
Design and Experimental Validation of UAV Control
System Software Based on the TMO Structuring Scheme

Hansol Park1, Moon Hae Kim1, Chun-Hyon Chang1, Keechon Kim1,
Jung-Guk Kim2, and Doo-Hyun Kim1†

1 Computer Science Department, Konkuk University, Seoul, Korea
{parkhs, mhkim, chchang, kckim, doohyun}@konkuk.ac.kr

2 Hankuk University of Foreign studies, Korea
jgkim@hufs.ac.kr

Abstract. The technologies for designing and validating computer-control sys-
tems subject to challenging timing and reliability requirements have been ad-
vancing slowly. One such type of systems are unmanned aerial vehicle (UAV)
control systems. The functional complexity of UAV control systems is steadily
increasing. Enabling the design of such complex systems in easily understand-
able forms that are amenable to rigorous analysis is a highly desirable goal. In
this paper, we discuss our experimental application of the Time-triggered Mes-
sage-triggered Object (TMO) structuring scheme to the design of a UAV con-
trol system. The TMO scheme enables high-level structuring together with de-
sign-time guaranteeing of accurate timings of various critical control actions
with significantly smaller efforts than those required when using lower-level
structuring schemes based on direct programming of threads, UDP invocations,
etc. An experimental 2-step validation of a UAV control system is also dis-
cussed. The first step was to validate the system by use of an environment
simulator and then real flight tests were involved only in the second step.

1 Introduction

The technologies for designing and validating computer-control systems subject to
challenging timing and reliability requirements have been advancing slowly. One
such type of systems are unmanned aerial vehicle (UAV) control systems. Enabling
the design of such systems in easily understandable forms that are amenable to rigor-
ous analysis is a highly desirable goal. [5, 6, 8, 10]

The TMO (Time-triggered Message-triggered Object) model formalized earlier by
Kim and his collaborators [1, 2] has been found to be a sound real-time object model
that can be used for various types of hard and soft real-time distributed computing
applications. With the TMO model, both functional and timing behaviors of a system
can be specified in explicit and natural easy-to-understand forms.

† Corresponding Author: New Millennium Hall 1203, School of Internet and Multimedia Engineering,

Konkuk University, Kwangjin-Gu, Seoul, 143-701, Korea

To support execution of TMOs, several engines have been developed in the form
of middleware layered on a few widely used OS platforms. Representative cases are
TMOSM [3, also see http://dream.eng.uci.edu] on MS Windows XP Windows CE,
and Linux, LTMOS [4] on Linux, and Konkuk TMOSM/Linux on Linux. In the work
reported in this paper, we used TMOSM/Linux made by Konkuk University.

In this paper, we propose a TMO-based high-level design and implementation
method for the real-time embedded software parts of UAV control systems. The main
goal here is to improve the software engineering productivity and the software reli-
ability to a significant extent. Improvements are sought for in various phases of engi-
neering UAV control software such as design, implementation, and testing.

Our UAV control system was validated by use of an environment simulator in the
first step. Real flight tests were involved only in the second step. FlightGear was used
a virtual flight environment, named Hardware-In-the-Loop (HIL) system, of which
components can be replaced by actual hardware without rendering the remainder of
the simulator inoperable [7].

In Section 2, as backgrounds, the basic structure of the TMO model, the type of
UAVs considered, and the features of FlightGear are described briefly. In Section 3,
we present the design of an UAV control system based on the TMO model. In Sec-
tion 4, our implementation and flight simulation are described. Finally, in Section 5,
we conclude with a suggestion for future works.

2 Backgrounds

2.1 TMO Structuring Scheme

We use the TMO model as a fundamental building-block and TMOSM (TMO Sup-
port Middleware) as the execution engine for our experiments [2, 3]. TMO is a natu-
ral, syntactically minor, and semantically powerful extension of the conventional
object(s) [2]. Especially, TMO is a high-level real-time computing object. Member
functions (i.e., methods) are executed within specified windows in the domain of
global time. Such timing requirements are specified in natural intuitive forms with no
esoteric styles imposed.

As depicted in Fig. 1, the basic TMO structure consists of four parts; 1) Sponta-
neous Method (SpM): A time-triggered (TT) method which is triggered when the
real-time clock reaches specific values determined at design time and specified in
AAC (Autonomous Activation Condition) as the time-windows for execution. 2)
Method (SvM): A method similar to the conventional service method which is trig-
gered by service request messages from clients. 3) Object Data Store (ODS): The
set of data members which may be partitioned into ODS segments (ODSSs), each of
which is a basic unit of storage that can be exclusively accessed by a certain TMO
method at any given time or shared among executions concurrent of TMO methods
(SpMs or SvMs). 4) Environment Access Capability (EAC): A list of entry

points to remote object methods, logical communication channels, and I/O device
interfaces.

2.2 Unmanned Aerial Vehicle
(UAV) Control System

An unmanned aerial vehicle
(UAV) is an aircraft with no
onboard pilot. UAVs can be
remote controlled aircrafts (e.g.
flown by a pilot at a ground
control station), or aircrafts that
can fly autonomously with pre-
programmed flight plans or
dynamically adaptive control
systems. Although the UAV
control system consists of many
components, there are two main
components: 1) a ground station

component which provides telemetry feedback to the operator and allows him/her to
control the aircraft, and 2) an on-board flight system component of the vehicle.

Fig. 1. Structure of TMO model (courtesy of [2, 3])

In a UAV, the flight system component (embedded controller) operates some sen-
sors for sensing attitude and position and uses the data in controlling the pose of the
UAV on the flight. In our experimental UAV, a gyroscope and a GPS were used to
enable precise navigation. In the ground, the operator can monitor the current states
of the UAV and issue commands to the running UAV via the ground station compo-
nent. The ground station component and the UAV flight system component must be
connected via communication channels so that they may monitor and command each
other.

Our UAV discussed in this paper is designed to fly autonomously with the autopi-
lot. This autopilot requires precise timing of sensor operations. If the timing is badly
missed, the UAV would be endangered.

2.3 FlightGear flight simulator project

FlightGear is an open-source flight simulator project which provides flight simulators
running on Windows, Linux and Mac platforms. The goal of the FlightGear project is
to create a sophisticated flight simulator framework for use in research or academic
environments, for the development and pursuit of other interesting flight simulation
ideas, as well as for an end-user application. FlightGear provides a multitude of fea-
tures as follows:
- High Degree of Freedom: FlightGear is open-source.
- Cross Platform: FlightGear runs on many different operating systems.
- Multiple Flight Dynamic Models: Three primary flight dynamics models

(FDMs), LarcSim, JSBSim and yasim, are available.

- Moderate Hardware Requirements: Commercial-off-the-shelf (COTS) personal
computer components are sufficient for running FlightGear.

- Extensibility: FlightGear can run a simple simulation on a single laptop or drive
a sophisticated, realistic, immersive, multi-screen simulation.

- Network Access: A wide variety of external interfaces are available.

3 Experimental System Design and Implementation

3.1 Hardware architecture

As depicted in Figure 2, the UAV control system consists of a Flight System compo-
nent, a Ground Station component, and a Communication component. The Flight
System component has three parts, embedded controller, sensors, and actuators. In
this project, an RF-Ethernet communication device which used radio frequency for
Ethernet protocol was used as the communication component. Flight simulator was
set to generate all kinds of sensor data and receive actuator signals for virtual flight
control.

3.1.1 Flight System

(1) Sensors
A gyroscope and a GPS receiver were used as the sensors of Flight System. The gy-
roscope was used to provide attitude data. The gyroscope was set to generate roll,
pitch, and yaw data and sends the data to the Embedded Controller, which was con-
nected to the gyroscope via a serial port. The GPS receiver was used to produce geo-
metric location data periodically. The GPS provided NMEA standard location data
via a serial port for the Embedded Controller in the Flight System.

(2) Actuator

Fig. 2. Constitution of UAV Control System

A Servo-Actuator that was an
actuator of servo motors con-
trolled by PWM (Pulse Width
Modulation) signals in the
Flight System was assembled
by us. The Servo-Actuator
was designed to receive
servo-control data from the
Embedded Controller via a
serial port and convert the
data to PWM signals and use
the signals to control directly-
connected servo motors. At-
mel’s Atmega128 chip was

used for the Servo-Actuator and the converting software was newly developed.
(3) Embedded Controller
The Embedded Controller was built using an ARM-based small computer system.
This small computer system has a 400 MHz XScale processor, and 64MB of RAM.
An extended Serial I/O board is installed in the Embedded Controller to provide four
serial ports needed to communicate with the gyroscope and GPS devices. A 64MB
built-in NAND flash serves as non-volatile storage and suffices to keep embedded
Linux kernel 2.4.18 and UAV controller software based on TMOSM/Linux.

3.1.2 Ground Station

Ground Station is a kind of control unit which monitors the state of the UAV and
provides a flight-path to the Embedded Controller in the Flight System. Ground Sta-
tion supports GUI for monitoring and sends location data which include a flight-path
to the UAV. Ground Station uses the RF-Ethernet device for communicating with the
UAV.

3.2 Modeling of a UAV Control System based on TMO model

As depicted in Fig. 2, the Embedded Controller in the Flight System is connected to
Sensor Module, Servo Actuator, and Ground Station. In this section, we present the
TMO-structured design of our UAV control system.

3.2.1 UAV TMO : A TMO-structured design of the Embedded Controller

The UAV TMO is a design of
the Embedded Controller ob-
ject in the Flight System. As
depicted Figure 3, the UAV
TMO has AHRS(Attitude and
Heading Reference Systems)
SpM and GPS SpM because
AHRS and GPS produce sen-
sor data at different rates. The
functional requirements for
each SpM and SvM in the
UAV TMO are defined in
Table 1.

Fig. 3. Design of the UAV TMO

Table 1. Functional requirements of UAV TMO

Method Name Functions Deadline

AHRS SpM

1. Acquire AHRS packets from gyroscope every 40ms
2. Analyze and parse the AHRS packet and write parsed atti-

tude data to AHRS ODSS
3. Read AHRS data, GPS data, and command data from each

20ms

ODSS.
4. If GPS data and Command data are empty (initial condi-

tion), just use AHRS data.
5. If the current GPS data are not found, produce such data

via extrapolation (because GPS internal clock is slower
than AHRS).

6. Find flight-path from command data and compare it with
the current GPS data.

7. Calculate actuator control signals using PID algorithm to
follow given flight-path.

8. Write AHRS, GPS and actuator control data to PWM(Pulse
Width Modulation) ODSS.

GPS SpM
1. Acquire GPS packets every 250ms
2. Analyze and parse the GPs packet and write parsed geo-

metric position data to GPS ODSS
20ms

GCU SpM
1. Read the status data from PWM ODSS every 100ms
2. Send the status data to the Ground Station TMO using a

Gate in EAC
10ms

Mission SvM 1. Receive command data from Ground Station TMO
2. Write the command data to COMMAND ODSS 10ms

3.2.2 Ground Station TMO

Ground Station TMO in-
cludes Display SpM and
Display SvM for monitoring
and Mission SvM for mission
planning as depicted in Fig. 4.
The functional requirements
for Ground Station TMO are
defined in Table 2.

Fig. 4. Design of the Ground Station TMO

Table 2. Functional requirements of Ground Station TMO

Method
Name

Functions Deadline

Display SpM
1. Read all data of the UAV from the UAV State ODSS and

Command ODSS every 40ms
2. Send all data to the user application for display

10ms

Mission SvM
1. Read command data which include waypoints of the UAV

from the call parameters supplied by the user application
2. Send the data to the UAV TMO in Flight System

10ms

Display SvM 1. Receive the status data of the UAV from Flight System
2. Write the data to UAV State ODSS 10ms

Fig. 5. Interaction of the UAV TMO with the Ground Station TMO

Fig. 5 depicts interactions including data flows between UAV TMO and Ground
Station TMO. GCU SpM in UAV TMO requests a service to Display SvM in Ground
Station TMO for displaying UAV status data, while Mission SvM in Ground Station
TMO requests a service to Mission SvM in UAV TMO for accepting command data.

3.3 Implementation

For our experimental imple-
mentation of a UAV control
system, 25Hz gyroscope, 4Hz
GPS, XScale-based Embed-
ded Controller, and AVR-
based Actuator were used to
compose the Flight System.
PID algorithm was used in
our autonomous UAV con-
trol system. We used a gen-
eral-purpose laptop computer

as the Ground Station for monitoring the status of the UAV. Fig. 6 presents the hard-
ware structure of the implemented UAV control system. The TMO-structured real-
time computing software in both Flight System and Ground Station turned out to be
remarkably easier to read, analyze, and maintain in comparison to the initial version
of the software that had been designed 4 years ago and composed of threads, sockets,
and thread-priorities.

Fig. 6. UAV control system architecture

4 Validation

4.1 Step 1: Test with an Environment Simulator

In our experiments, we deployed a hardware-in-the-loop simulator (HILS) centered
around FlightGear and depicted in Fig. 7(a). In HILS, a Bridge TMO converts a state
data packet coming out of FlightGear to a packet of Sensors (Gyroscope, GPS) in the
format that can be accepted by UAV TMO without any further conversion. Moreover,
it converts a control signal coming out of UAV TMO to a control packet that can be
accepted by FlightGear. We tested roll, altitude, and heading stabilizer control of our
UAV control system on the HILS. Fig. 7(b) shows the results. The desired control
references are displayed as dotted lines and the actual responses of the embedded
controller in the UAV are displayed as bold lines. These response data were obtained
while the UAV in simulation changed the altitude and heading into the direction to-
ward the destination. Fig. 7(b) has three different graphs which show changes in the
stabilizer of roll, altitude, and heading. When the UAV has to change heading direc-
tion toward the destination (See Fig. 7(b)-c), roll and pitch (altitude stabilizer) values
will also be changed until heading is set in the direction toward the destination (See
Fig. 7(b)-a, b). During this period, the UAV encounters an unstable situation, and the
embedded controller should adjust the attitude of the UAV for stable flight. The re-
sults of each stabilizer control indicate that the actual response data obtained are close
to the desired references for stable flight. By comparing the figures, we can conclude
that the exhibited behavior of the simulated Flight System is close to the desired ref-
erences. These results attest to the accuracy of our embedded control system imple-
mented with the TMO structuring techniques and tools and the usefulness of the hard-
ware-in-the-loop simulator.

Fig. 7(a)

Fig. 7(b)

Fig. 7. Hardware-in-the-loop simulator and Flight Simulation output

4.2 Step 2: Real Flight Test

Fig. 8. UAV flight test in Korea on 18 June 2006

On 18 June 2006, we tested our UAV in a field in Korea as shown in the pictures in
Fig. 9. Our Flight System communicated with the Ground Station via RF-Ethernet.
The Flight System could control the UAV using the roll, altitude, and heading stabi-
lizer for approximately 45min. However, unpredictable winds occasionally created
dangerous situations in which the Flight System lost the stability for short periods.

5 Conclusion and future work

In this paper, we presented our experimental application of the TMO structuring
scheme to the design and implementation of a UAV control system. The Flight Sys-
tem and the Ground Station were designed by application of the TMO scheme and
implemented with TMOSM/Linux. We tested our UAV control system by means of
timing behavior analysis, flight simulation, and real flight tests. We could confirm a
reasonable-level performance of roll, altitude, and heading stabilizer control from

flight simulations. Finally, we could confirm a reasonable-level performance during
the test flight of 45min in a real flight environment. Therefore, these experimental
research results clearly indicate the promising nature of the TMO structuring scheme
in design and implementation of challenging real-time distributed computing software
such as those needed in UAV control systems. The advantages of the TMO scheme
over conventional low-level programming approaches involving composition of
software with threads, sockets, and thread-priorities seem quite significant. Among
several areas in which the UAV control system could be improved, fault-tolerance in
UAV control systems is an item of top-priority to us for tackling in the near future
research.

Acknowledgements: This research was conducted at the Software Research Center

of Konkuk University headed by Moon-Hae Kim and supported by the MIC (Min-
istry of Information and Communication), Korea, under the University ITRC (In-
formation Technology Research Center) support program supervised by the IITA
(Institute of Information Technology Assessment).

References

1. Kim, K.H., "Object Structures for Real-Time Systems and Simulators", IEEE Computer,
August 1997, pp.62-70.

2. Kim, K.H., “APIs for Real-Time Distributed Object Programming”. IEEE computer (2000)
72-80

3. Kim, K.H., Ishida, M., and Liu, J., “An Efficient Middleware Architecture Supporting Time-
Triggered Message-Triggered Objects and an NT-based Implementation”. ISORC, (1999)
54-63

4. Kim, H.J., Park, S.H., Kim, J.G., and Kim, M.H., “TMO-Linux: A Linux-based Real-time
Operating System Supporting Execution of TMOs”, ISORC(2002)

5. T. J. Koo. J. Liebman. C. Ma. and S. Sastry, “Hierarchical approach for design of multi-
vehicle multi-modal embedded software.” Proc. of EMSOFT ’01, October 2001.

6. T. John Koo, Judith Liebman, Cedric Ma, Benjamin Horowitz, Alberto Sangiovanni-
Vincentelli, Shankar Sastry, “Platform-based embedded software design and system integra-
tion for autonomous vehicles.” Proceedings of the IEEE 91(1): 198-211 (2003)

7. Eric F. Sorton and Sonny Hammaker, “Simulated flight Testing of an Autonomous Un-
manned Aerial Vehicle Using FlightGear.” Institute for Scientific Research Inc., Fairmont,
WV AIAA-2005-7083

8. Corey Ippolito, QSS Group, Inc., NASA Ames Research Center, “An Autonomous Autopilot
Control System Design for Small-Scale UAVs.” Internal Report of CMIL in University of
Carnegie Mellon: EAV-20051016

9. Edward A. Lee, “Embedded Software – An Agenda for Research.” UCB ERL Memorandum
M99/63 in University of California at Berkeley

10. Michael J. Matczynski, “A Distributed Embedded Software Architecture for Multiple
Unmanned Aerial Vehicles.” Master thesis, EECS, MI

