
Model-Driven Development of Ubiquitous
Applications for Sensor-Actuator-Networks with

Abstract State Machines

Sebastian Schuster and Uwe Brinkschulte

Institute for Process Control and Robotics,
Universität Karlsruhe(TH), Kaiserstraße 12, 76128 Karlsruhe

sschu|brinks@ira.uka.de

Abstract. The development of applications in the domain of Ubiqui-
tous Computing has to deal with some unique challenges. The target en-
vironment consists of very heterogeneous and partly low-power devices.
It changes rapidly due to wireless communication and mobile users. We
propose to use model-driven development based on Abstract State Ma-
chines to deal with these challenges. Applications are defined on high
levels of abstraction and efficient implementations tailored to the target
platform are automatically generated.

1 Introduction

Mark Weiser’s vision of Ubiquitous Computing (UC) [9] describes a world where
computers are everywhere and support your everyday life. They relieve you from
routine work, which makes UC attractive to many people, as it does to us.

Today, users have to tell the computer what to do and enter information in
the way the machine wants it - the main issue Weiser had with the way we use
computers. To realize UC, computers and other devices must be enhanced to
detect the user’s needs and to support him actively.

Wireless sensor networks (WSNs) [3] consist of simple, low power, and cheap
sensor nodes, working together to monitor their environment. Thus, they can
serve the purpose of detecting the user’s actions. By adding nodes with the
capabilities to influence their environment, a sensor and actuator network (SAN)
can be established and serve as an infrastructure for ubiquitous applications.

SANs will include all kinds of devices from different vendors, ranging from
full-featured PCs over PDAs and Smartphones to tiny, low-power sensor nodes
and embedded devices tailored to specific needs. Some of these nodes are station-
ary, and some will be mobile. Different kinds of applications are possible: there
will be applications bound to a specific environment, like controlling the lighting
based on user presence. Other applications will be bound to a specific user and
will control the environment based on the user’s preferences, like controlling TV,
heating or air condition. Some applications will mainly provide information, e.g.
cooking recipes or traffic guidance. All of these applications will run simulta-
neously and have to share resources. They must possibly interoperate without

knowing each other. They must adapt themselves in an ever-changing environ-
ment, from switching input and output devices when the user moves to showing
a very different behavior depending on the current context.

At a first glance, using established development techniques from traditional
distributed systems for SANs, like middleware, may seem to be a good idea.
For a number of reasons discussed in section 2, this is not feasible for SANs.
However, without powerful tools raising software development productivity of
ubiquitous applications, there is no chance that Weiser’s vision will ever be
realized. Ubiquitous applications will stay a toy for the wealthy people instead.

After introducing the major challenges in the area of ubiquitous application
development in section 2, we discuss related development tools tailored to ubiq-
uitous applications in section 3. Afterwards, we present our arguments for model
driven techniques in this application field in section 4. Furthermore, we sketch
our approach to realize a model-driven development process. The work of imple-
menting this approach is in progress. We are optimistic our ideas will prove to
be valuable in practice. This paper concludes with a summary in section 5.

2 Challenges

There are a number of challenges to be addressed when developing ubiquitous
applications. Obviously, a ubiquitous application is a distributed one. Multiple
processes run within the SAN and communicate by exchanging messages. Typical
challenges of distributed applications include partial failures, transmission errors,
and synchronization. All of these are well researched. Furthermore, solutions to
deal with these problems are incorporated in middleware, ready to be reused by
the developer. However, what are the challenges that do not allow to transfer
existing solutions to the domain of Ubiquitous Computing?

2.1 Efficiency

Since nothing comes for free, the advantages of using a middleware introduce
costs. The computation steps done in the middleware consume time and energy,
while the necessary code takes memory space and energy. The resources of sensor
nodes in computation power, memory space, and energy, are very constrained.
This, putting an upper bound on the amount of work that can be done on a
sensor node, becomes a challenge of efficiency when using a middleware.

Middleware is supposed to offer flexible solutions to a diverse range of appli-
cations. The tailoring to the needs of the application happens mostly at runtime,
e.g. when the application feeds parameters to middleware function calls. Select-
ing the proper middleware functionality according to these parameters takes
extra computation steps. Furthermore, many functions are unused, despite tak-
ing memory space. One can generally say – with a classical middleware – higher
flexibility decreases efficiency (while facilitating reuse). How to deal with this
tradeoff for SANs is an open question.

2.2 Heterogeneity and Interoperability

A typical task of middleware is to deal with a heterogeneous system consisting
of nodes with different properties. Its goal is to hide the differences from the
programmer and make the system look like a homogeneous one, easing software
development. When the nodes of the network are not too different in terms of
processing power and storage space, this can be achieved by including standard
communication protocols, conversion of different data representations etc. within
the middleware. In a system with nodes ranging from tiny sensor nodes to full-
featured personal computers, with resources differing by orders of magnitudes,
this is nearly impossible. However, in the absence of powerful abstractions, pro-
grammers would have to write specific code for every kind of node, manually
adding functions to make the nodes interoperate. It means resolving problems
already solved for traditional distributed systems – surely not the best way to
go.

2.3 Dynamics

Traditional distributed applications often assume to run upon a fixed network.
Processes communicate directly and reliably – the developer does not see de-
tails like network routing or location information. A node unreachable for some
reason is treated as a failure and handled by the middleware or the application.
However, in ubiquitous environments, users carry nodes around, nodes use un-
reliable wireless communication, their energy can be exhausted, and the user
can interfere with the system in unforeseen ways. Communication failures are
common and network connectivity changes rapidly. Since the user should not be
bothered to deal with exceptions, self-organizing algorithms that make the sys-
tem adapt itself to changes autonomously are necessary. These algorithms should
be generic and flexible enough to make them available for reuse for a wide range
of ubiquitous applications. At the same time, efficiency must be preserved.

2.4 Goals

For a productive development of ubiquitous applications, solutions for efficiently
dealing with heterogeneity and the dynamics of the system must be available for
reuse. The developer should describe system behavior on a high level of abstrac-
tion, hiding differences between nodes and network changes. Applications cannot
be custom made for each environment – this would be much too expensive. The
developer might not even know the system his application has to run on. Speci-
fying in abstract terms that can be found in any ubiquitous environment is the
only way possible. Instead of specifying on the level of individual nodes, stating
node X turn the light on, the developer must be able to code an equivalent of
turn on the light in the user’s room. Detecting the presence of the user in a
room and finding a node with a certain capability – like turning on the light – is
something that will happen regularly in ubiquitous applications. Implementing

these functions adaptable to different environments once and reusing them is a
prerequisite for high development productivity.

However, the target application must not only be adaptable to different en-
vironments. People may have different requirements regarding privacy issues or
they want their daily life support to be a little different. Applications must be
customizable to the varying needs of the users.

3 Related Work

Since the research area of Ubiquitous Computing is quite young, most of the
work has been carried out in trying to solve certain problems and not in making
these solutions available for reuse. However, two proposals explicitly dealing with
some of the identified challenges had a major influence on our work.

The first one is PCOM [8], a component-oriented middleware for pervasive
applications. PCOM applications consist of a tree of components, each imple-
menting parts of the application functionality. The actual layout of tree instances
is determined by the PCOM middleware at runtime – based on capabilities of
the different nodes and requirements of each component given by the developer
in some XML-dialect. Thus, the application can also be adapted to changes in
the environment. Motivated by the development-by-composition-paradigm, com-
ponents implemented once can be reused in other applications as well. PCOM is
built upon another middleware layer, BASE [1], offering communication services
in heterogeneous and dynamic environments, relieving the developer from deal-
ing with network routing. BASE and PCOM transfer the traditional approach
– using layers of middleware – to the development of ubiquitous applications,
explicitely considering highly dynamic and heterogeneous environments. Their
memory footprint is about 120-160KB, preventing to use them on sensor nodes.
The level of abstraction that can be achieved depends on the available com-
ponents. Specifying tree composition in some XML-dialect and using general
purpose programming languages to implement components without further sup-
port is still way off developing applications in terms of the target domain.

An approach motivated by the OMG’s Model Driven Architecture (MDA) is
described in [7]. The OMG proposes to use models and not code as the primary
artifact of software development. While models are widely used in software de-
velopment, serving as a sketch for the real code, they tend to get out of synch
as code development evolves. The resulting code is always a mix of parts deal-
ing with the real business problems and, to a large amount, of parts due to the
way these problems have to be solved on a specific platform. Problem domain
and realization domain should be clearly separated instead, by describing the
application in platform-independent models (PIM) containing application logic
only. Afterwards, they are transformed to platform-specific models, enriched
with platform details. In the last step, executable code can be generated. These
transformations can be performed manually or automatically – the latter one
being the preferred way.

In [7] a language with a fancy graphical representation to describe platform-
independent models of applications for home automation is defined. The devel-
oper describes the behavior of the system using several communicating state
machines running in the system. When deploying the application in a target
environment, the state machines of the PIM are split up into roles, which can
be assigned to nodes of the target system. These roles are transformed to exe-
cutable code and installed on the target nodes, depending on their capabilities.
Our lighting application would consist of two roles, one for detecting the presence
of a user, and one for turning on the light. The first one would be installed on all
nodes with a motion detector, the second on all connected to the lighting. The
system can adapt to changes by activating and deactivating nodes, e.g. roles of
failing nodes can be taken over by others. Multiple platforms can be supported
by developing the necessary transformers and code generators. The generative
model-driven approach allows to generate efficient code specifically tailored to
the target nodes, avoiding the overhead of a middleware. At the same time,
the roles-based approach can deal with a dynamic system, suggesting a way to
deal with the flexibility vs. efficiency tradeoff in classical middleware. Our ap-
proach is based on this idea too. The described development method lacks ways
of ensuring interoperability. On the highest level, descriptions based on finite
state machines can probably be improved with terms more closely resembling
the domain of Ubiquitous Computing.

4 Proposed Solution

We propose to use model-driven development to handle the identified challenges.
The aim is to combine the advantages of using a middleware, development on a
high level, with the generation of code tailored to different platforms for higher
efficiency. The functionality provided by a middleware is added by model trans-
formations instead. At the same time, the overhead introduced by a middleware
is avoided. Applications can be developed in a coherent way for heterogeneous
target environments that include devices as resource-constrained as sensor nodes.
When installing an application, it is transformed automatically, taking user pref-
erences and properties of the target environment into account.

While realizing this vision will surely be appreciated, a lot of work lies ahead.
The main questions that have to be answered include: How do the models look
like? How to define transformations? How to guide them? We present first ans-
wers to these questions in the following sections. We are currently at the start of
developing and implementing our development process, following a bottom-up
approach. Our concept certainly needs further refinements.

4.1 Process Overview

Different kinds of models are involved in the development process: models de-
scribing user preferences, models describing the target environment, and models
describing the behavior of some entity. At the top-level, the developer implements

the application by specifying a platform-independent behavior model, describing
how the environment reacts to what the user is doing. On lower levels, the behav-
ior of parts of the system down to individual nodes is specified. Compared to the
MDA, we propose to use multiple transformation steps from top-level models to
executable code. The available transformations are arranged in a hierarchy, each
transformation bridging a smaller gap. Models are transformed along the edges,
starting at the highest level of the hierarchy and yielding executable code at the
leaves. The direction to take when traversing and how to transform is controlled
by the target environment and user preferences – the available devices decide
which transformations to take. Wether to add encryption algorithms depends on
the user preferences for example.

Fig. 1. Transformation Hierarchy.

An extract of the transformation hierarchy is given in figure 1. On the high-
est level, different modeling languages can be used to describe different kinds of
applications. These can be transformed to a language where application func-
tionality is decomposed into distributed roles, dealing with the dynamics of the
environment – similar to [7]. Several transformations not shown here add com-
munication and interoperability support or customizations. After that, transfor-

mations generate models for different platforms, containing the roles the target
node can take. At first, these models will be generated for generic platforms
like Sensor Node or PC, using features offered by all types of sensor nodes or
PCs respectively. The generic models are then transformed to models for specific
device types, like Mica or Scatterweb ESB sensor nodes. Eventually, executable
code can be generated.

Fig. 2. Example Transformation.

An example transformation process is given in figure 2, showing the instal-
lation of an application controlling the lighting based on user presence. The
transformation processor (a device with less resource constraints like a PC) rec-
ognizes ten Scatterweb ESB [6] sensor nodes able to detect user presence. Six of
the nodes can control a light. When transforming to the next role-based modeling
layer, it deduces there will be two types of roles necessary. The first (DetectAnd-
Send) detects user presence and informs the second role (SwitchLight) able to
control the light. These roles are then converted into models for generic sensor
nodes, describing how nodes communicate and activate their roles. In the last
step, C-code is generated from these descriptions and flashed onto the nodes.

Composing the transformation chain of smaller transformations facilitates
their reuse. Introducing a new type of sensor node only needs a less expensive
transformation from the generic platform to the new platform for example. The
role-based decomposition of application functionality allows to adapt at run-
time. By adding additional roles, e.g. for data conversion, interoperability can
be assured. Finally, the generated code is more efficient than a middleware-based
approach, leaving out unnecessary features.

4.2 Abstract State Machines as Behavior Models

Models are defined in terms of a modeling language, describing what models
look like (syntax) and how to interpret those (semantics). At the top-level, we
need expressive languages specific to Ubiquitous Computing. Since ubiquitous
applications let the environment support the user, reacting to what the user
is doing, this language will feature an event-driven control flow. A language
suitable for home automation would offer terms like Room, Lighting or TV. At
lower levels, we need languages to describe roles and the behavior of nodes.

When transforming models, we have to make sure that the resulting model
describes a behavior equivalent to the source model. A top-level model that
includes an abstract action Alert the user, may be correctly transformed to a
ringing Smartphone or a message shown on screen of a TV – depending on the
target environment and the current situation. Turning on the washing machine
is most likely not an equivalent action. While ambiguity can be intended as a
consequence of abstract specifications on a higher level, unwanted ambiguity
must be avoided. The key is a precise – formally specified – semantics of the
modeling languages. Many errors made in software development are due to in-
formal natural language specifications, interpreted differently by different people
working on the same project. In a multi-step transformation as we propose it,
using formally specified languages is even more important.

Abstract state machines (ASMs) [4] can be used to formally describe every
algorithm on any level of abstraction. Formally specifying behaviors on differ-
ent levels of abstraction is exactly what we need, making ASMs an appealing
candidate to be used on the different levels of our multi-step transformation.

ASM structure An ASM consists of two parts: the description of the state of
the machine and a set of rules governing the transitions from one state to the
next. The state is described in terms of an algebra – sets with operations and
relations. The author of [5] argued that ...every static mathematic reality can
be described as a structure in the sense of mathematical logic.... The rules are
made up of conditions guarding the firing of the rule and of updates describing
how to change the state of the machine. Starting in an initial state, the machine
performs step by step, in each step executing all matching rules and updating
the state of the machine in one atomic step.

ASMs for Ubiquitous Applications The following example shows an excerpt
from a high level ASM describing our lighting application.

enum Rooms = {Livingroom, Bathroom, Kitchen, Bedroom}
function Light: Rooms -> BOOLEAN
function Occupied: Rooms -> BOOLEAN

rule Main = par
forall room in Rooms do Light(room):=Occupied(room) endforall
endpar

A set Rooms is defined consisting of the different rooms in the ubiquitous
environment. The function Light can be used to control the lighting in every
room. A function Occupied returns true if anybody is in a room. The only rule
Main states, the lights should be switched according to user presence.

This is a description on a very high level. It contains what could be called
the business logic of the application. Since ubiquitous applications are about
relieving people from routine tasks, we argue that their business logic is not too
complex and compact descriptions on a high level are possible. ASMs can also
be used on a lower level to describe the behavior of a role or of a single node. A
sensor node can be described in terms of the state of its sensors and functions
yielding current sensor values.

In order to use ASMs for behavior descriptions, a vocabulary to describe the
ASM states has to be defined at the different levels. At the highest level, there
will be sets and functions like the ones shown above. For lower levels, functions
showing the state of sensors have to be defined for example. We are currently
investigating possible vocabularies for sensor nodes.

Transforming ASMs The vocabularies of the different levels essentially de-
scribe our modeling languages – the terms that can be used to describe the state
of system with ASM rules describing the behavior of its entities. How to define
the transformations, mapping the abstract function Occupied to ASMs describ-
ing roles, that observe the motion detection sensor and transmit a message when
movements are detected?

The ASM method [2] describes a software development process based on
ASMs. According to this method, a developer starts with a high-level ASM de-
scribing the application under construction. This ASM is refined stepwise – grad-
ually enriching it with details describing how to implement what was specified
on the higher level. Functions can be replaced by additional ASMs computing
this function or ASMs can be composed of sub-ASMs. Sequential ASMs can be
refined by adding agents, making it a distributed ASM. All of these steps have to
be performed manually by the developer. What we need is a way of automating
these steps - this would eventually yield our transformation chain.

To establish our approach in practice, an expressive specialized language to
describe ASM transformations would be necessary. We are currently consider-
ing general purpose languages using established model transformation and code
generation patterns only. We first want to investigate how to apply transforma-
tions and how to parametrize them. The application of special transformation
languages is planned for the future.

5 Summary

We proposed to use model-driven development techniques to deal with the pri-
mary challenges of developing ubiquitous applications: high degrees of hetero-
geneity, the need for efficiency, and high dynamism in ubiquitous environments.

Applications are described as high level models independent of a specific plat-
form and are automatically transformed to platform-specific models matching
the target environment. The core idea of our approach is to use a chain of trans-
formations with small transformation steps. Building new transformations and
including new platforms will be less expensive and reuse is facilitated.

Introducing multiple transformation steps, unwanted ambiguity through spec-
ifications given in languages with informally defined semantics becomes an even
bigger problem. Therefore, we proposed to use Abstract State Machines to for-
mally describe the behavior on all levels of abstraction. We sketched how ASMs
can be used on different levels and why they are suitable for transformations.

The next step will be define vocabularies for ASMs on the different levels.
Afterwards we will investigate how transformations can be defined. We plan to
implement a complete transformation chain based on ASMs – including decom-
position of application functionality and adapting the composition at runtime.

6 Acknowledgements

Sebastian Schuster is supported by the German Research Foundation (DFG)
within the Research Training Group GRK 1194 Self-organizing Sensor-Actuator-
Networks.

References

1. Christian Becker, Gregor Schiele, Holger Gubbels, and Kurt Rothermel. BASE -
A micro-broker-based middleware for pervasive computing. In Proceedings of the
First IEEE International Conference on Pervasive Computing and Communication
(PerCom) USA, pages 443–451. Los Alamitos: IEEE Computer Society, March 2003.

2. E. (Egon) Börger and Robert F. Stärk. Abstract state machines: a method for
high-level system design and analysis. Springer-Verlag, 2003.

3. D. Estrin, G. Pottie, L. Girod, and M. Srivastava. Instrumenting the world with
wireless sensor networks. In International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2001), June 2001.

4. Yuri Gurevich. Sequential abstract-state machines capture sequential algorithms.
ACM Transactions on Computational Logic, 1(1):77–111, July 2000.

5. Yuri Gurevich. Abstract state machines: An overview of the project. In Dietmar
Seipel and Jose Maria Turull Torres, editors, FoIKS, volume 2942 of Lecture Notes
in Computer Science, pages 6–13. Springer, 2004.

6. Jochen H. Schiller, Achim Liers, Hartmut Ritter, Rolf Winter, and Thiemo Voigt.
Scatterweb - low power sensor nodes and energy aware routing. In HICSS, 2005.

7. Andreas Ulbrich, Torben Weis, Gero Mühl, and Kurt Geihs. Application develop-
ment for actuator- and sensor-networks. In 4. GI/ITG KuVS Fachgespräch Draht-
lose Sensornetze, Zurich, Switzerland, March 2005.

8. Torben Weis, Marcus Handte, Mirko Knoll, and Christian Becker. Customizable per-
vasive applications. In PERCOM ’06: Proceedings of the Fourth Annual IEEE Inter-
national Conference on Pervasive Computing and Communications (PERCOM’06),
pages 239–244, Washington, DC, USA, 2006. IEEE Computer Society.

9. Mark Weiser. The computer for the twenty-first century. Scientific American,
265(3):94 – 104, September 1991.

