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Abstract. This paper presents a global-time based approach for realizing high-
definition video streaming and highly synchronous tiled display on multiple 
PC-oriented display nodes. The challenge is to minimize distortion of the 
temporal relationship among the fragments of video frames played across the 
display devices.  The distortion arises due to the jitter in message transmission 
delay and the considerably autonomous operations of display nodes.  The 
global-time based coordination approach looked promising as a cost-effective 
approach for facilitating highly synchronous tiled display and minimizing the 
collisions between data transmission activities and tile preparation and display 
activities.  The Time-triggered Message-triggered Object (TMO) 
programming tool-kit, which enables construction of scalable distributed real-
time computing programs in the form of networks of high-level, easily 
analyzable, real-time objects was used because it facilitates efficient practice of 
the global-time based approach.  The results of an experimentation of the 
approach are also presented.  
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1   Introduction 

The approach of utilizing PCs, each equipped with a display device, to achieve a large 
tiled display of a very high-resolution image has been gaining popularity in the past 
decade. Initially, systems capable of tiled display of static images were built but lately, 
attempts to handle video-movies started. Video frames forming a movie need to be 
streamed in timely manners and displayed across multiple display nodes in 
sufficiently synchronous manners. To achieve high-level quality of services (QoSs), 
high-precision synchronizations of video streams across multiple display nodes is 



important. More precisely, the accurate maintenance of the temporal relationship 
among media units (MUs) such as audio packets and segments of video frames 
without the loss of RT performance is required [1, 2, 16].  In other worlds, all 
segments from the same video frame must be displayed “with a high degree of 
synchrony”, i.e., as closely in the time domain as possible. Each video frame, 
composed of the tile-segments, and corresponding audio packets must also be 
presented with a high degree of synchrony.  Another challenge is to reduce the 
amount of efforts for designing and implementing the complex application that 
performs RT video streaming from the source such as a camera, Internet, and a hard 
disk to the multiple display nodes and high-quality tiled display of a movie. 

In this paper, the principle of global-time-based coordination of distributed actions 
(TCoDA) [14] is exploited to form a fundamental and promising approach for meeting 
the aforementioned QoS (quality-of-service) requirements. As an approach for 
significantly reducing the design and implementation efforts from that required under 
the widely practiced low-level programming schemes involving manipulations of 
threads, thread-priorities, and sockets, the Time-triggered Message-triggered Object 
(TMO) programming scheme was adopted. The scheme backed by an appropriate 
tool-set (http://dream.eng.uci.edu/TMOdownload/), facilitates easy practice of object 
and component-oriented (OCO) real-time (RT) distributed programming [3, 5, 6, 7, 8, 
9]. 

To make this paper self-contained, a brief overview of the TMO programming 
scheme and DirectShow are introduced in Section 2.  The TCoDA-based approach 
for realizing high-quality real-time video streaming services over a tiled display 
system is discussed in Section 3. The TMO-based implementation for achieving the 
minimal loss of the temporal relationship among the video data units at all sink nodes 
are presented in Section 4. Performance measurements discussed in Section 5 have 
shown that TCoDA is a fundamental and promising approach for distributed real-time 
multimedia computing. The paper concludes in Section 6. 

2   Backgroud 

2.1   TMO Scheme 

TMO is a natural, syntactically minor, and semantically powerful extension of 
conventional object structure. As depicted in Fig. 1, the basic TMO structure consists 
of four parts: 

ODS-sec: Object-data-store section. This section contains the data-container 
variables shared among methods of a TMO. Variables are grouped into ODS 
segments (ODSSs) which are the units that can be locked for exclusive use by a TMO 
method in execution. Access rights of TMO methods for ODSSs are explicitly 
specified and the execution engine analyzes them to exploit maximal concurrency. 

EAC-sec: Environment access capability section. These “gate objects” provide 
efficient call-paths to remote object methods, real-time multicast and memory 
replication channels (RMMCs) (Kim et al. 2005), and I/O device interfaces. 



Fig. 1. Basic TMO Structure ([5]) 

SpM-sec: Spontaneous method section. These are time-triggered methods that 
become alive at specified times. 

SvM-sec: Service method section. These provide service methods which can be 
called by other TMOs. 

Major features are 
summarized below. 
1) Distributed 

computing 
component: The 
TMO is a 
distributed 
computing 
component and 
thus TMOs 
distributed over 
multiple nodes 
may interact via 
remote method 
calls. To 
maximize the 
concurrency in 
execution of 
client methods in 
one node and 
server methods in 
the same node or 

different nodes, client methods are allowed to make non-blocking service 
requests to service methods. In addition, TMOs can interact by exchange of 
messages over Real-time Multicast and Memory-Replication Channels (RMMCs) 
[12]. In any place within a TMO, all time references are global time references 
except where specified explicitly and differenetly. 

2) Clear separation between two types of methods: The TMO may contain two 
types of methods, time triggered (TT) methods (spontaneous methods or SpMs), 
which are clearly separated from the conventional service methods (SvMs). The 
SpM executions are triggered when the RT clock reaches time values determined 
at the design time. On the contrary, SvM executions are triggered by calls from 
clients that are transmitted by the execution engine in the form of service request 
messages. Moreover, actions to be taken at real times, which can be determined 
at the design time, can appear only in SpMs. 

Triggering times for SpMs must be fully specified as constants during the 
design time. Those RT constants as well as related guaranteed completion times 
(GCTs) of the SpM appear in the first clause of an SpM specification called the 
autonomous activation condition (AAC) section. An example of an AAC is “for 
t = from 10 am to 10:50 am every 30 min start-during (t , t + 5 min) finish-by t 
+10 min” which has the same effect as {“start-during (10 am, 10:05 am) finish-
by 10:10 am”, “start-during (10:30 am, 10:35 am) finish-by 10:40 am”}. 



Executions of SpMs cannot be disturbed by the executions of SvMs because 
of the execution rule adopted and called the basic concurrency constraint (BCC). 

2.2   RMMC 

In the TMO programming model, the RMMC scheme is an alternative to the remote 
method invocation for facilitating interactions among TMOs.  Use of RMMCs tends 
to lead to better efficiency than the use of traditional remote method invocations does 
in many applications, especially in the area of distributed multimedia applications 
which involve frequent delivery of the same data to more than two participants 
housed in different nodes.  

In order for methods in a TMO to send and receive messages over RMMCs, the 
TMO must contain access gates for the RMMCs in its ODS, i.e., as its data members. 
For example, "access gates" for two RMMCs, RMMC1 and RMMC2, can be declared 
as data members of each of the three remotely cooperating RT objects, TMO1, TMO2, 
and TMO3, during the design time.  Once TMO1 sends a message over RMMC1, 
then the message will be delivered to the buffer allocated inside the execution engines 
for each of the three RT objects.  Later during their execution, certain methods in 
TMO2 and TMO3 can pick up those messages by sending the requests through their 
RMMC1 gates to their execution engines. An RMMC can be implemented over point-
to-point networks as well as over broadcast-enabled bus networks.   

2.3   Non-blocking Buffer (NBB) 

The NBB mechanism [18] facilitates communication of event messages from a 
producer to a consumer without causing any party to experience blocking. Therefore, 
its application scope includes all conceivable producer-consumer situations. 
Experiments involving application of this mechanism in building middleware as well 
as real-time application software confirmed the usefulness of the NBB mechanism. 

The producer thread, PROD, owns the circular buffer and can write into the buffer 
at any time without experiencing blocking and thus is a non-blocking writer of the 
buffer. There are also two counters: the update counter (UC) and the acknowledgment 
counter (AC), also called the ack-counter.  The two counters are used in ways which 
ensure that PROD and CONS always access different slots in the circular buffer. 

2.4   DirectShow 

DirectShow is a multimedia application library produced by Microsoft. It provides a 
set of APIs which defines various operations for multimedia tasks. Within the 
framework of DirectShow, the processing of a multimedia task can be divided into a 
set of steps such as reading the media source, encode/decode, and playback. Each of 
these steps can be accomplished by a module called a filter. Filters can be connected 
together through their “input/output” pins so as to form a filter graph that can perform 
a target multimedia task.   



3   Global-Time-based Approach for HD Video Streaming and 
Tiled Display 

A tiled display system [4, 15, 17] is a cost-effective approach for realizing a large 
display wall. The combined resolution of a tiled display can easily surpass the 
resolution of a HD video stream. To utilize a tiled display as an RT HD video stream 
display, the underlying software system must be able to control the graphic display 
output of each node to be synchronized so that the user experience a temporally 
consistent and contextually unified video stream.  

Due to the jitters in the network, each video frame in a stream may arrive or may 
be picked up in different nodes at different times. Also the decompression time taken 
may be different in different display nodes. Such discrepancies among display nodes 
may introduce out-of-sync display of different segment of the same video frame. One 
may make all display nodes wait for a sync message after each decompression process 
and update the display screen upon receiving the message. However this sync 
message may arrive or may be picked up in different nodes at a noticeably different 
times. 

With the presence of the global time base of a sub-millisecond precision, one can 
explain the TCoDA [14], i.e., design all display nodes to render their parts of the 
video frame at the same instance of global time, e.g., at the target display time = video 
frame generation + display delay constant. Different applications of the approach 
have been studied and proof-of-concept systems have been developed [10, 11, 13]. 

4. TMO-based HD Tiled Display System 

4.1. System Architecture 

A high-definition video streaming 
service on a tiled display system 
consists of one master node and 
multiple worker nodes, all of 
which are connected through a 
LAN.  The function of the master 
node is to retrieve encoded 
multimedia data from a media 
source and stream them to the 
workers with playback timing 
information embedded.  It also 
takes the responsibility of audio 
stream playback.  The function of 
a worker is to receive encoded 
video frames from the 
communication channel, decode 

  



them, and display its assigned tile-segments of video frame that are located on the 
basis of its unique Worker ID (WID).  Fig. 2 illustrates the system architecture.  

4.2. Design of the Master Node 

The master node includes two software modules: the master filter graph and the 
master TMO, which are shown in Fig. 3. The master filter graph is an application 
program built by interconnecting DirectShow library module provided by Microsoft. 
Each library module is called a filter. This application runs whenever TMOSM 
running at the top priority-level yields a time-slice of the machine to non-TMO 
software, which occurs every 3rd time-slice arrives. In the master filer graph, a built-in 
source filter is used for retrieving compressed audio packets and video frames from a 
media source.  Such a media source can be a media file in the local disk or an URL 
containing a media stream.  In the case of audio packets, they are forwarded by the 
source filter to a local audio decoder filter for decoding since the audio stream will be 
played back in the master node.  A customized grabber filter is used to grab 
uncompressed audio packets out of the master filter graph and put them into an output 
queue. Another grabber filter is used to pull compressed video frames out of the 
master filter graph into a separate output queue. Inside a grabber filter, a callback 
function is invoked whenever a media frame becomes available from the output pin of 
an upstream filter.  The audio grabber filter is connected to the upstream audio 
decoder filter to grab uncompressed audio packets for local playback while the video 
grabber filter is directly connected to the source filter to grab compressed video 
frames for multicast delivery.  The output pin of each grabber filter is connected 
with the input pin of a customized flow control filter, which controls the retrieving 
speed of the source filter (e.g. 30 frames per second); otherwise, the source filter reads 
media units from the media source as quickly as possible, which necessitates a large 
buffer to hold all retrieved media data before they can be played back or delivered to 
worker nodes.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  System Components 



Another software module in the master node is the Master TMO, which handles the 
task of playing back the audio stream and multicasting video stream to all worker 
nodes. Audio packets and video frames are obtained from the grabber filters in the 
maser filter graph and need to be picked up by the SpMs in the Master TMO.  The 
grabber filters and the SpMs run in the different thread contexts. An NBB is used to 
let the grabber filters deposit media data and let the Master TMO SpMs in non-
blocking manners.  Each NBB is wrapped as a special ODSS in the Master TMO, 
and its handle is sent to the master filter graph during the system initialization. Two 
types of ODSS’s, namely AudioPacketODSS and VideoStreamODSS are constructed. 
The audio grabber filter, as the writer of the audio NBB, inserts uncompressed audio 
packets into AudioPacketODSS.  Similarly, VideoStreamODSS encapsulates an 
NBB for holding compressed video frames supplied by the video grabber filter.  

Besides two ODSS’s, the Master TMO contains three SpMs. Audio SpM is used to 
playback the audio stream. It periodically reads an uncompressed audio packet from 
AudioPacketODSS and plays it back through Win32 DirectSound APIs. Since an 
audio packet is played back at the target instant of global time at the beginning of 
each round of Audio SpM, the intra-stream synchronization jitter is minimized. 

Send SpM periodically reads a video frame out of VideoStreamODSS and 
multicasts it to all workers. In our design, its iteration rate is set to be the same as the 
frame rate of the media stream being rendered. For example, it runs every 33ms, 
which means it sends 30 video frames per second. To facilitate video frames to all 
workers, a video streaming RMMC is constructed. A gate to this RMMC is 
instantiated during the initialization of the Master TMO. When Send SpM obtains a 
video frame, it invokes RMMC API Announce() to multicast it out. Since the sizes of 
compressed video frames are not a constant while an RMMC requires each packet be 
of fixed size, a video frame needs to be packetized into RMMC packets before being 
sent out. 

The third SpM, Control SpM, runs at the lowest frequency to take user’s 
commands and multicast corresponding control messages, such as “PLAY” and 
“STOP”, to all workers. 

4.3. Design of Worker Nodes 

Receive SpM in a worker node receives RMMC packets from the video streaming 
RMMC by calling RMMC API NonBlockingReceiver(), and assembles them if they 
belong to the same video frame. Then, a complete video frame is inserted into 
VideoStreamODSS, which is of the NBB type.  

Video frames in VideoStreamODSS are read by a customized source filter, NBB 
Reader Source Filter, in the worker filter graph.  Its output pin is connected to the 
input pin of the video decoder filter. After being decoded, an uncompressed video 
frame is sent to the video grabber filter.  Through the callback function inside the 
video grabber filter, an uncompressed video frame, the part of a video frame 
corresponding to the worker’s WID, is inserted into the VideoFrameODSS which is 
of the NBB type. A null render filter is added at the end of the worker filter graph by 
being connected to the output pin of the video grabber filter to complete the 
connection of the worker filter graph. Note that there is no need to use a flow control 



filter on the worker side since the master node has already controlled the media 
delivery rate. 

Similar to Audio SpM, Video SpM periodically gets a video-fame-fragment from 
VideoFrameODSS and invokes Win32 DirectDraw API to play it back. 

4.4. Synchronous Play of the Video Stream in All Worker Nodes 

Synchronous play of video stream in all worker nodes is subject to two requirements:  
• The play of the video stream starts with a minimal deviation in the time 

dimension in all worker nodes. 
• Video frames are played back with the same rate in all worker nodes. 

As mentioned in Section 4.3, periodical executions of Video SpMs in the Worker 
TMOs meet the second requirement. 

Both the master and workers start with certain internal initialization such as 
starting TMO engine, filter graph construction, initialization of audio/video devices, 
and registration of SpM and the TMO. 

Once these internal initializations are done, Control SpM in the master node waits 
for user’s inputs. After selecting a media source, the user inputs a “PLAY” command. 
When Control SpM receives this command, it sends a “Play” message to all worker 
nodes through a control RMMC. Thereafter, it starts the master filter graph and 
cosequentially, video frames are fetched from the media source and sent to worker 
nodes through the video streaming RMMC.  When a worker node receives the “Play” 
message through Receive SpM, it starts the worker filter graph and begins to receive 
video frames from the master node, decode, and buffer them, but not play them back. 
The purpose for buffering is obvious, to smooth the transmission jitter. The “Play” 
message also contains an Initial Play Time (IPT) to dictate a moment at which all 
workers shall begin video playback.  The value of IPT is saved into the CMD_ODSS 
in the worker TMO. Video SpM reads its value from the CMD_ODSS and compares 
it with the current time at the beginning of each round.  If IPT is larger than the 
current time, it fetches the first video frame from VideoFrameODSS to start play. 

One critical point is that the Master TMO needs to choose an appropriate IPT 
before sending out the “PLAY” message so that the Video SpMs on all workers may 
begin video-playback with a minimal deviation in the time dimension. It means that at 
least one frame-fragment should be available in the buffer within VideoFrameODSS 
when IPT arrives. Hence, the duration D from the moment at which a “PLAY” 
commend is issued, which is denoted as T, to IPT should be no less than the duration 
from T to the time at which the first frame-fragment is deposited into the buffer 
within VideoFrameODSS. To tolerate transmission jitters of video frames, D can be 
increased so that several video frame-fragments buffer within VideoFrameODSS 
when IPT arrives although it will accompany the cost of larger latency. 

IPT = T + D  

To play the first frame-fragment exactly on IPT, one straightforward approach is to 
let Video SpM continuously compare the current time with IPT. When IPT arrives, 
the first frame-fragment is played back. However, this polling approach needs to 
occupy and consume CPU resource extensively only for the time comparisons. A 



more cost-effecitive approach is to set IPT to the earliest starting time (EST) of the 
earliest iteration of Video SpM that starts after (T + D) and then to check at the 
beginning of each iteration of Video SpM if IPT is already past or not. If so, the first 
frame-fragment will be played immediately. Otherwise, no playback will occur during 
the current iteration of Video SpM. IPT is thus: 

IPT = EST + {ceiling[(T + D) / P]} * P .   

where P is the period of Video SpM. In each of the subsequent iterations, a video-
frame-fragment is again played at the beginning.   

5. Performance Measurement 

We ran our tiled display on a 3x3 LCD array. The configuration of each node is, 
Pentium 2.4G CPU, 512M memory, and Windows XP SP2 OS. Fig. 4 gives a 
snapshot of our demo. 

Two performance attributes 
were measured. We first 
measured the difference of 
playback time across all worker 
nodes. In particular, a 
timestamp is taken each time 
DirectDraw is about to be 
called to display a video-frame-
fragment. Then the playback 
time difference for each video 
frame is the maximum 
difference across all workers. 
Fig. 5 shows the difference 
which can be regarded as a 
measure of how well the 
workers are synchronized in 

playing the video. From the figure we can see that, workers’ playback times can be 
pretty well synchronized for the given application. The playback time difference was 
mostly less than 8ms and did not exceed.  

We also measured the latency from the time when a video frame was first extracted 
from the media source by the master node to the time when a fragment of the video 
frame was played back by a worker node. On the master node side, a timestamp is 
taken whenever a video frame is grabbed by the video grabber filter. On the other 
hand, for the worker node, a timestamp is taken every time a video-frame-fragment is 
to be drawn on the screen. The difference of the two timestamps corresponding to the 
same video frame can be seen as the delay for processing the video frame in the 
system. Fig. 6 shows that the latency is about the same for different cases of video 
frames despite the fact that frames of different sizes may take different amount of 
time in transmission and decoding.  

 

Fig. 4.  Snapshot of Tiled Display on LCD Array 
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6. Conclusion 

Through construction of a global-time-based TMO network, a high-quality high-
definition tiled display system was realized. This application case is one 
demonstration of the global-time-based coordination of distributed actions (TCoDA) 
as a fundamental and promising approach for distributed multimedia applications. It 
was also a demonstration that the TMO scheme and its tool-kit enabling relatively 
easy high-level programming of manipulations of global time-stamps and timely 
processing of video and other multimedia data reduce the amount of efforts for design 
and implementation of complex distributed multimedia applications. Our performance 
measurements have indicated that the TCoDA approach realizes the minimal play 
jitter in streaming and play of video data.  
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