
TMO Structuring of a Networked System for
Seamless Streaming and Tiled Display of

High-Definition Movies

Sheng Liu1, K.H. (Kane) Kim1, Sung-Jin Kim1, Zhen Zhang1,
Jongho Nang2, Ki-Seok Choi2, and Yongbin Kang3

1 Dream Lab, EECS dept., University of California, Irvine

Irvine,CA 92697, USA
{shengl, khkim, sungjink, zhen}@uci.edu

2 Sogang University, Seoul, Korea
{jhnang}@sogang.ac.kr

3 Institute for Graphic Interface, Seoul, Korea

Abstract. This paper presents a global-time based approach for realizing high-
definition video streaming and highly synchronous tiled display on multiple
PC-oriented display nodes. The challenge is to minimize distortion of the
temporal relationship among the fragments of video frames played across the
display devices. The distortion arises due to the jitter in message transmission
delay and the considerably autonomous operations of display nodes. The
global-time based coordination approach looked promising as a cost-effective
approach for facilitating highly synchronous tiled display and minimizing the
collisions between data transmission activities and tile preparation and display
activities. The Time-triggered Message-triggered Object (TMO)
programming tool-kit, which enables construction of scalable distributed real-
time computing programs in the form of networks of high-level, easily
analyzable, real-time objects was used because it facilitates efficient practice of
the global-time based approach. The results of an experimentation of the
approach are also presented.

Keywords: real time, global time, multimedia, HD video streaming, tiled
display, jitter, TMO, time triggered, message, object, middleware, distributed,
programming, intra-stream synchronization.

1 Introduction

The approach of utilizing PCs, each equipped with a display device, to achieve a large
tiled display of a very high-resolution image has been gaining popularity in the past
decade. Initially, systems capable of tiled display of static images were built but lately,
attempts to handle video-movies started. Video frames forming a movie need to be
streamed in timely manners and displayed across multiple display nodes in
sufficiently synchronous manners. To achieve high-level quality of services (QoSs),
high-precision synchronizations of video streams across multiple display nodes is

important. More precisely, the accurate maintenance of the temporal relationship
among media units (MUs) such as audio packets and segments of video frames
without the loss of RT performance is required [1, 2, 16]. In other worlds, all
segments from the same video frame must be displayed “with a high degree of
synchrony”, i.e., as closely in the time domain as possible. Each video frame,
composed of the tile-segments, and corresponding audio packets must also be
presented with a high degree of synchrony. Another challenge is to reduce the
amount of efforts for designing and implementing the complex application that
performs RT video streaming from the source such as a camera, Internet, and a hard
disk to the multiple display nodes and high-quality tiled display of a movie.

In this paper, the principle of global-time-based coordination of distributed actions
(TCoDA) [14] is exploited to form a fundamental and promising approach for meeting
the aforementioned QoS (quality-of-service) requirements. As an approach for
significantly reducing the design and implementation efforts from that required under
the widely practiced low-level programming schemes involving manipulations of
threads, thread-priorities, and sockets, the Time-triggered Message-triggered Object
(TMO) programming scheme was adopted. The scheme backed by an appropriate
tool-set (http://dream.eng.uci.edu/TMOdownload/), facilitates easy practice of object
and component-oriented (OCO) real-time (RT) distributed programming [3, 5, 6, 7, 8,
9].

To make this paper self-contained, a brief overview of the TMO programming
scheme and DirectShow are introduced in Section 2. The TCoDA-based approach
for realizing high-quality real-time video streaming services over a tiled display
system is discussed in Section 3. The TMO-based implementation for achieving the
minimal loss of the temporal relationship among the video data units at all sink nodes
are presented in Section 4. Performance measurements discussed in Section 5 have
shown that TCoDA is a fundamental and promising approach for distributed real-time
multimedia computing. The paper concludes in Section 6.

2 Backgroud

2.1 TMO Scheme

TMO is a natural, syntactically minor, and semantically powerful extension of
conventional object structure. As depicted in Fig. 1, the basic TMO structure consists
of four parts:

ODS-sec: Object-data-store section. This section contains the data-container
variables shared among methods of a TMO. Variables are grouped into ODS
segments (ODSSs) which are the units that can be locked for exclusive use by a TMO
method in execution. Access rights of TMO methods for ODSSs are explicitly
specified and the execution engine analyzes them to exploit maximal concurrency.

EAC-sec: Environment access capability section. These “gate objects” provide
efficient call-paths to remote object methods, real-time multicast and memory
replication channels (RMMCs) (Kim et al. 2005), and I/O device interfaces.

Fig. 1. Basic TMO Structure ([5])

SpM-sec: Spontaneous method section. These are time-triggered methods that
become alive at specified times.

SvM-sec: Service method section. These provide service methods which can be
called by other TMOs.

Major features are
summarized below.
1) Distributed

computing
component: The
TMO is a
distributed
computing
component and
thus TMOs
distributed over
multiple nodes
may interact via
remote method
calls. To
maximize the
concurrency in
execution of
client methods in
one node and
server methods in
the same node or

different nodes, client methods are allowed to make non-blocking service
requests to service methods. In addition, TMOs can interact by exchange of
messages over Real-time Multicast and Memory-Replication Channels (RMMCs)
[12]. In any place within a TMO, all time references are global time references
except where specified explicitly and differenetly.

2) Clear separation between two types of methods: The TMO may contain two
types of methods, time triggered (TT) methods (spontaneous methods or SpMs),
which are clearly separated from the conventional service methods (SvMs). The
SpM executions are triggered when the RT clock reaches time values determined
at the design time. On the contrary, SvM executions are triggered by calls from
clients that are transmitted by the execution engine in the form of service request
messages. Moreover, actions to be taken at real times, which can be determined
at the design time, can appear only in SpMs.

Triggering times for SpMs must be fully specified as constants during the
design time. Those RT constants as well as related guaranteed completion times
(GCTs) of the SpM appear in the first clause of an SpM specification called the
autonomous activation condition (AAC) section. An example of an AAC is “for
t = from 10 am to 10:50 am every 30 min start-during (t , t + 5 min) finish-by t
+10 min” which has the same effect as {“start-during (10 am, 10:05 am) finish-
by 10:10 am”, “start-during (10:30 am, 10:35 am) finish-by 10:40 am”}.

Executions of SpMs cannot be disturbed by the executions of SvMs because
of the execution rule adopted and called the basic concurrency constraint (BCC).

2.2 RMMC

In the TMO programming model, the RMMC scheme is an alternative to the remote
method invocation for facilitating interactions among TMOs. Use of RMMCs tends
to lead to better efficiency than the use of traditional remote method invocations does
in many applications, especially in the area of distributed multimedia applications
which involve frequent delivery of the same data to more than two participants
housed in different nodes.

In order for methods in a TMO to send and receive messages over RMMCs, the
TMO must contain access gates for the RMMCs in its ODS, i.e., as its data members.
For example, "access gates" for two RMMCs, RMMC1 and RMMC2, can be declared
as data members of each of the three remotely cooperating RT objects, TMO1, TMO2,
and TMO3, during the design time. Once TMO1 sends a message over RMMC1,
then the message will be delivered to the buffer allocated inside the execution engines
for each of the three RT objects. Later during their execution, certain methods in
TMO2 and TMO3 can pick up those messages by sending the requests through their
RMMC1 gates to their execution engines. An RMMC can be implemented over point-
to-point networks as well as over broadcast-enabled bus networks.

2.3 Non-blocking Buffer (NBB)

The NBB mechanism [18] facilitates communication of event messages from a
producer to a consumer without causing any party to experience blocking. Therefore,
its application scope includes all conceivable producer-consumer situations.
Experiments involving application of this mechanism in building middleware as well
as real-time application software confirmed the usefulness of the NBB mechanism.

The producer thread, PROD, owns the circular buffer and can write into the buffer
at any time without experiencing blocking and thus is a non-blocking writer of the
buffer. There are also two counters: the update counter (UC) and the acknowledgment
counter (AC), also called the ack-counter. The two counters are used in ways which
ensure that PROD and CONS always access different slots in the circular buffer.

2.4 DirectShow

DirectShow is a multimedia application library produced by Microsoft. It provides a
set of APIs which defines various operations for multimedia tasks. Within the
framework of DirectShow, the processing of a multimedia task can be divided into a
set of steps such as reading the media source, encode/decode, and playback. Each of
these steps can be accomplished by a module called a filter. Filters can be connected
together through their “input/output” pins so as to form a filter graph that can perform
a target multimedia task.

3 Global-Time-based Approach for HD Video Streaming and
Tiled Display

A tiled display system [4, 15, 17] is a cost-effective approach for realizing a large
display wall. The combined resolution of a tiled display can easily surpass the
resolution of a HD video stream. To utilize a tiled display as an RT HD video stream
display, the underlying software system must be able to control the graphic display
output of each node to be synchronized so that the user experience a temporally
consistent and contextually unified video stream.

Due to the jitters in the network, each video frame in a stream may arrive or may
be picked up in different nodes at different times. Also the decompression time taken
may be different in different display nodes. Such discrepancies among display nodes
may introduce out-of-sync display of different segment of the same video frame. One
may make all display nodes wait for a sync message after each decompression process
and update the display screen upon receiving the message. However this sync
message may arrive or may be picked up in different nodes at a noticeably different
times.

With the presence of the global time base of a sub-millisecond precision, one can
explain the TCoDA [14], i.e., design all display nodes to render their parts of the
video frame at the same instance of global time, e.g., at the target display time = video
frame generation + display delay constant. Different applications of the approach
have been studied and proof-of-concept systems have been developed [10, 11, 13].

4. TMO-based HD Tiled Display System

4.1. System Architecture

A high-definition video streaming
service on a tiled display system
consists of one master node and
multiple worker nodes, all of
which are connected through a
LAN. The function of the master
node is to retrieve encoded
multimedia data from a media
source and stream them to the
workers with playback timing
information embedded. It also
takes the responsibility of audio
stream playback. The function of
a worker is to receive encoded
video frames from the
communication channel, decode

them, and display its assigned tile-segments of video frame that are located on the
basis of its unique Worker ID (WID). Fig. 2 illustrates the system architecture.

4.2. Design of the Master Node

The master node includes two software modules: the master filter graph and the
master TMO, which are shown in Fig. 3. The master filter graph is an application
program built by interconnecting DirectShow library module provided by Microsoft.
Each library module is called a filter. This application runs whenever TMOSM
running at the top priority-level yields a time-slice of the machine to non-TMO
software, which occurs every 3rd time-slice arrives. In the master filer graph, a built-in
source filter is used for retrieving compressed audio packets and video frames from a
media source. Such a media source can be a media file in the local disk or an URL
containing a media stream. In the case of audio packets, they are forwarded by the
source filter to a local audio decoder filter for decoding since the audio stream will be
played back in the master node. A customized grabber filter is used to grab
uncompressed audio packets out of the master filter graph and put them into an output
queue. Another grabber filter is used to pull compressed video frames out of the
master filter graph into a separate output queue. Inside a grabber filter, a callback
function is invoked whenever a media frame becomes available from the output pin of
an upstream filter. The audio grabber filter is connected to the upstream audio
decoder filter to grab uncompressed audio packets for local playback while the video
grabber filter is directly connected to the source filter to grab compressed video
frames for multicast delivery. The output pin of each grabber filter is connected
with the input pin of a customized flow control filter, which controls the retrieving
speed of the source filter (e.g. 30 frames per second); otherwise, the source filter reads
media units from the media source as quickly as possible, which necessitates a large
buffer to hold all retrieved media data before they can be played back or delivered to
worker nodes.

Fig. 3. System Components

Another software module in the master node is the Master TMO, which handles the
task of playing back the audio stream and multicasting video stream to all worker
nodes. Audio packets and video frames are obtained from the grabber filters in the
maser filter graph and need to be picked up by the SpMs in the Master TMO. The
grabber filters and the SpMs run in the different thread contexts. An NBB is used to
let the grabber filters deposit media data and let the Master TMO SpMs in non-
blocking manners. Each NBB is wrapped as a special ODSS in the Master TMO,
and its handle is sent to the master filter graph during the system initialization. Two
types of ODSS’s, namely AudioPacketODSS and VideoStreamODSS are constructed.
The audio grabber filter, as the writer of the audio NBB, inserts uncompressed audio
packets into AudioPacketODSS. Similarly, VideoStreamODSS encapsulates an
NBB for holding compressed video frames supplied by the video grabber filter.

Besides two ODSS’s, the Master TMO contains three SpMs. Audio SpM is used to
playback the audio stream. It periodically reads an uncompressed audio packet from
AudioPacketODSS and plays it back through Win32 DirectSound APIs. Since an
audio packet is played back at the target instant of global time at the beginning of
each round of Audio SpM, the intra-stream synchronization jitter is minimized.

Send SpM periodically reads a video frame out of VideoStreamODSS and
multicasts it to all workers. In our design, its iteration rate is set to be the same as the
frame rate of the media stream being rendered. For example, it runs every 33ms,
which means it sends 30 video frames per second. To facilitate video frames to all
workers, a video streaming RMMC is constructed. A gate to this RMMC is
instantiated during the initialization of the Master TMO. When Send SpM obtains a
video frame, it invokes RMMC API Announce() to multicast it out. Since the sizes of
compressed video frames are not a constant while an RMMC requires each packet be
of fixed size, a video frame needs to be packetized into RMMC packets before being
sent out.

The third SpM, Control SpM, runs at the lowest frequency to take user’s
commands and multicast corresponding control messages, such as “PLAY” and
“STOP”, to all workers.

4.3. Design of Worker Nodes

Receive SpM in a worker node receives RMMC packets from the video streaming
RMMC by calling RMMC API NonBlockingReceiver(), and assembles them if they
belong to the same video frame. Then, a complete video frame is inserted into
VideoStreamODSS, which is of the NBB type.

Video frames in VideoStreamODSS are read by a customized source filter, NBB
Reader Source Filter, in the worker filter graph. Its output pin is connected to the
input pin of the video decoder filter. After being decoded, an uncompressed video
frame is sent to the video grabber filter. Through the callback function inside the
video grabber filter, an uncompressed video frame, the part of a video frame
corresponding to the worker’s WID, is inserted into the VideoFrameODSS which is
of the NBB type. A null render filter is added at the end of the worker filter graph by
being connected to the output pin of the video grabber filter to complete the
connection of the worker filter graph. Note that there is no need to use a flow control

filter on the worker side since the master node has already controlled the media
delivery rate.

Similar to Audio SpM, Video SpM periodically gets a video-fame-fragment from
VideoFrameODSS and invokes Win32 DirectDraw API to play it back.

4.4. Synchronous Play of the Video Stream in All Worker Nodes

Synchronous play of video stream in all worker nodes is subject to two requirements:
• The play of the video stream starts with a minimal deviation in the time

dimension in all worker nodes.
• Video frames are played back with the same rate in all worker nodes.

As mentioned in Section 4.3, periodical executions of Video SpMs in the Worker
TMOs meet the second requirement.

Both the master and workers start with certain internal initialization such as
starting TMO engine, filter graph construction, initialization of audio/video devices,
and registration of SpM and the TMO.

Once these internal initializations are done, Control SpM in the master node waits
for user’s inputs. After selecting a media source, the user inputs a “PLAY” command.
When Control SpM receives this command, it sends a “Play” message to all worker
nodes through a control RMMC. Thereafter, it starts the master filter graph and
cosequentially, video frames are fetched from the media source and sent to worker
nodes through the video streaming RMMC. When a worker node receives the “Play”
message through Receive SpM, it starts the worker filter graph and begins to receive
video frames from the master node, decode, and buffer them, but not play them back.
The purpose for buffering is obvious, to smooth the transmission jitter. The “Play”
message also contains an Initial Play Time (IPT) to dictate a moment at which all
workers shall begin video playback. The value of IPT is saved into the CMD_ODSS
in the worker TMO. Video SpM reads its value from the CMD_ODSS and compares
it with the current time at the beginning of each round. If IPT is larger than the
current time, it fetches the first video frame from VideoFrameODSS to start play.

One critical point is that the Master TMO needs to choose an appropriate IPT
before sending out the “PLAY” message so that the Video SpMs on all workers may
begin video-playback with a minimal deviation in the time dimension. It means that at
least one frame-fragment should be available in the buffer within VideoFrameODSS
when IPT arrives. Hence, the duration D from the moment at which a “PLAY”
commend is issued, which is denoted as T, to IPT should be no less than the duration
from T to the time at which the first frame-fragment is deposited into the buffer
within VideoFrameODSS. To tolerate transmission jitters of video frames, D can be
increased so that several video frame-fragments buffer within VideoFrameODSS
when IPT arrives although it will accompany the cost of larger latency.

IPT = T + D

To play the first frame-fragment exactly on IPT, one straightforward approach is to
let Video SpM continuously compare the current time with IPT. When IPT arrives,
the first frame-fragment is played back. However, this polling approach needs to
occupy and consume CPU resource extensively only for the time comparisons. A

more cost-effecitive approach is to set IPT to the earliest starting time (EST) of the
earliest iteration of Video SpM that starts after (T + D) and then to check at the
beginning of each iteration of Video SpM if IPT is already past or not. If so, the first
frame-fragment will be played immediately. Otherwise, no playback will occur during
the current iteration of Video SpM. IPT is thus:

IPT = EST + {ceiling[(T + D) / P]} * P .

where P is the period of Video SpM. In each of the subsequent iterations, a video-
frame-fragment is again played at the beginning.

5. Performance Measurement

We ran our tiled display on a 3x3 LCD array. The configuration of each node is,
Pentium 2.4G CPU, 512M memory, and Windows XP SP2 OS. Fig. 4 gives a
snapshot of our demo.

Two performance attributes
were measured. We first
measured the difference of
playback time across all worker
nodes. In particular, a
timestamp is taken each time
DirectDraw is about to be
called to display a video-frame-
fragment. Then the playback
time difference for each video
frame is the maximum
difference across all workers.
Fig. 5 shows the difference
which can be regarded as a
measure of how well the
workers are synchronized in

playing the video. From the figure we can see that, workers’ playback times can be
pretty well synchronized for the given application. The playback time difference was
mostly less than 8ms and did not exceed.

We also measured the latency from the time when a video frame was first extracted
from the media source by the master node to the time when a fragment of the video
frame was played back by a worker node. On the master node side, a timestamp is
taken whenever a video frame is grabbed by the video grabber filter. On the other
hand, for the worker node, a timestamp is taken every time a video-frame-fragment is
to be drawn on the screen. The difference of the two timestamps corresponding to the
same video frame can be seen as the delay for processing the video frame in the
system. Fig. 6 shows that the latency is about the same for different cases of video
frames despite the fact that frames of different sizes may take different amount of
time in transmission and decoding.

Fig. 4. Snapshot of Tiled Display on LCD Array

Video Streaming Latency

0
50

100
150
200
250

0 500 1000 1500 2000 2500
Frame Index

La
te

nc
y

(m
s)

 Fig.5. Playback Time Difference Fig. 6. Transmission Latency of Video Stream

6. Conclusion

Through construction of a global-time-based TMO network, a high-quality high-
definition tiled display system was realized. This application case is one
demonstration of the global-time-based coordination of distributed actions (TCoDA)
as a fundamental and promising approach for distributed multimedia applications. It
was also a demonstration that the TMO scheme and its tool-kit enabling relatively
easy high-level programming of manipulations of global time-stamps and timely
processing of video and other multimedia data reduce the amount of efforts for design
and implementation of complex distributed multimedia applications. Our performance
measurements have indicated that the TCoDA approach realizes the minimal play
jitter in streaming and play of video data.

Acknowledgment:

The work reported here was supported in part by the NSF under Grant Numbers 03-
26606 (ITR) and 05-24050 (CNS) and under Cooperative Agreement ANI-0225642
to the University of California, San Diego for "The OptIPuter". No part of this paper
represents the views and opinions of any of the sponsors mentioned above.

References

1. J. Ayars, and et. a.l: Synchronized Multimedia Integration Language (SMIL 2.0). In:
W3C Recommendation (2001), http://www.w3.org/TR/2001/REC-smil20-20010807

2. Blakowski, G. and Steinmetz, R.: A Media Synchronization Survey: Reference Model,
Specification, and Case Studies. IEEE Journal of selected areas in communications, Vol.
14, No. 1, pp. 5-35 (1996)

3. Gimenez, G., and Kim, K.H.: A Windows CE Implementation of a Middleware
Architecture Supporting Time-Triggered Message Triggered Objects. In: Proc. IEEE CS
Computer Software & Applications Conf., Chicago, IL, pp. 181-189 (2001)

4. HIPerWall, http://hiperwall.calit2.uci.edu
5. Kim, K.H.: Object Structures for Real-Time Systems and Simulators: IEEE Computer,

Vol. 30, No.8, pp. 62-70 (1997)
6. Kim, K.H. Ishida, Masaki, and Liu, Juqiang: An Efficient Middleware Architecture

Supporting Time-Triggered Message-Triggered Objects and an NT-based Implementation.
In: 2nd IEEE CS Int'l Symp. on Object-Oriented Real-time Distributed Computing, St.
Malo, France, pp.54-63 (1999)

7. Kim, K.H.: APIs Enabling High-Level Real-Time Distributed Object Programming. IEEE
Computer, pp.72-80 (2000)

8. Kim, K.H., Liu, J.Q., Miyazaki, H., and Shokri, E.H.: TMOES: A CORBA Service
Middleware Enabling High-Level Real-Time Object Programming. In: IEEE CS 5th Int'l
Symp. on Autonomous Decentralized Systems, Dallas, pp. 327-335 (2001)

9. Kim, K.H.: Commanding and Reactive Control of Peripherals in the TMO Programming
Scheme. In: 5th IEEE CS Int'l Symp. on Object-Oriented Real-time Distributed
Computing, Crystal City, VA, pp.448-456 (2002)

10. Kim, S., Kuester, F., and Kim, K.H.: A Global-timestamp-based Approach to Construct a
Real-time Distributed Tiled Display System. In: EIST-2005 pp. 548-554 (2005)

11. Kim, S., Kuester, F., and Kim, K.H.: A Global timestamp-based Approach to Enhanced
Data Consistency and Fairness in Collaborative Virtual Environments. ACM Multimedia
System, Vol. 10, No. 3, pp. 220-229 (2003)

12. Kim, K. H., Li, Yuqing, Liu, Sheng, Kim, Moon H., Kim, Doo-Hyun: RMMC
Programming Model and Support Execution Engine in the TMO Programming Scheme.
In: 8th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, Seattle, Washington, pp. 34-43 (2005)

13. Kim, K.H., Liu, S., Kim, M.H., and Kim, D.H.: A Global-Time-Based Approach for
High-Quality Real-Time Video Streaming Services. In: 7th IEEE Int’l Symp. on
Multimedia, Irvine, CA, pp. 802-810 (2005)

14. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Pub., ISBN: 0-7923-9894-7, Boston (1997)

15. Renambot, L. and Rao, A.and Singh, R. and Jeong, B. and Krishnaprasad,N. and
Vishwanath, V. and Chandrasekhar, V. and Schwarz, N. and Spale, A. and Zhang, C. and
Goldman, G. and Leigh, J. and Johnson, A.: SAGE: the Scalable Adaptive Graphics
Environment. In: Proceedings of the Workshop on Advanced Collaborative Environments
(2004)

16. Steinmetz, R. and Engler, C.: Human Perception of Media Synchronization. Technical
Report 43.9310, IBM European Networking Center Heidelberg, Heidelberg, Germany
(1993)

17. Wallace, G., Anshus, O. J., Bi, P., Chen, H., Chen, Y., Clark, D., Cook, P., Finkelstein,
A., Funkhouser, T., Gupta, A., Hibbs, M., Li, K., Liu, Z., Samanta, R., Sukthankar, R.,
and Troyanskaya, O.: Tools and Applications for Large-scale Display Walls. Computer
Graphics and Applications, vol. 25, pp. 24–33 (2005)

18. Kim, K.H., Clomenares, J., and Rim, K.: Efficient Adaptations of the Non-blocking
Buffer for event Message Communication. In: 10th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, Santorini Island, Greece (2007)

