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Abstract. The technologies for designing and validating computer-control sys-
tems subject to challenging timing and reliability requirements have been ad-
vancing slowly.  One such type of systems are unmanned aerial vehicle (UAV) 
control systems. The functional complexity of UAV control systems is steadily 
increasing.  Enabling the design of such complex systems in easily understand-
able forms that are amenable to rigorous analysis is a highly desirable goal.  In 
this paper, we discuss our experimental application of the Time-triggered Mes-
sage-triggered Object (TMO) structuring scheme to the design of a UAV con-
trol system.  The TMO scheme enables high-level structuring together with de-
sign-time guaranteeing of accurate timings of various critical control actions 
with significantly smaller efforts than those required when using lower-level 
structuring schemes based on direct programming of threads, UDP invocations, 
etc.  An experimental 2-step validation of a UAV control system is also dis-
cussed.  The first step was to validate the system by use of an environment 
simulator and then real flight tests were involved only in the second step.  

1   Introduction 

The technologies for designing and validating computer-control systems subject to 
challenging timing and reliability requirements have been advancing slowly. One 
such type of systems are unmanned aerial vehicle (UAV) control systems. Enabling 
the design of such systems in easily understandable forms that are amenable to rigor-
ous analysis is a highly desirable goal. [5, 6, 8, 10] 

The TMO (Time-triggered Message-triggered Object) model formalized earlier by 
Kim and his collaborators [1, 2] has been found to be a sound real-time object model 
that can be used for various types of hard and soft real-time distributed computing 
applications. With the TMO model, both functional and timing behaviors of a system 
can be specified in explicit and natural easy-to-understand forms. 
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To support execution of TMOs, several engines have been developed in the form 
of middleware layered on a few widely used OS platforms. Representative cases are 
TMOSM [3, also see http://dream.eng.uci.edu] on MS Windows XP Windows CE, 
and Linux, LTMOS [4] on Linux, and Konkuk TMOSM/Linux on Linux. In the work 
reported in this paper, we used TMOSM/Linux made by Konkuk University. 

In this paper, we propose a TMO-based high-level design and implementation 
method for the real-time embedded software parts of UAV control systems. The main 
goal here is to improve the software engineering productivity and the software reli-
ability to a significant extent. Improvements are sought for in various phases of engi-
neering UAV control software such as design, implementation, and testing. 

Our UAV control system was validated by use of an environment simulator in the 
first step. Real flight tests were involved only in the second step. FlightGear was used 
a virtual flight environment, named Hardware-In-the-Loop (HIL) system, of which 
components can be replaced by actual hardware without rendering the remainder of 
the simulator inoperable [7]. 

In Section 2, as backgrounds, the basic structure of the TMO model, the type of 
UAVs considered, and the features of FlightGear are described briefly. In Section 3, 
we present the design of an UAV control system based on the TMO model. In Sec-
tion 4, our implementation and flight simulation are described. Finally, in Section 5, 
we conclude with a suggestion for future works. 

2   Backgrounds 

2.1   TMO Structuring Scheme  

We use the TMO model as a fundamental building-block and TMOSM (TMO Sup-
port Middleware) as the execution engine for our experiments [2, 3]. TMO is a natu-
ral, syntactically minor, and semantically powerful extension of the conventional 
object(s) [2]. Especially, TMO is a high-level real-time computing object. Member 
functions (i.e., methods) are executed within specified windows in the domain of 
global time. Such timing requirements are specified in natural intuitive forms with no 
esoteric styles imposed.  

As depicted in Fig. 1, the basic TMO structure consists of four parts; 1) Sponta-
neous Method (SpM): A time-triggered (TT) method which is triggered when the 
real-time clock reaches specific values determined at design time and specified in 
AAC (Autonomous Activation Condition) as the time-windows for execution. 2) 
Method (SvM): A method similar to the conventional service method which is trig-
gered by service request messages from clients. 3) Object Data Store (ODS): The 
set of data members which may be partitioned into ODS segments (ODSSs), each of 
which is a basic unit of storage that can be exclusively accessed by a certain TMO 
method at any given time or shared among executions concurrent of TMO methods 
(SpMs or SvMs).        4) Environment Access Capability (EAC): A list of entry 



points to remote object methods, logical communication channels, and I/O device 
interfaces. 

2.2   Unmanned Aerial Vehicle 
(UAV) Control System 

An unmanned aerial vehicle 
(UAV) is an aircraft with no 
onboard pilot. UAVs can be 
remote controlled aircrafts (e.g. 
flown by a pilot at a ground 
control station), or aircrafts that 
can fly autonomously with pre-
programmed flight plans or 
dynamically adaptive control 
systems. Although the UAV 
control system consists of many 
components, there are two main 
components: 1) a ground station 

component which provides telemetry feedback to the operator and allows him/her to 
control the aircraft, and 2) an on-board flight system component of the vehicle. 

Fig. 1. Structure of TMO model (courtesy of [2, 3]) 

In a UAV, the flight system component (embedded controller) operates some sen-
sors for sensing attitude and position and uses the data in controlling the pose of the 
UAV on the flight. In our experimental UAV, a gyroscope and a GPS were used to 
enable precise navigation. In the ground, the operator can monitor the current states 
of the UAV and issue commands to the running UAV via the ground station compo-
nent. The ground station component and the UAV flight system component must be 
connected via communication channels so that they may monitor and command each 
other. 

Our UAV discussed in this paper is designed to fly autonomously with the autopi-
lot. This autopilot requires precise timing of sensor operations. If the timing is badly 
missed, the UAV would be endangered. 

2.3   FlightGear flight simulator project 

FlightGear is an open-source flight simulator project which provides flight simulators 
running on Windows, Linux and Mac platforms. The goal of the FlightGear project is 
to create a sophisticated flight simulator framework for use in research or academic 
environments, for the development and pursuit of other interesting flight simulation 
ideas, as well as for an end-user application. FlightGear provides a multitude of fea-
tures as follows: 
- High Degree of Freedom: FlightGear is open-source. 
- Cross Platform: FlightGear runs on many different operating systems. 
- Multiple Flight Dynamic Models: Three primary flight dynamics models 

(FDMs), LarcSim, JSBSim and yasim, are available. 



- Moderate Hardware Requirements: Commercial-off-the-shelf (COTS) personal 
computer components are sufficient for running FlightGear. 

- Extensibility: FlightGear can run a simple simulation on a single laptop or drive 
a sophisticated, realistic, immersive, multi-screen simulation. 

- Network Access: A wide variety of external interfaces are available. 

3    Experimental System Design and Implementation 

3.1    Hardware architecture 

As depicted in Figure 2, the UAV control system consists of a Flight System compo-
nent, a Ground Station component, and a Communication component. The Flight 
System component has three parts, embedded controller, sensors, and actuators. In 
this project, an RF-Ethernet communication device which used radio frequency for 
Ethernet protocol was used as the communication component. Flight simulator was 
set to generate all kinds of sensor data and receive actuator signals for virtual flight 
control. 

3.1.1    Flight System 
 
(1) Sensors 
A gyroscope and a GPS receiver were used as the sensors of Flight System. The gy-
roscope was used to provide attitude data. The gyroscope was set to generate roll, 
pitch, and yaw data and sends the data to the Embedded Controller, which was con-
nected to the gyroscope via a serial port. The GPS receiver was used to produce geo-
metric location data periodically. The GPS provided NMEA standard location data 
via a serial port for the Embedded Controller in the Flight System. 

(2) Actuator 

Fig. 2. Constitution of UAV Control System 

A Servo-Actuator that was an 
actuator of servo motors con-
trolled by PWM (Pulse Width 
Modulation) signals in the 
Flight System was assembled 
by us. The Servo-Actuator 
was designed to receive 
servo-control data from the 
Embedded Controller via a 
serial port and convert the 
data to PWM signals and use 
the signals to control directly-
connected servo motors. At-
mel’s Atmega128 chip was 



used for the Servo-Actuator and the converting software was newly developed. 
(3) Embedded Controller 
The Embedded Controller was built using an ARM-based small computer system. 
This small computer system has a 400 MHz XScale processor, and 64MB of RAM. 
An extended Serial I/O board is installed in the Embedded Controller to provide four 
serial ports needed to communicate with the gyroscope and GPS devices. A 64MB 
built-in NAND flash serves as non-volatile storage and suffices to keep embedded 
Linux kernel 2.4.18 and UAV controller software based on TMOSM/Linux. 

3.1.2    Ground Station 
 
Ground Station is a kind of control unit which monitors the state of the UAV and 
provides a flight-path to the Embedded Controller in the Flight System. Ground Sta-
tion supports GUI for monitoring and sends location data which include a flight-path 
to the UAV. Ground Station uses the RF-Ethernet device for communicating with the 
UAV. 

3.2    Modeling of a UAV Control System based on TMO model 

As depicted in Fig. 2, the Embedded Controller in the Flight System is connected to 
Sensor Module, Servo Actuator, and Ground Station. In this section, we present the 
TMO-structured design of our UAV control system. 

3.2.1 UAV TMO : A TMO-structured design of the Embedded Controller 
 

The UAV TMO is a design of 
the Embedded Controller ob-
ject in the Flight System. As 
depicted Figure 3, the UAV 
TMO has AHRS(Attitude and 
Heading Reference Systems) 
SpM and GPS SpM because 
AHRS and GPS produce sen-
sor data at different rates. The 
functional requirements for 
each SpM and SvM in the 
UAV TMO are defined in 
Table 1. 

Fig. 3. Design of the UAV TMO 

Table 1. Functional requirements of UAV TMO 

Method Name Functions Deadline 

AHRS SpM 

1. Acquire AHRS packets from gyroscope every 40ms 
2. Analyze and parse the AHRS packet and write parsed atti-

tude data to AHRS ODSS 
3. Read AHRS data, GPS data, and command data from each 

20ms 



ODSS. 
4. If GPS data and Command data are empty (initial condi-

tion), just use AHRS data. 
5. If the current GPS data are not found, produce such data 

via extrapolation (because GPS internal clock is slower 
than AHRS). 

6. Find flight-path from command data and compare it with 
the current GPS data. 

7. Calculate actuator control signals using PID algorithm to 
follow given flight-path. 

8. Write AHRS, GPS and actuator control data to PWM(Pulse 
Width Modulation) ODSS. 

GPS SpM 
1. Acquire GPS packets every 250ms 
2. Analyze and parse the GPs packet and write parsed geo-

metric position data to GPS ODSS 
20ms 

GCU SpM 
1. Read the status data from PWM ODSS every 100ms 
2. Send the status data to the Ground Station TMO using a 

Gate in EAC 
10ms 

Mission SvM 1. Receive command data from Ground Station TMO 
2. Write the command data to COMMAND ODSS 10ms 

3.2.2 Ground Station TMO 
 

Ground Station TMO in-
cludes Display SpM and 
Display SvM for monitoring 
and Mission SvM for mission 
planning as depicted in Fig. 4. 
The functional requirements 
for Ground Station TMO are 
defined in Table 2. 

 
 
  

Fig. 4. Design of the Ground Station TMO 

Table 2. Functional requirements of Ground Station TMO 

Method 
Name 

Functions Deadline 

Display SpM
1. Read all data of the UAV from the UAV State ODSS and 

Command ODSS every 40ms 
2. Send all data to the user application for display 

10ms 

Mission SvM
1. Read command data which include waypoints of the UAV 

from the call parameters supplied by the user application 
2. Send the data to the UAV TMO in Flight System 

10ms 

Display SvM 1. Receive the status data of the UAV from Flight System 
2. Write the data to UAV State ODSS 10ms 



 
Fig. 5. Interaction of the UAV TMO with the Ground Station TMO 

 
Fig. 5 depicts interactions including data flows between UAV TMO and Ground 
Station TMO. GCU SpM in UAV TMO requests a service to Display SvM in Ground 
Station TMO for displaying UAV status data, while Mission SvM in Ground Station 
TMO requests a service to Mission SvM in UAV TMO for accepting command data.  

3.3    Implementation 

For our experimental imple-
mentation of a UAV control 
system, 25Hz gyroscope, 4Hz 
GPS, XScale-based Embed-
ded Controller, and AVR-
based Actuator were used to 
compose the Flight System. 
PID algorithm was used in 
our autonomous UAV con-
trol system. We used a gen-
eral-purpose laptop computer 

as the Ground Station for monitoring the status of the UAV. Fig. 6 presents the hard-
ware structure of the implemented UAV control system. The TMO-structured real-
time computing software in both Flight System and Ground Station turned out to be 
remarkably easier to read, analyze, and maintain in comparison to the initial version 
of the software that had been designed 4 years ago and composed of threads, sockets, 
and thread-priorities.  

Fig. 6. UAV control system architecture 

4    Validation 

 



4.1    Step 1: Test with an Environment Simulator 

In our experiments, we deployed a hardware-in-the-loop simulator (HILS) centered 
around FlightGear and depicted in Fig. 7(a). In HILS, a Bridge TMO converts a state 
data packet coming out of FlightGear to a packet of Sensors (Gyroscope, GPS) in the 
format that can be accepted by UAV TMO without any further conversion. Moreover, 
it converts a control signal coming out of UAV TMO to a control packet that can be 
accepted by FlightGear. We tested roll, altitude, and heading stabilizer control of our 
UAV control system on the HILS. Fig. 7(b) shows the results. The desired control 
references are displayed as dotted lines and the actual responses of the embedded 
controller in the UAV are displayed as bold lines. These response data were obtained 
while the UAV in simulation changed the altitude and heading into the direction to-
ward the destination. Fig. 7(b) has three different graphs which show changes in the 
stabilizer of roll, altitude, and heading. When the UAV has to change heading direc-
tion toward the destination (See Fig. 7(b)-c), roll and pitch (altitude stabilizer) values 
will also be changed until heading is set in the direction toward the destination (See 
Fig. 7(b)-a, b). During this period, the UAV encounters an unstable situation, and the 
embedded controller should adjust the attitude of the UAV for stable flight. The re-
sults of each stabilizer control indicate that the actual response data obtained are close 
to the desired references for stable flight. By comparing the figures, we can conclude 
that the exhibited behavior of the simulated Flight System is close to the desired ref-
erences. These results attest to the accuracy of our embedded control system imple-
mented with the TMO structuring techniques and tools and the usefulness of the hard-
ware-in-the-loop simulator. 
 

 
 

Fig. 7(a) 



 
 

Fig. 7(b) 
 

Fig. 7. Hardware-in-the-loop simulator and Flight Simulation output 

4.2    Step 2: Real Flight Test 

 
Fig. 8. UAV flight test in Korea on 18 June 2006 

On 18 June 2006, we tested our UAV in a field in Korea as shown in the pictures in 
Fig. 9. Our Flight System communicated with the Ground Station via RF-Ethernet. 
The Flight System could control the UAV using the roll, altitude, and heading stabi-
lizer for approximately 45min. However, unpredictable winds occasionally created 
dangerous situations in which the Flight System lost the stability for short periods. 

5    Conclusion and future work 

In this paper, we presented our experimental application of the TMO structuring 
scheme to the design and implementation of a UAV control system. The Flight Sys-
tem and the Ground Station were designed by application of the TMO scheme and 
implemented with TMOSM/Linux. We tested our UAV control system by means of 
timing behavior analysis, flight simulation, and real flight tests. We could confirm a 
reasonable-level performance of roll, altitude, and heading stabilizer control from 



flight simulations. Finally, we could confirm a reasonable-level performance during 
the test flight of 45min in a real flight environment. Therefore, these experimental 
research results clearly indicate the promising nature of the TMO structuring scheme 
in design and implementation of challenging real-time distributed computing software 
such as those needed in UAV control systems. The advantages of the TMO scheme 
over conventional low-level programming approaches involving composition of 
software with threads, sockets, and thread-priorities seem quite significant. Among 
several areas in which the UAV control system could be improved, fault-tolerance in 
UAV control systems is an item of top-priority to us for tackling in the near future 
research. 
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