
Configurable Virtual Platform Environment using SID

Simulator and Eclipse1

Hadipurnawan Satria, Baatarbileg Altangerel, Jin Baek Kwon, Jeongbae Lee

Department of Computer Science, Sun Moon University

Kalsan 100, Tangjeong, Asan, Chungnam, South Korea

hadi198@yahoo.com, a_bbileg@yahoo.com, jbkwon@sunmoon.ac.kr,

jblee@sunmoon.ac.kr

Abstract. For designing and testing embedded software, simulation tools have

been used to keep pace with the rapid development of customized hardware

parts. SID is a framework for building computer system simulations and SID is

made for debugging, testing and verifying embedded software. Though, it is

difficult for developers to use SID for their work. In this work, we developed an

integrated virtual platform environment based SID simulation framework for a

simulator engine and Eclipse for development platform. The proposed system

avoids users to manually write the configuration file, and aids loading and

connecting components on the fly. We also developed an image file builder and

an automation tool for running SID simulation with GDB debugger.

Furthermore, users can also monitor/probe the status of all the active

components in the target virtual platform during the simulation

Keywords: embedded software, development tools, virtual platform, full

system simulator

1 Introduction

Nowadays, embedded system products are found everywhere and are becoming more

and more advanced. To keep up with the market competition, the products must be

more sophisticated and feature rich, but manufacturers also require a shorter time to

market. Nevertheless, the improvements to the design and testing tools have not kept

pace with the rapid development of customized hardware parts. Simulation tools have

been designed to help close the gap and meet the needs of embedded software

developers. The simulation of the target environment or virtual platform enables

embedded software developers to analyze and test their software, even in the absence

of the physical hardware.

From the perspective of full system simulation and emulation, there are number of

software systems that support a wide rage of devices[1][3][4][5][6][7][8][9].

However, SID is specifically made for debugging, testing and verifying embedded

1 This research was supported by Ministry of Information and Communication, Korea, under the ITRC(IT

Research Center) support program supervised by Institute of Information Technology Assessment.

software. Since our work focuses on an environment for building embedded hardware

simulators with simulated components, SID is a better fit for our work.

Although SID is a well-designed framework and environment of building a new

virtual platform, it is difficult for embedded software developers to use SID for their

work. To use it for an actual development, the users should configure a target

platform by editing a configuration file with a text editor, run the virtual platform by

typing a command in console, write and build a binary image to be run on the target,

run a debugger such as GDB, and load and run the binary image to the active virtual

platform. Since each step is manually done with independent tools, the users of today

who get used to user-friendly user interface should endure considerable

inconvenience. Therefore, it is desirable to integrate the tools and automate the usage

procedure with graphical user interfaces.

In this work, we developed an integrated virtual platform environment based SID

simulation framework for a simulator engine and Eclipse[2] for development

platform. Eclipse is an open source development environment having extensible

architecture, where the environment can be extended by adding plug-ins. Thus, our

system is developed as Eclipse plug-ins. The proposed system avoids users to

manually write the configuration file, and aids loading and connecting components on

the fly. We also developed an image file builder and an automation tool for running

SID simulation with GDB debugger. Furthermore, the users can also monitor/probe

the status of all the active components in the target virtual platform during the

simulation.

2 Background

2.1 SID Simulation Framework

In SID, a simulation is comprised of a collection of loosely coupled components.

Simulated systems may range from a CPU's instruction set to a large multi-processor

embedded system. SID defines a small component interface which serves to tightly

encapsulate them. Components may be written in C++, C, Tcl or any other language

to which the API is bound. C++ is the main language used, and for additional

language a special component, a bridge, is required. During simulation start-up,

components are instantiated, interconnected, and configured as necessary to represent

some specific system. SID is suitable for consideration as an integration platform for

other simulators by interconnecting models from different simulators, as has been

done with Bochs[1], and also with a live Verilog system.

The components and their relationships are described in a configuration file,

therefore required to run a simulation. The configuration file describes all components

to be loaded and which component connected to which component. The SID

simulator engine loads the components and connects them according to the

configuration file. The SID framework provides a few ways for components to

communicate with each other, i.e. pin, bus, attribute and relation mechanisms. All of

these communication mechanisms may also be set up in the configuration file.

Although there is an auto-configuration file builder for some typical target boards, in

general users have to manage the configuration file content for new target platform by

editing the file.

2.2 Eclipse Platform

The Eclipse[3] platform is designed for building integrated development

environments (IDEs) as an open source project. One of the key benefits of the Eclipse

Platform is realized by its use as an integration point. Building a tool or application on

top of Eclipse Platform enables the tool or application to integrate with other tools

and applications also written using the Eclipse Platform. The Eclipse Platform is

turned in a Java IDE by adding Java development components (e.g. the JDT[5]) and it

is turned into a C/C++ IDE by adding C/C++ development components (e.g. the

CDT[2]). It becomes both a Java and C/C++ development environment by adding

both sets of components. Eclipse Platform integrates the individual tools into a single

product providing a rich and consistent experience for its users [4].

Eclipse platform has a plug-in architecture, where a plug-in is the smallest unit that

can be developed and delivered separately. Plug-ins are coded in Java. Each plug-in

has a plug-in manifest declaring its interconnections to other plug-ins. The

interconnection model is simple: a plug-in declares any number of named extension

points, and any number of extensions to one or more extension points in other plug-

ins.

3 Architecture

In this section, we describe the overall architecture of our system, which the modules

implementing the functions mentioned above are developed as plug-ins over Eclipse

platform. Fig. 1 shows the architecture.

SID Simulation EngineSID Simulation Engine

Eclipse PlatformEclipse Platform

Configuration

Builder

Configuration

Builder
Simulation

Monitor

Simulation

Monitor C/C++ Development Tools (CDT)C/C++ Development Tools (CDT)

Binary Image

Builder

Binary Image

Builder

Components

(HW, SW, etc)

Components

(HW, SW, etc)
SID Framework

Simulator

Launcher

Simulator

Launcher
GDB

SID Simulation EngineSID Simulation Engine

Eclipse PlatformEclipse Platform

Configuration

Builder

Configuration

Builder
Simulation

Monitor

Simulation

Monitor C/C++ Development Tools (CDT)C/C++ Development Tools (CDT)

Binary Image

Builder

Binary Image

Builder

Components

(HW, SW, etc)

Components

(HW, SW, etc)
SID Framework

Simulator

Launcher

Simulator

Launcher
GDB

Fig. 1. Overall Architecture

As shown the figure, the architecture is based on SID framework and Eclipse

platform, and includes CDT that is a set of plug-ins for IDE for C/C++. CDT consists

of an editor, building tools such as compiler and linker, a debugger front-end

connecting to GDB, etc. We extended it by adding two plug-ins, the binary image

builder and the simulator launcher, to cooperate with SID. And, the configuration

builder and the simulation monitor are plugged directly in Eclipse platform.

CDT does not support a cross-development environment. An embedded software

development environment should provide the cross-development environment, where

an image file built in a host is run on the target system. That is why the binary image

builder was developed. It provides the cross-development environment to CDT with

GNU cross toolchains, e.g., arm-elf-gcc, arm-elf-as, etc. Therefore, users can build an

image file to be run on a virtual target platform with the binary image builder.

The SID simulator requires a configuration file that describes the target platform.

Basically, the file should be manually edited by a developer. In order to eliminate the

troublesomeness, the configuration builder automatically generates a configuration

template file for a target platform by checking the components to be used and

inserting some values such as memory addresses on a GUI.

CDT has a debugger user interface interacting GDB. And, SID has a built-in

component that performs the equivalent function of a GDB remote stub. Hence, CDT

can load and debug an image on the virtual platform through GDB. The simulator

launcher activates the virtual platform described by the configuration file selected

when a debugging session begins.

SID also provides a built-in but experimental system monitor written in Tcl/Tk, to

monitor a running simulation. The system monitor lists the components in the active

virtual platform, showing specific component attributes such as pins, registers, etc.

Since our system is based on the Eclipse framework, the system monitor should also

be made to an Eclipse plug-in, which must be written in Java. However, SID cannot

support components written in Java directly without a Java bridge component. Instead

of developing the bridge component, we connected the simulation monitor plug-in

and SID over a socket communication.

4 Implementation

The simulation monitor is implemented by interacting between the SID simulator and

the Eclipse plug-in. Thus, it is implemented in two parts, one as SID component and

another as an Eclipse plug-in.

The configuration builder is implemented as a new file wizard along with SID file

types. Using the wizard, users can choose the target processor, e.g., ARM, and they

can also select the components of the target platform SID supports many kinds of

components, we currently only provide some of most important components on this

wizard. The configuration builder generates a configuration template file according to

the user’s choice. Then the user can edit the template manually for a finer

configuration.

The binary image builder provides the cross-development environment to CDT

with GNU cross toolchains, e.g., arm-elf-gcc, arm-elf-as, etc. In CDT, the set of the

tools and their settings to be used for build process is determined by selecting “Build

Target.” Thus, we add new build targets for ARM processor. By this way, the binary

image file can be successfully built with the default tools and build settings. Users can

also further modify the build settings as needed.

CDT has a debugger user interface interacting GDB. And, SID has a built-in

component that performs the equivalent function of a GDB remote stub. The

simulator launcher activates the virtual platform described by the configuration file

selected when a debugging session begins. Eclipse has a general debug configuration

window, where users can select different kinds of debug configuration template. After

they choose the proper template, they can configure the debugger based on that

template. We implemented the “C/C++ Virtual” configuration template for GDB

debugging session with the virtual platform. In this configuration, the users can select

an SID configuration file describing a target machine. The simulator launcher

activates the virtual platform on SID when the debugging starts, and also deactivates

it when the debugging stops.

5 Conclusion

In this work, we developed an integrated virtual platform environment based SID

simulation framework for a simulator engine and Eclipse for development platform.

Our system is developed as Eclipse plug-ins. The proposed system avoids users to

manually write the configuration file, and aids loading and connecting components on

the fly. We also developed an image file builder and an automation tool for running

SID simulation with GDB debugger. Furthermore, users can also monitor/probe the

status of all the active components in the target virtual platform during the simulation.

References

1. The Bochs IA-32 Emulator Project. http://bochs.sourceforge.net.

2. Eclipse C/C++ Development Tools (CDT). http://www.eclipse.org/cdt/

3. Eclipse Platform. http://www.eclipse.org

4. Eclipse Platform Technical Overview. http://www.eclipse.org/articles/Whitepaper-

Platform-3.1/eclipse-platform-whitepaper.pdf, 2006

5. Eclipse Java Development Tools (JDT). http://www.eclipse.org/jdt/

6. Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G.,

Hogberg, J., Larsson, F., Moestedt, A., and Werner, B.: Simics: A Full System

Simulation Platform. IEEE Computer, 35(2):50-58, Feb. 2002.

7. PearPC: PowerPC Architecture Emulator. http://pearpc.sourceforge.net

8. QEMU: A Generic and Open Source Processor Emulator. http://fabrice.bellard.free.fr/qemu.

9. SID System Simulator. http://sourceware.org/sid

10.SimOS: The Complete Machine Simulator. http://simos.stanford.edu.

11.SkyEye: An Embedded Simulation System. http://www.skyeye.org

12.Witchel, E., and Rosenblum, M.: Embra: Fast and Flexible Machine Simulation.

ACM SIGMETRICS Performance Evaluation Review, 24(1):68-79, May 1996.

