-12

1,0E-11

1,0E-10

1,0E-09

1,0E-08

1,0E-07

1,0E-06

1,0E-05

0 2 4 6 8 10 12

operating time [years]

P(voter_stuck_at_1)

P(voter_stuck_at_0)

6. Conclusion

This paper presented a practical approach to develop and assess voting strategies that
make use of probabilistic voting decisions. For safety-related systems the question
whether a voting strategy can guarantee exact decisions for a reasonable fault-model
is crucial. In systems where probabilistic voting decisions are acceptable such deci-

sions could be used, e.g. as a last resort to make best-effort decisions in the presence
of severe fault scenarios.

References

[1] M. Kucera: Drive-By-Wire Applications for future vehicles (in German). 20. Tagung Elek-
tronik im Kraftfahrzeug, Haus der Technik, Essen, Juni 2000.

[2] M. Kucera, H. Mauser: Semi-Automatic Reliability Assessment of Safety Related Embed-
ded Systems. Proceedings of the 18th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, 2006. 13-15 Nov. 2006. Page(s): 495 - 502

[3] Pai, G.J.; Dugan, J.B.; Automatic synthesis of dynamic fault trees from UML system mod-
els. Proceedings of the 13th International Symposium on Software Reliability Engineering,
ISSRE 2002, 12-15 Nov. 2002 Page(s):243 – 254.

[4] Papadopoulos, Y.; Grante, C.; Techniques and tools for automated safety analysis & deci-
sion support for redundancy allocation automotive systems. Proceedings of the 27th Annual
International Computer Software and Applications Conference, COMPSAC 2003. 2003. 3-
6 Nov. 2003 Page(s):105 – 110

[5] Amari, S.; Dill, G.; Howald, E.; A new approach to solve dynamic fault trees. Proceedings
of the annual Reliability and Maintainability Symposium, 2003. 27-30 Jan. 2003
Page(s):374 - 379

[6] Grunske, L.; Kaiser, B.; Automatic generation of analyzable failure propagation models
from component-level failure annotations. Fifth International Conference on Quality Soft-
ware, 2005. (QSIC 2005). 19-20 Sept. 2005 Page(s):117 – 123

[7] Allan Johnson, Miroslaw Malek: Survey of Software Tools for Evaluating Reliability,
Availability, and Serviceability. ACM Computing Surveys, Vol. 20, No. 4, December 1988

[8] Sheldon, Greiner, Benzinger: Specification, Safety and Reliability Analysis Using Stochas-
tic Petri Net Models. Proceedings of the 10th International Workshop on Software Specifi-
cation and Design (IWSSD'00), 2000, Page 123

[9] Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, Richard Washington: Dynamic Pro-
gramming for Structured Continuous Markov Decision Problems. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence, 2004, pages 154-161

[10] Frederick T. Sheldon, Kshamta Jerath: Assessing the Effect of Failure Severity, Coincident
Failures and Usage-Profiles on the Reliability of Embedded Control Systems. 2004 ACM
Symposium on Applied Computing, SAC’04 March 14-17, 2004, Nicosia, Cyprus, pages
826-833

[11] D. Karlsson, P. Eles, Z. Peng: Validation Of Embedded Systems Using Formal Method
Aided Simulation. Proceedings of the 8th Euromicro Conference on Digital System Design,
2005. 30 Aug.-3 Sept. 2005 Page(s):196 – 199

