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Abstract      In this paper a middleware architecture for distributed automotive 
systems that supports self-configuration by dynamic load balancing of tasks is pre-
sented. The inclusion of self-configurability is able to offer reliability within the 
multimedia network of the vehicle (Infotainment). Load balancing of tasks could 
be applied if an error occurred within the network. The error detection in the 
network and the load balancing should run automatically. Therefore, the middle-
ware architecture has to deal on one hand with the error detection and on the other 
hand with the migration of tasks. Additionally, to enable the migration it is impor-
tant to identify the requirements of all electronic control units (ECU) and tasks 
within the network.  

1. Introduction 

Future application scenarios for vehicle electronic systems include on one side 
the access to mobile devices that build ad-hoc networks with the built-in devices 
of the vehicle and on the other side the support of robustness, redundancy and de-
pendability within the vehicle network. Modern electronic vehicle networks have 
to be as flexible as possible to cope the actual requirements.  The idea to build up 
a self-configurable system could help to overcome these requirements. A mobile 
device could automatically be attached and integrated in the existing system if the 
system supports self-configurability. If an ECU has a failure all task could be mi-
grated to other ECUs inside the vehicle network by a self-configurable system 
middleware. Self-configuration could be applied to distributed networks. In mod-
ern vehicles three types of networks are built in. That is namely the Powertrain, 
Body or Chasis and Infotainment network. Within the Powertrain safety critical 
tasks like the anti-blocking system and the motor management are located. The 
Body or Chasis network contains also critical tasks, but the vehicle will run if a 
failure occurs. The window opener is a typical task of this network. The Infotain-
ment network consists of more or less media based tasks, like the radio or naviga-
tion system. Due to safety critical reasons our approach will focus on the Info-
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tainment network.  
To increase the quality of the vehicle it is important to built in fault-tolerant 

systems in the network. In a distributed system fault-tolerance can be include in 
three ways: Replication, redundancy, and diversity. While the former provides 
multiple identical instances of a system, the tasks and requests are directed to all 
of them in parallel, and the choosing of the correct result is based on a quorum, 
redundancy is characterized by multiple identical instances and a switching to one 
of the remaining instances in case of failure. Diversity provides different imple-
mentations of a system that are used like replicated systems.  

A self-configurable system is able to provide redundancy, diversity and replica-
tion of tasks, therefore, it helps to make the system more stable.  

In the context of self-configuration of automotive systems redundancy of data, 
applications, and tasks can be used to get an increased fault-tolerance in case of 
ECU failures. Crucial data, applications or tasks are distributed as backup compo-
nents on the ECUs of the vehicle system that they can be used of or executed by 
other ECU if their originally ECUs failed.  

The way of distribution and the number of replicas and the decision which 
components are replicated depends on an adequate algorithm. At this costs of rep-
lication and migration and load of other ECUs will be considered. 

In the following a vehicle middleware architecture is presented that supports 
self-configuration by load balancing strategies for non-critical tasks within the In-
fotainment network. In our case we enable a dynamic reconfigurable system by 
load balancing. In existing approaches self-configuration is enabled, by including 
redundancy and replication of tasks during design time. This is a static system re-
configuration. Furthermore, our middleware offers services to realize a load bal-
ancing based on different strategies for the Infotainment network. This work is 
part of the DySCAS project (ref.). The main objective of the DySCAS project is 
the elaboration of fundamental concepts and architectural guidelines, as well as 
methods and tools for the development of self-configurable systems in the context 
of embedded vehicle electronic systems. The reason is the increasing demand on 
configurational flexibility and scalability of the systems imposed by future appli-
cations which will include simultaneous access to a number of mobile devices and 
ad-hoc networking with the built-in devices. 

The rest of the paper is organized as follows: Section 2 will describe the related 
work in the field of research where our architectural approach is located. As a mo-
tivation for this paper Section 3 motivates and describes a use case scenario. Af-
terwards our middleware architecture is presented, see Section 4. In Section 5 we 
describe the load balancing strategy we use within the middleware. A short de-
scription of the simulation and some early results are discussed in Section 6. We 
conclude the paper with a summary and give an outlook for future work.  
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2. Related work 

In this section we will give a short overview of existing load balancing ap-
proaches to support self-configuration and on middleware approaches in automo-
tive systems.  

There are several publications regarding load balancing and extensive research 
has been done on static and dynamic strategies and algorithms [6]. 

On the one hand, load balancing is a topic in the area of parallel and grid com-
puting, where dynamic and static algorithms are used for optimization of the si-
multaneous task execution on multiple processors. Cybenko addresses the dy-
namic load balancing for distributed memory multiprocessors [3]. In [5] Hu et. al. 
regard an optimal dynamic algorithm and Azar discusses on-line load balancing. 
Moreover Diekmann et. al. differentiate between dynamic and static strategies for 
distributed memory machines [4]. Heiss and Schmitz introduce the Particle Ap-
proach that deals with the problem of mapping tasks to processor nodes at run-
time in multiprogrammed multicomputer systems solved by considering tasks as 
particles acted upon by forces. 

All these approaches have the goal of optimizing the load balancing in the area 
of parallel and grid computing by migrating tasks between different processors, 
while our approach focuses the direct migration of selected tasks to a newly added 
resource. Furthermore we regard load balancing that is located on the middleware-
layer. 

Moreover there are static approaches, like [11], that address a finite set of jobs, 
operations and machines, while our approach deals with a dynamic set of tasks 
and processors within the vehicle system. 

Balasubramanian, Schmidt, Dowdy, and Othman consider in [7], [9], and [8] 
middleware load balancing strategies and adaptive load balancing services. They 
introduce the Cygnus, an adaptive load balancing/monitoring service based on 
CORBA middleware standard. Their concept is primarily described on the basis of 
a single centralized server, while decentralized servers that collectively form a 
single logical Load Balancer is not explained in detail. 

Moreover the topic of dynamic reconfigurable automotive systems is regarded 
in [2], [1], [13] and [14]. In the following paragraphs we discuss several middle-
ware approaches for automotive systems. 

The Autosar consortium [19] suggested a middleware approach based on a run-
time environment (RTE). The RTE is developed to support a common infrastruc-
ture for automotive systems. The self-configurability developed in our approach 
will enrich the Autosar RTE especially by dynamic reconfiguration management 
through load balancing.  

In [15] a formal specification for developing distributed, embedded, real-time 
control systems is described. The middleware supports dependable, adaptive dy-
namic resource management based on replicated services. 

An additional approach according fault-tolerance and dynamic reconfiguration 



4  

is discussed in [16]. Again replicated services are used in this model. In [17] a 
middleware architecture for telematics software based on OSGi and AMI-C speci-
fication is presented. An application manager is introduced for telematic applica-
tions. The architecture enable in-vehicle terminal to provide various telematics 
services to increase driver’s safety. 

The authors of [18] describe trends for automotive systems. They give an over-
view of requirements for middleware systems in this area. Especially what indus-
try demands for such middleware services. Hiding the distribution and the hetero-
geneity of such platforms is demanded as well as providing high-level services 
(e.g. mode and redundancy management) and ensuring QoS.  

3. Motivation 

In this section we give a motivation for our approach. We identify three use 
cases: 

• Task fails on an ECU and have to migrate to another one 
• ECU has a defect - all task will be migrated 
• New device is attached to the network 

 
As an example we will use the second use case. If an ECU of the vehicle Info-

tainment system failed, a migration to another ECU within the vehicle that is able 
to execute the applications or tasks should be possible. Thus it is possible to mi-
grate for example tasks of the ECU with the radio system to the ECU running the 
navigation system.  

After the failure occurred within the vehicle the system starts a self-
reconfiguration without avoiding overloading ECUs. The self-reconfiguration is 
surely based on specific characteristics from the tasks and the ECUs. That means, 
it has to be ensured that a task could only run on an ECU that is able to execute it.  

In consideration of all running processes and the resources situation within the 
vehicle network appropriate services decide on a possible load balancing accord-
ing to different strategies and initiate the task migration where required. Thus in 
our example where an error occurred inside the radio system the appropriate tasks 
migrate from the radio to the navigation system. Let us assume that the navigation 
system respectively the ECU is able to run the tasks from the radio system.  

4. Proposed Middleware Architecture 

To realize the use case scenario (failure in the radio system) described above 
and other possible services for example device detection a middleware architec-
ture is required that fulfills several requirements. We introduce four sub-modules 
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to handle self-configuration in the middleware. The Event Management detects 
failures in the vehicle network and it is responsible for detection and removal of 
additional ECUs. Detailed information and capabilities of existing ECUs as well 
as the registration of newly added devices is realized within the Device Registra-
tion module. All status information and the resource load of each ECU within the 
vehicle are stored by the Resource Management. Finally, the Load Balancing ini-
tiates the task migration based on specific characteristics and requirements of the 
tasks and ECUs. In the following we give a more detailed view of the middleware. 

The operating system builds the interface between the hardware and the mid-
dleware (see Figure 1). Additionally, device drivers are necessary for specific 
hardware parts. The tasks run on top of the middleware. Middleware is a software 
layer that connects and manages application components running on distributed 
hosts. It exists between network operating systems and application components. 
The middleware hides and abstracts many of the complex details of distributed 
programming from application developers. Specifically, it deals with network 
communication, coordination, reliability, scalability, and heterogeneity. By virtue 
of middleware, application developers can be freed from these complexities and 
can focus on the application's own functional requirements. 

Before explaining the design of our automotive middleware and the specific 
services, we enumerate the five requirements of automotive middleware. These 
requirements are resource management, fault-tolerance, and specialized communi-
cation model for automotive networks, global time base, and resource frugality. 
These requirements are derived from the distributed, real-time, and mission-
critical nature of automotive systems and differentiate automotive middleware 
from conventional enterprise middleware products. 
 

 
Figure 1. Self-configurable architecture. 
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A vehicle has a real-time nature. It is a system in which its correctness depends 
not only on the correctness of the logical result, but also on the result delivery 
time. Since a vehicle is subject to various timing constraints, every component in a 
vehicle should be designed in a way that its timing constraints are guaranteed a-
priori. At the same time, the timing constraints of a vehicle should be guaranteed 
in an end-to-end manner since an automobile is a distributed system and its timing 
constraints are usually specified across several nodes. For example, let us consider 
a typical timing constraint of an automobile. If pressing a brake pedal is detected 
at the sensor node, then the brake actuator node must respond to it within 1 ms. To 
meet this constraint, there must be a global Resource Manager that calculates the 
required amount of resources on each node and actually makes resource reserva-
tions to network interface controllers and operating systems on distributed nodes. 
Automotive middleware is responsible for such resource management. 

The middleware in our approach includes four components that offer specific 
services: Registry, Event Manager, Resource Manager and Load Balancer. 

The Event Manager is responsible for the failure detection and the device dis-
covery. If a failure occurred the Event Manger triggers the Load Balancer to initi-
ate a feasible migration of tasks. Additionally, if a new device is added to the 
automotive system via technologies like Bluetooth or WLAN for example, it is 
recognized by the Event Manager component. Vice versa the Event Manager also 
notices the detaching of the device. In both cases it will inform the Registry of the 
middleware about the availability or the detaching of the additional device. 

Existing and new devices are registered and detached devices are unsubscribed 
within the Registry service. During the registration the specific characteristics of 
the device (like memory, CPU, etc.) are stored within the Registry. Due to the dis-
tributed system the Registries of each vehicle ECU (Electronic Control Unit) 
communicate with each other to guarantee that each Registry of an ECU knows 
the actual status of all devices within the network inclusive of the newly added 
devices. 

The Load Balancer spread tasks between the vehicle ECUs in order to get op-
timal resource utilization and decrease computing time. It evaluates possible mi-
gration of tasks based on different load balancing strategies. To guarantee a suit-
able migration the Load Balancer considers the current resource situation on the 
ECUs with aid of the Resource Manager. If a failure is occurred the Load Bal-
ancer tries to find based on the characteristics of the tasks and ECUs a feasible 
migration. Once a load balancing on an additional device is started, and this de-
vice is detached while the migrated tasks are executed, they will be re-started on 
the original ECU again. In this case the Event Manager is responsible to inform 
the Load Balancer to initiate this re-start. 

The Resource Manager supervises the resources of the local ECU. To be aware 
of the complete network resource situation all Resource Managers synchronize 
with each other. Thus the Load Balancer gets the current resource situation of the 
complete vehicle infrastructure with aid of its local Resource Manager. 

In our approach, the middleware is located on each ECU in the vehicle. Every 
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ECU has a unique ID. The ECU with the lowest ID is the master. Thus it is re-
sponsible for the control of the entire vehicle network, and newly connected and 
the detaching of additional devices are discovered by its Event Manager, device 
information is registered by its Registry, and its Load Balancer is responsible for 
the evaluation of the possible migration with the aid of the local Resource Man-
ager. If the master ECU fails a new master will be chosen with the aid of the 
Bully-Algorithm [10].  

The failure detection if a node fails will be handled by a hardware interrupt. It 
initiates an error correction in our middleware. That means, to correct the error, 
tasks of the omitted node are migrated to other ones, which are able to execute 
them. In this paper we will not focus on the failure detection but on error correc-
tion. Therefore, our middleware must be able to migrate tasks. A detailed knowl-
edge of the task characteristics is needed. It is important to know if it is a real-time 
task or not.  

 

 
Figure 2. Failure correction handling - the task migration mechanism. 

Figure 2 presents our approach for task migration. We assume that each task 
has a priority and we have a detailed knowledge about their hardware require-
ments. Additionally, the data dependencies between the tasks are known. As we 
can see from figure 2 we start with a priority scheduler. He will schedule the tasks 
according their priority in priority queues. That means, we have for each priority 
an own task queue. Within the queues the tasks are scheduled by a simple earliest 
deadline first (EDF) scheduler to ensure a flexible schedule [12]. Real-time (RT) 
tasks have a high priority.  The Load Balancer works on the priority queues be-
ginning from the queue with the highest up to the lowest priority. For each se-
lected task a possible set of ECUs who are able to execute the task is evaluated. 
After that a data dependency check will be done. That means, we look at those 
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tasks that interact with the inspected one. In that case the interaction is weak the 
Load Balancer selects an ECU from the previously evaluated set of ECU and fi-
nally migrate the task to that one and delete the task in the priority queue. In case 
of a strong interaction the Load Balancer will try to avoid unnecessary busload, by 
selecting an ECU from the ECU set that is able to execute both tasks. Afterwards 
both tasks will be deleted in the priority queue. If the Load Balancer could not 
find a possible ECU for migration the task will be deleted from the queue with the 
outcome that a migration is not possible.  

The previous paragraph give an overview of the migration, but there are still 
some open issues we will discuss in the following. If an ECU with more than one 
task running on it fails we will migrate the tasks to one or more ECUs according 
the classification of the tasks (see Figure 2). That means tasks with high-priority 
will migrated first followed by the other ones. During the migration phase the tim-
ing of the tasks are taken into account. After a task migration we have to decide to 
start the task new or from that state before the ECU fails, but how to recognize 
this state? Therefore, we need the context of the task. Our solution is the follow-
ing, if we have a context available (e.g. store in an external flash memory of the 
ECU and still available) we will invoke the task with the context, otherwise not. 
This gives a brief overview how our middleware migrate tasks. Finally the deci-
sion which tasks are migrated is done by the Load Balancer, see section 6. 

Figure 3 shows a sequence diagram where a failure occurred in the radio sys-
tem. We assume the tasks from the radio system can migrated to the navigation 
system.  

As we can see in Figure 3 the Event Manager detects the failure of the radio 
system, this is done by the function failure_detection(error_code). Afterwards the 
Event Manager triggers the Load Balancer with the initialize() function. The Load 
Balancer ask for all device information from the Registry 
(req_loads(*device[0..n])). Then the Resource Manager runs the schedule() func-
tion to calculate all possible schedules. The Load Balancer will get the device in-
formation back from the Resource Manager with ack_loads(*device[0..n]). Fi-
nally the Load Balancer will calculate (initiate_load_balancer()) which tasks 
could be move from device with the failure to another one based on the informa-
tion of the schedules, the load of each processing element in the car-network, the 
communication costs and regarding the feasibility. In our case he will decide to 
move tasks from the radio to the navigation system. 

In the last paragraph we describe the interactions between the four tasks, which 
are necessary to support load balancing. Now we will discuss the internal data 
structure of our middleware. The Event Manager triggers the Registry and initial-
ize the Load Balancer. The Registry itself interacts with the Resource Manager 
and the Load Balancer. The Resource Manager hands over the actual status of the 
entire system to the Load Balancer. 
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Figure 3. Failure detection of the radio system. 

To perform the scheduling in the Resource Manager we can select between dif-
ferent scheduling strategies. They are instantiated within the scheduling mecha-
nism class of the internal data structure. 

The Registry as well as the scheduling mechanism needs information’s of all 
tasks and devices. This is handled by the so called list class. It contains linked lists 
of devices and tasks and offers functions to manage the lists. As described before 
list offers all functions to manage the task list, but additionally functions to set the 
status of the tasks are needed. The status of the task is running, waiting or sleep-
ing. Besides this the task manager is able to create a new task. The information of 
a task is stored in the data structured provided by the task control block. The pa-
rameters of the generated structure are set by the task manager with functions 
from the list class. The list class uses the functions from the task control block to 
get information’s from tasks. 

For the devices we have the same functions available as for the tasks. This is 
realized in the device control block. Each device has a list containing the task-id's 
that are running on the device. By setting the global variables of our middleware 
we can initialize the system and can set it in running mode. 

5. Load Balancing Strategy 

There are several possibilities to balance the load after an error happened inside 
the vehicle Infotainment network. Initiated by the Load Balancer component the 
new resources can be used and applications or tasks can be migrated to the addi-
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tional device. 
In the following the cost-based load balancing strategy is briefly described. 

Within the cost based strategy the Load Balancer evaluates possible migration of 
tasks from one ECU to another. He evaluates a set of ECUs where the task could 
be migrated. Hence that the migration is only a useful option if 

 
 the cost of migrating is lower than the cost of keeping tasks with their 

original device and 
 it is feasible to migrate a task or a set of tasks from one ECU to an-

other one (feasibility). 
 
The cost benefit ratio for tasks of busy devices is computed which helps the 

Load Balancer to form the decision of whether to migrate or not. The calculation 
of migration costs of task is realized according to the priority list of the Most 
Loaded strategy. Most Loaded generates a priority list which ranks the tasks from 
the busiest processor. In that way the tasks with the highest priority will be mi-
grated to the resources of the additional device. 

Let us assume we have tasks ti with i = 1 to n, and the utilization of the task 
running on an ECU is ui. Additionally, let Uj the maximum utilization of ECU ej 
with j = 1 to m. Then the upper bound for the utilization of an ECU ej is: 

 

For the communication we can make the following assumptions. Let ck with k = 
1 to r the communication channels in the vehicle and Ck the maximum costs a 
channel ck has. Furthermore, let mi,k the cost task ti produce on channel ck. Then 
we can define the following bound for the communication cost a channel ck: 

 

Now our Load Balancer has to find an optimal balancing for all tasks within in 
the vehicle network regarding the utilization, communication cost and the feasibil-
ity. This can be done with integer linear programming (ILP) or other optimization 
methods. This is ongoing work right now and in the final version of the paper we 
will show some simulation results. 

6. Simulation and Results 

In this section we will describe the implementation status of our middleware 
w.r.t. simulation and results. Our middleware was implemented in C code. We 
choose C, because it is more or less the language used for ECUs. Therefore, the 
code transfer from a PC based simulation to a real target platform doesn’t need too 
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much effort.  
The implementation follows the class diagram structure presented in the previ-

ous section, see Figure 5. Within the PC based simulation we are able to param-
eterize our virtual software tasks and virtual ECUs with real values to achieve a 
software simulation of the entire system. The simulation is due to the fact that we 
use real values, near to the real system behavior. 

As we figured out from the simulation that the migration time, to start a task on 
an ECU needs more time as our implemented scheduling and load balancing ap-
proach. Therefore, the time our middleware needs is dominated by the task migra-
tion of the underlying hardware (ECUs). 

7. Conclusion and Outlook 

We presented a middleware architecture for automotive systems that enables 
dynamic load balancing within the Infotainment network. The integration of load 
balancing is a step towards a self-reconfiguration within the vehicle and to inte-
grate redundancy by task migration. We focus on a specific use case scenario 
whereby an error occurred within the vehicle network. Tasks running on the ECU 
with an error are migrates to another ECU by regarding the so-called feasibility, 
utilization and communication costs. With the help of the requirements, we de-
scribed the middleware architecture and their enrichment with new services to 
support the distribution and exchange of tasks. Furthermore, we present briefly a 
cost-based load balancing strategy we will use for our approach.  

Future work will be a detailed evaluation of the already existing load balancing 
strategies in the context of automotive systems. Additionally, the extension of ex-
isting or the development of new load balancing strategies will be done together 
with the implementation of the proposed architecture. 
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