
Advancements in
Dependable Time-Triggered Communication

Wilfried Steiner

TTTech Computertechnik AG
Vienna, Austria

wilfried.steiner@tttech.com

Abstract. When developing strategies for future research directions it
may be a wise decision to reflect on the development in the respective
area during the last few years. As to future applications of embedded
systems, we consider a concise solution for interconnecting embedded
systems to be one of their core requirements. In particular, we focus on
the development of dependable communication.

Our paper recapitulates progress in research and development of depend-
able time-triggered communication protocols as done by the Institute for
Computer Engineering at the Vienna University of Technology and by
TTTech Computertechnik AG over the last five years. We provide an
overview of the current situation and discuss the ongoing research and
development directions.

1 Introduction

Dependable communication infrastructures are required in various applications
that ensure the standards of our daily life. Such applications range from flight-
control systems in aircrafts to distributed control systems in nuclear power
plants. The basis of a dependable communication infrastructure is the com-
munication protocol and the properties that it provides. Determinism and pre-
dictability are desired properties for communication protocols as they support
the reasoning about the system during the development process as well as dur-
ing the application process of a respective system. Protocols that implement the
time-triggered paradigm provide determinism and predictability.

Time-triggered protocols are suitable for the x-by-wire market, for example
fly-by-wire in avionics or steer-by-wire in the automotive sector. While time-
triggered technology is used in the avionics market for quite some time, it is an
emerging technology for the automotive market and is about to hit the market
in form of FlexRayTM[Fle05]. Furthermore, as embedded systems are evolving
from stand-alone solutions to distributed embedded systems, there is a potential
for dependable distributed embedded systems in markets adjacent to the tradi-
tional safety-critical ones. Examples of future applications that require depend-
able communication are distributed implants, human robotics, or novel games.
Fault tolerance is a key mechanism in these examples. Assume a distributed

wilfried.steiner@tttech.com


2

implant that consists of a distributed embedded system with sensors and actua-
tors placed in several organs; it shall not happen, e.g., that a “stuck message” 1

causes an overdose of adrenaline. Similar scenarios can easily be constructed for
human robotics and novel games, where corrupted communication may lead to
significant economic loss, or loss of fun respectively. At a glance, such thinking
may appear to be science fiction, and this might be true for the examples above.
However, a low-cost dependable communication infrastructure with accompany-
ing novel software technologies is an enabler for such applications.

Time-triggered protocols have been intensively studied over 25 years at the
Technical University of Vienna and at TTTech Computertechnik AG since its
establishment in 1998. We give an overview on time-triggered communication
in Section 2. It is a vision of TTTech to offer a product line of time-triggered
protocols that supports a wide range of dependable distributed embedded sys-
tems including the traditional safety-critical ones as well as emerging and future
systems. One step towards this goal is a layering of protocol services to make it
configurable to a customer’s needs. This approach has resulted in the Layered
Time-Triggered Protocol (LTTP), a TTP research derivative. We discuss LTTP
in Section 3. One particular fault-tolerance mechanism that has been studied
intensely over the last years are central guardian instances; we give an overview
of the central guardian concepts in Section 4. Ongoing research and development
is concerned with bridging the gap between the Ethernet world and dependable
time-triggered communication. This research trend is sketched in Section 5. This
paper concludes with Section 6.

2 Time-Triggered Communication

In a distributed system where each of the components has access to a local
clock, the states of the local clocks can be brought into agreement, that is, the
clocks can be synchronized. For this purpose there are two types of algorithms:
clock-synchronization algorithms and startup algorithms. Clock-synchronization
algorithms are used to maintain the quality of the synchronization once a certain
threshold is reached. The startup algorithm has to ensure that such a threshold
is reached within an upper bound in time. This separation of the synchroniza-
tion problem into the subproblems of startup and clock synchronization is not
always done in the literature and there are clock-synchronization algorithms that
solve both subproblems at once. Many of these algorithms, however, either as-
sume a reliable transmission of messages between the nodes per se or are of a
probabilistic nature.

Furthermore, in a computer system, there is no action that starts by itself.
An action needs a trigger to be executed. We can distinguish two basic types
of triggers: event-triggers and time-triggers. Event-triggers are external triggers
that are received by a component either via the communication channels or from
the environment. Time-triggers (are triggers that) arise when a clock, to which
1 This is a message that is continually re-sent by a communication participant, e.g.

imposed by a faulty controller.



3

the component has access to, has reached an action state. These action states
can either be defined a priori, and be therefore explicitly known to the system’s
designer, or can evolve from the execution of certain algorithms on a component.
An example for an a priori defined action state would be the start of a Task A:
schedule task A at time 12:00, where 12:00 is the action state of the component’s
clock. An example for an evolved action state would be the start of a Task B:
schedule Task B after Task A, where the action state evolves depending on the
execution time of Task A.

Synchronization of the local clocks of the components allows action states to
be defined throughout the distributed system, such that it is guaranteed that
these action states are reached within the precision Π, an off-line calculable
parameter. Hence, it is possible to implement synchronized time-triggers, that
allow the components to operate as a coordinated whole. Synchronized time-
triggers can be used for the communication strategy: we off-line specify the
action states when a node is allowed to access the shared medium. If all nodes
adhere to this schedule, a fair distribution of bandwidth is guaranteed. Faulty
nodes that do not restrict their sending behavior to the specification have to be
blocked by additional guardian instances. We call a communication strategy that
is based on synchronized time-triggers a time-triggered communication strategy,
whereas communication strategies that use unsynchronized (event- or time-)
triggers are called event-triggered communication strategies. The communication
schedule for time-triggered communication is generated off-line. The time it takes
to process through the schedule table once is called a TDMA round (Time-
Division Multiple-Access).

A fine property of time-triggered communication is the time-triggered broad-
cast property that supports agreement algorithms.

From Reliable to Atomic to Time-Triggered Broadcast: A set of processes com-
municates by exchanging messages and each of these processes produces local
output based on the messages exchanged. Informally spoken, reliable broadcast
is a mechanism that guarantees that all processes generate the same unordered
set of messages as their local outputs.

The broadcast problem introduces two functional primitives: broadcast()
and deliver(). Each process uses the broadcast() primitive to distribute mes-
sages to all the other processes. Each process uses the deliver() function to
generate output. Thus, with progress of time, the deliver() primitive generates
a sequence of messages. A set of processes solves the reliable broadcast problem
if it provides [HT94]:

– Validity: if a correct process broadcasts m, it eventually delivers m.
– Agreement: if a correct process delivers m, all correct processes eventually

deliver m.
– Integrity: for any message m, every correct process delivers m at most once,

and only if m was previously broadcast by a correct sender.

Atomic broadcast is defined as reliable broadcast that fulfills the following
additional ordering property:



4

– Total Order: if correct processes p and q both deliver messages m and m′,
then p delivers m before m′ if and only if q delivers m before m′.

Informally spoken, atomic broadcast guarantees that not only the set of mes-
sages is equal within the set of correct processes, but also the delivery order of
the messages.

The time-triggered broadcast makes the implementation of the broadcast()
primitive on a shared medium trivial: each node uses the shared medium in its
assigned time slot. Time-triggered broadcast even enhances the atomic broadcast
property in that the delivery order of messages is a priori known.

3 Layered Time-Triggered Protocol (LTTP)

The prime design goal of LTTP was a clean separation of the communication
layer from higher-layer mechanisms. A membership service is for example a
higher-layer mechanism. The encapsulation of the communication layer resulted
in a more robust protocol state machine including an enhanced fault-tolerant
startup algorithm and clique resolution algorithm.

The LTTP protocol distinguishes several protocol phases that can be grouped
as follows: the startup phases, which consists of the INIT, INTEGRATION,
and COLDSTART phase, the synchronized operation phase, which consists of
the SYNC phase, and the external synchronization phase, which consists of the
PAUSE SYNC and the EXTERNAL STARTUP phase. The phases are depicted
in Figure 1.

INIT

INTEGRATION

SYNC

COLDSTART

power-up

no sync set 
detected

sync set 
detected

regular 
startup

integrated 
to sync set 

regular
restart

sync set
established

PAUSE
SYNC

EXTERNAL
STARTUP

external
startup

pause

continue external
restart

external
sync

Fig. 1. Protocol Phases



5

3.1 Protocol Startup

After power-on (that is, after the node is initialized) the node starts the IN-
TEGRATION phase. Each slot in the communication schedule is assigned to a
sending node and each message carries the identifier of its sender. Hence, the
node listens to the communication channels and has to identify, based on the
messages received, if there is a sufficient number of nodes communicating syn-
chronously. If such a set exists, the node integrates into this set and becomes
synchronized. If such a sufficient set does not exist, the node enters the COLD-
START phase.

In the COLDSTART phase, the node waits for coldstart signals that are
used as starting signal for schedule processing. Such coldstart signals are sent
by nodes when a local timer expires (only a subset of nodes may be configured
to send a coldstart signal). A node that receives a coldstart signal will start to
proceed through the schedule and reply in its assigned slot. The nodes are able
to acquire the number of nodes that react to the coldstart signal by counting
the replies. The COLDSTART phase ends when a sufficient set of nodes has
been synchronized. In general it may also happen that only a subset of nodes
in coldstart will reach synchronous operation. For this reason the LTTP startup
algorithm defines conditions for a re-transition to the INTEGRATION phase,
such that nodes that did not reach the sync phase are able to integrate to the
established synchronous communication.

In the SYNC phase the node has reached synchronous operation (but not
necessarily steady state). If synchronization is lost, the nodes restart the startup
process with the INTEGRATION phase.

The transitions between the different phases of the startup strategy can be
taken either by the expiration of timeouts or by the reception of a sufficiently
long sequence of messages per TDMA round. It is highly important that a faulty
node or channel cannot be able to spread such a sequence of messages (e.g. by
masquerading a number of different nodes) that will cause a non-faulty node to
take an incorrect transition between startup phases.

To speed up the startup process, LTTP allows using a dedicated TDMA
schedule during coldstart. This dedicated schedule may only consist of four slots
of minimum size. A more detailed discussion of the startup of time-triggered
communication is given in [SK06].

3.2 Synchronized Operation

In LTTP a single node may occupy more than one sending slot in the communica-
tion schedule. Furthermore, LTTP introduces the mechanism of “sender-dynamic
slots”. These slots are scheduled off-line but not statically assigned to a particu-
lar node. Instead, the nodes execute an arbitration protocol during run-time to
assign the sender-dynamic slots to a particular node. The information for this
arbitration protocol is transmitted with the messages in slots that are statically
assigned to the nodes. The arbitration protocol used is not part of the LTTP
specification; it could be, for example, a sophisticated agreement algorithm to
ensure fault-tolerant arbitration or a simple client-server algorithm.



6

3.3 External Synchronization

LTTP may be used as a sub-bus in a high-speed network. For such and sim-
ilar purposes LTTP is equipped with provisions to synchronize to external
sources. This external synchronization can be achieved in two ways: LTTP can
be put into a PAUSE SYNC phase or into an EXTERNAL STARTUP phase.
In the PAUSE SYNC phase the communication is halted and operation is re-
sumed either after a given duration or upon an external event. In the EXTER-
NAL STARTUP phase LTTP awaits an external startup event upon which the
regular coldstart will be executed.

Also, these mechanisms support a global synchronization if several LTTP
systems (so called clusters) are connected together to form an LTTP multi-
cluster.

3.4 Clique Resolution Algorithms

A potential threat to time-triggered communication protocols is the establish-
ment of a cliques scenario. Cliques are then established, when two sets of disjoint
nodes are synchronized within their respective set but the two sets are unsyn-
chronized to each other. In our opinion an assumption that cliques will never
form is not acceptable for safety-critical systems as multiple transient failures or
faulty communication channels may cause their establishment. Hence, appropri-
ate algorithms to resolve cliques scenarios are required.

TTP uses a so-called clique avoidance algorithm: as the node cyclically pro-
ceeds through the communication schedule it classifies each message it receives
as correct or incorrect and increases a respective counter. When the node reaches
its sending slot in the TDMA round (in TTP each node occupies only one slot per
TDMA round) it checks the counters. The node detects cliques when the number
of incorrect received messages is higher than the number of correct messages.
Hence, this algorithm is based on the relative number of correct messages.

A drawback of this approach is that a node may not receive all incorrect
messages, as communication is performed via half-duplex communication links.
As a result, depending on the communication schedule configuration there is
a probability that cliques scenarios are not diagnosed. In LTTP we propose a
clique resolution algorithm that is not based on the relative number of correct
messages received, but on the absolute number [SPK06]. If the number of re-
ceived messages falls beyond an off-line calculable threshold for a given duration,
cliques are detected. The threshold is a function of either the number of nodes
in the system, or of a dedicated subset of nodes.

3.5 Formal Analysis of (L)TTP Services

Several services, such as the clock-synchronization service and the membership
service [Pfe03], have been formally verified by means of theorem proofing using
PVS. Rushby gives an overview of formal analysis activities in the time-triggered
architecture in [Rus02]. Lately, the TTP and the LTTP startup algorithms have



7

been subject to model-checking studies [SRSP04,SK06] using SAL2. Due to the
performance of the SAL model checker it was possible to assess the startup
algorithms by means of exhaustive failure simulation.

4 The Central Guardian Concept

For the discussion of fault-tolerance methods we define fault-containments re-
gions (FCRs), that are regions that are impacted by a fault and fail as a whole.
In distributed embedded networks each node computer and each communication
channel forms such an FCR.

When multiple FCRs share a common resource, as in our case a shared
broadcast channel, it is necessary to protect that shared resource via additional,
independent FCRs. If such a protection mechanism is not implemented, a faulty
FCR bears the potential danger to monopolize the shared resource and to ren-
der it unusable for other, correct FCRs. Temple introduced the concept of “lo-
cal guardians” in [Tem99]: a node will not access a shared broadcast channel
directly but will communicate with a local guardian which may or may not re-
lay the send attempt to the shared broadcast channel, depending if the local
guardian classifies the sending attempt correct or faulty. To tolerate the fail-
ure of one local guardian or of one shared broadcast channel itself, the local
guardian, as well as the channel, have to be duplicated. This results in a number
of 2 ∗ n local guardians in a system of n nodes with two replicated channels.
To justify the independence argument of FCRs it is required to implement the
node and local guardians on separated silicon which makes the local guardian
solution economically unattractive. Indeed, the first implementations of the lo-
cal guardian concept (for TTP) placed the local guardians and the node on the
same chip, thus weakening the requirements on a FCR. Fault-injection studies
showed that this implementation of local guardians leads to error propagation
scenarios [ABST03].

With the movement from a bus topology to a star topology, the promising
concept of central guardians was introduced [BFJ+00]: instead of implement-
ing the guardian FCRs locally at the node’s side, the guardians are placed at
the hubs of the star network. The economic benefit of this solution is obvious,
instead of 2∗n local guardians only two central guardians are necessary in a two-
channel system for any number of nodes. The first proof of concept for central
guardians [BKS03] basically places a passive node, that is a node without hard-
ware units for message generation, at the hub that executes the same protocol as
the regular nodes. The hub controls the dataflow according to the passive node.
From a conceptual point of view, this solution is elegant: a node and the central
guardian temporally form a self-checking pair, that is, the central guardian is
able to transform the arbitrary behavior of a faulty node to a detectably-faulty
behavior (with respect to protocol execution). Thus, no semantically faulty mes-
sages will pass the central guardian and the fault tree of the system can be kept

2 PVS and SAL are developed by SRI International.



8

at a minimum. In particular this first generation of central guardians required
following mechanisms:

– the guardian has to execute a semantic filter, that is, certain fields of a
messages are analyzed by the guardian and, if a semantic failure is detected,
the message is transformed into a syntactically faulty message, by truncation
of the message,

– the centralized guardian instances have to use interlinks which are uni-
directional direct connections between the two centralized guardians, such
that a centralized guardian receives the messages transmitted on the respec-
tive other channel, and

– any one non-faulty guardian has to be powered on before any non-faulty
node starts to transmit messages.

Another central guardian strategy is a minimum strategy that aims at keep-
ing the state in a central guardian as small as possible. This strategy has certain
benefits for reasoning about the fault behavior of the central guardian itself,
since we have to argue that even a faulty central guardian will not create valid
messages. Such a minimum state strategy for a central guardian was selected
for the LTTP protocol. This second generation of central guardians allows dis-
missing the above listed requirements, although they may be implemented for
performance reasons.

5 Dependable Communication on Ethernet

There are several approaches to equip standard Ethernet with real-time capa-
bilities [Fel05]. Probably most notable beyond all is the IEEE activity in form
of the IEEE 1588 standard [IEE04]. IEEE 1588 specifies a clock synchronization
protocol on top of Ethernet.

An orthogonal approach to IEEE 1588 is Time-Triggered Ethernet (TTE)
[KAGS05]. TTE fundamentally distinguishes between foreground time-triggered
traffic and background event-triggered traffic, while both traffic classes conform
to the Ethernet frame format. Foreground traffic is scheduled a priori and pri-
oritized in the TTE switch. A prototype switch [Ste06] developed by the Vienna
University of Technology implements a “preemption” mechanism. This mecha-
nism will preempt ongoing transmission of event-triggered messages whenever
a time-triggered message has to be relayed. This mechanism provides a high
quality on transmission delay and transmission jitter of a time-triggered mes-
sage. Preempted event-triggered messages will be relayed after the time-triggered
message.

However, as IEEE 1588, as well as the synchronization protocol in TTE,
are master-slave based protocols, their fault-tolerance capabilities may not be
accurate for dependable communication. It is a research activity of TTTech to
design a fault-tolerant TTE. One possible solution is to incorporate the (L)TTP
services into TTE.



9

6 Conclusion

Time-triggered technology is successful for dependable communication in well-
established markets such as avionics, it is likely to be implemented in emerging
markets for dependable communication like, for example, the automotive market,
and it is promising and even an enabler for future markets. The LTTP protocol
together with the developed guardian instances provide the basis for a robust
dependable communication infrastructure and, hence, is suitable to a wide range
of applications. On the other side, TTTech is developing Ethernet-based time-
triggered protocols with a focus on dependability.

Acknowledgments

Many thanks to the colleagues from the Institute of Computer Engineering, for
their hospitality and discussions of many topics. This work was supported by
the European Project DECOS (IST-2-511764).

References

ABST03. A. Ademaj, G. Bauer, H. Sivencrona, and J. Torin. Evaluation of fault han-
dling of the time-triggered architecture with bus and star topology. In Proc.
of International Conference on Dependable Systems and Networks (DSN
2003), San Francisco, Jun. 2003.

BFJ+00. G. Bauer, T. Frenning, A.K. Jonsson, H. Kopetz, and Ch. Temple. A cen-
tralized approach for avoiding the babbling-idiot failure in the time-triggered
architecture. ICDSN 2000, New York, NY, USA, Jun. 2000.

BKS03. G. Bauer, H. Kopetz, and W. Steiner. The central guardian approach to en-
force fault isolation in a time-triggered system. In Proc. of 6th International
Symposium on Autonomous Decentralized Systems (ISADS 2003), pages 37
–44, Pisa, Italy, April 2003.

Fel05. M. Felser. Real-time ethernet - industry prospective. Proceedings of the
IEEE, 93(6):1118–1129, 2005.

Fle05. FlexRay Communications System - Protocol Specification - Version 2.1.
FlexRay Consortium, 2005. Available at http://www.flexray.com.

HT94. Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical Report TR94-1425, 1994.

IEE04. IEEE, INC. IEEE 1588 – Precision clock synchronization protocol for net-
worked measurement and control systems, 2004.

KAGS05. Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer.
The time-triggered ethernet (tte) design. 8th IEEE International Sympo-
sium on Object-oriented Real-time distributed Computing (ISORC), Seattle,
Washington, May. 2005.

Pfe03. Holger Pfeifer. Formal Analysis of Fault-Tolerant Algorithms in the Time-
Triggered Architecture. PhD thesis, Universität Ulm, Germany, 2003.

Rus02. John Rushby. An Overview of Formal Verification for the Time-Triggered
Architecture. In Werner Damm and Ernst-Rüdiger Olderog, editors, For-
mal Techniques in Real-Time and Fault-Tolerant Systems, volume 2469 of
Lecture Notes in Computer Science, pages 83–105, Oldenburg, Germany,
September 2002. Springer-Verlag.



10

SK06. Wilfried Steiner and Hermann Kopetz. The startup problem in fault-tolerant
time-triggered communication. International Conference on Dependable
Systems and Networks (DSN 2006), Jun. 2006.

SPK06. Wilfried Steiner, Michael Paulitsch, and Hermann Kopetz. The tta’s ap-
proach to resilience after transient upsets. Real-Time Systems, 32:213–233,
Feb. 2006.

SRSP04. Wilfried Steiner, John Rushby, Maria Sorea, and Holger Pfeifer. Model
checking a fault-tolerant startup algorithm: From design exploration to ex-
haustive fault simulation. The International Conference on Dependable Sys-
tems and Networks (DSN 2004), Jun. 2004.

Ste06. Klaus Steinhammer. Design of an FPGA-Based Time-Triggered Ethernet
System. PhD thesis, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2006.

Tem99. Christopher Temple. Enforcing Error Containment in Distributed Time-
Triggered Systems: The Bus Guardian Approach. PhD thesis, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-1,
1040 Vienna, Austria, 1999.


	Advancements in  Dependable Time-Triggered Communication

