
Guiding Organic Management in a

Service-Oriented Real-Time Middleware

Architecture

Manuel Nickschas and Uwe Brinkschulte

Institute for Computer Science
University of Frankfurt, Germany

{nickschas, brinks}@es.cs.uni-frankfurt.de

Abstract. To cope with the ever increasing complexity of today's com-
puting systems, the concepts of organic and autonomic computing have
been devised. Organic or autonomic systems are characterized by so-
called self-X properties such as self-con�guration and self-optimization.
This approach is particularly interesting in the domain of distributed,
embedded, real-time systems. We have already proposed a service-ori-
ented middleware architecture for such systems that uses multi-agent
principles for implementing the organic management. However, organic
management needs some guidance in order to take dependencies between
services into account as well as the current hardware con�guration and
other application-speci�c knowledge. It is important to allow the appli-
cation developer or system designer to specify such information without
having to modify the middleware. In this paper, we propose a generic
mechanism based on capabilities that allows describing such dependen-
cies and domain knowledge, which can be combined with an agent-based
approach to organic management in order to realize self-X properties.
We also describe how to make use of this approach for integrating the
middleware's organic management with node-local organic management.

1 Introduction

Distributed, embedded systems are rapidly advancing in all areas of our lives,
forming increasingly complex networks that are increasingly hard to handle for
both system developers and maintainers. In order to cope with this explosion of
complexity, also commonly referred to as the Software Crisis [1], the concepts of
Autonomic [2,3] and Organic [4,5,6] Computing have been devised. While Auto-
nomic Computing is inspired by the autonomic nervous system (which controls
key functions without conscious awareness), Organic Computing is inspired by
information processing in biological systems. However, both notions boil down
to the same idea of having systems with self-X properties, most importantly
self-con�guration, self-optimization and self-healing. More speci�cally,

� self-con�guration means the system's ability to detect and adapt to its en-
vironment. An example for this property would be the plug-and-play found

in modern computers, which is used to automatically detect and con�gure
certain attached devices;

� self-optimization allows the system to autonomously make best use of the
available resources, and deliver an optimal performance;

� self-healing describes the detection of and automatic recovery from run-time
failures, for example by using heartbeat signals and restarting services that
are not responding in time.

To present to the applications a homogeneous view on a distributed system of
heterogeneous components, there usually is a layer called middleware on top of
the components' individual operating systems, making the distributed nature of
the system mostly transparent to the application developer. Within an organic
computing system, we expect the middleware layer to autonomously achieve
a high degree of transparency. This includes self-con�guration even within a
dynamic environment (such as found in ad-hoc networks), self-optimization at
run-time, and self-healing in case of failures, thus providing a robust, e�cient
and uniform platform for the applications without human maintenance or inter-
vention.

Another increasingly important requirement for today's distributed embed-
ded systems is real-time capability. A real-time system must produce results and
react to events in a timely, predictable manner, guaranteeing temporal restraints
that are imposed by the applications.

In [7], we have proposed a service-oriented organic real-time middleware ar-
chitecture that achieves self-X properties through a multi-agent-based approach.
Services act as intelligent agents that use an auction mechanism to coordinate.
These agents may move around within the system, �nding optimal nodes to run
on, and tasks are allocated to agents that are most appropriate. This approach
handles self-organization and self-optimization. However, a mechanism needs to
be devised that describes and de�nes dependencies between services, between
resources and between tasks in order to provide guidance for task and resource
allocation. This mechanism must also be able to describe properties of the hard-
ware (such as attached sensors or actors or available resources). Since that kind
of information is often domain speci�c, it is essential that the application or
system designer be able to specify these properties without modifying the mid-
dleware, therefore a generic mechanism is needed. In this paper, we propose an
approach for such a mechanism.

In Sect. 2 we mention related work. Section 3 gives an overview about our
own architecture and motivates the need for guiding organic management in
more detail. In Sect. 4 we describe our mechanism and analyze its properties.
Sect. 5 shows how to combine that approach with our agent-based middleware
architecture in order to achieve a sensible organic management, and Sect. 6 how
to integrate it with the node-local organic management. Finally, in Sect. 7 we
provide an example that demonstrates our ideas.

2 Related Work

In autonomic and organic computing, much research has been done in recent
years (e.g. [8] for an overview). There are di�erent approaches for implementing
organic middlewares. The DoDOrg project [9] develops a digital organism con-
sisting of a large number of rather simple, recon�gurable processor cells, which
coordinate through an arti�cial hormone system. The OCµ middleware [10] fea-
tures an observer-controller architecture with centralized organic managers. It
targets smart o�ce buildings with powerful, connected networks rather than em-
bedded real-time systems. The service-oriented real-time middleware OSA+ [11]
has a low footprint and is very scalable, thus it is particularly suitable for embed-
ded distributed real-time systems. However, it does not feature self-X properties.
The general architecture for an organic, service-oriented middleware inspired by
the OSA+ approach has been developed in [12]. For this architecture, we de-
scribed an agent-based approach for implementing self-X properties in [7], which
uses concepts from multi-agent systems for coordination and task allocation. A
short summary of our approach is given in Sect. 3. We are currently imple-
menting and evaluating the proposed mechanism within the CAR-SoC project
[13,14].

Other agent-based approaches for organic middlewares, such as [15,16,17], do
not feature real-time capabilities. To our knowledge, a �exible, generic mecha-
nism for describing service and resource dependencies in a service-oriented mid-
dleware has not yet been developed. Services in OSA+ are �xed on the resources
they manage, and tasks are dispatched globally. Other approaches use central
planning or do not consider dependencies at all.

3 Overview and Motivation

For an organic middleware, a service-oriented architecture proves to be a good
choice. For implementing self-con�guration, self-optimization and self-healing, a
modular concept is vital. In such an architecture, tasks are processed by services,
which in most cases are not part of the middleware core, but run as independent,
loosely coupled entities, leading to a microkernel design. We have proposed and
explained in detail such a design in [7]; here, we will only give a short overview.
We have chosen a microkernel-based approach primarily for scalability, �exibil-
ity, reliability, recovery and extensibility. In our proposed system, services are
intelligent agents as de�ned in [18]. Task allocation is done using an auction
mechanism based on ContractNet [19,20]. This mechanism uses cost/bene�t cal-
culations in order to determine the most suitable service agent for processing
a given task. This approach is distributed (i.e. does not require central control,
thus avoiding a single point of failure) and real-time capable.

In addition to in�uencing the task allocation mechanism by computing sensi-
ble cost/bene�t functions, service agents can perform self-optimization by nego-
tiating with other agents (potentially swapping or delegating already allocated
tasks if this proves to be more optimal) or by migrating to another node of the

distributed system that is more suitable. Sandholm [21] has shown that an op-
timal task allocation can achieved in a ContractNet that allows re-allocation of
tasks in certain ways. By periodically re-evaluating the current task allocation
and agent distribution, and appropriate reactions, the system will also adapt
to a changing environment. In addition, the middleware core can start or shut
down service agents on particular system nodes as needed in order to improve
scalability and optimize work load.

All this should happen autonomously, without human intervention or con�g-
uration. However, dependencies between tasks or between agents, the need for
particular resources and hardware limitations on particular nodes restrict the
con�guration space for an agent. For example, if a task needs a certain resource
locally, an agent can only o�er to process it if it sits on a node that has that re-
source available. Or, a particular agent can only run on a node that has a certain
hardware sensor attached. Or an agent might require another service running on
the same node in order to perform certain functions or run at all. In order to
de�ne such restraints and dependencies, a mechanism is needed that guides the
system's self-con�guration in a way that does not require manual intervention
after initial setup. In particular, the following properties are desirable:

� Many dependencies and restraints are application-speci�c. Thus we need a
generic mechanism that is separated from the middleware implementation
such that the application developer (or even the user) can de�ne them as
needed.

� The same is true for describing the hardware con�guration. A node's op-
erating system must be able to communicate its hardware setup (such as
attached sensors and actors) to the middleware in a way that is �exible and
extensible. It must not be necessary to recompile or recon�gure the middle-
ware if e.g. a new type of hardware device is available; an application service
that supports this device should be able to recognize its existence and to
make use of it without explicit support by the middleware.

� The mechanism needs to be real-time capable.
� The mechanism should be transparent to the application. In particular, it
should not matter for the application where (on which node and by which
service agent) a task is executed, as long as it is executed at all. Of course,
the application needs to be able to specify the requirements for processing a
task.

In the following sections we propose and describe a mechanism that has these
properties.

4 A Capability-Based Mechanism for Guiding Organic

Management

The proposed mechanism is based on so-called capabilities. Roughly speaking,
a capability c is a globally unique, possibly application-speci�c identi�er repre-
senting a particular feature, ability or resource. More formally, we have a set C

containing all known capabilities, hence c ∈ C. Most of the time we will consider
sets of capabilities, taken from the power set P(C). Furthermore, on a given
node, we have a set R of hardware resources (such as sensors or actors) and a
set A of service agents. The subset A0 ⊂ A shall denote agents currently not
running on the node, whereas A1 ⊂ A is the set of currently executing agents.

A hardware resource r ∈ R provides a set Sprov
r ∈ P(C) of supported ca-

pabilities. A service agent a ∈ A, on the other hand, usually requires a certain
set of capabilities Sreq

a ∈ P(C) to run. Moreover, a running service agent might
provide additional capabilities Sprov

a ∈ P(C) to the node it is executed on.
This allows the speci�cation of dependencies between services, such that a

service will only be started on a node if another service is already running on
that node, or formally, an agent b ∈ A0 can be started on the node if and only if

Sreq
b ⊂

(⋃
a∈A1

Sprov
a ∪

⋃
r∈R

Sprov
r

)
.

The management of capabilities of a node's resources and agents then boils
down to performing set operations, and since we are targetting the real-time
domain, we need to consider if those can be implemented e�ciently. In particular,
the middleware core needs to join sets and it needs to test if one set is a subset
of another. For removing capabilities from sets, subtraction is needed.

A very time-e�cient implementation represents capability sets by bitstrings,
with each bit representing a given capability that is either present or not. In this
case, the a�orementioned set operations boil down to bit-wise logical operations
that can be done e�ciently in constant time. Let S and T ∈ P(C) be capability
sets, and s and t the corresponding bitstrings. Then the following are equivalent:

Set operation Logical operation

S ∪ T s OR t

S − T s AND NOT t
T ⊂ S ? (s AND t) = t ?

If the core maintains a capability set containing all o�ered capabilities (by
joining Sprov for all resources as well as started services), it can check if a given
service agent can be started in constant time. Removing a service, however, can
only be done in constant time if we can assume that a capability cannot be
provided by more than one resource or agent; only then can we use set substrac-
tion to remove the provided capabilities from the global set. Otherwise, the core
needs to check all remaining providers for that capability, so this operation needs
linear time (in the number of resources and running agents).

One drawback of this mechanism is the fact that the global number of ca-
pabilities must be known beforehand (at compile time) in order to guarantee
constant time operations; otherwise, one needs to provide for dynamically grow-
ing capability sets. Another drawback is that the representation of a capability
set is not the most space e�cient. If we have n capabilities in the system, we

need a bitstring of length n to represent a capability set regardless of the num-
ber of elements contained. A single capability, however, can be represented as
an integer number and mapped to its corresponding bit using a list of bitmasks
for set operations.

If the real-time constraints and hardware resources allow for a more complex
implementation, one can also use a more dynamic approach, for example using a
hierachical tree structure containing named capabilities, where each node acts as
a namespace for its children. A capability is then described by its path starting
from the root of the tree. The most prominent advantage of such an approach
is that it is dynamically extensible; the number of known capabilities needs
not to be known beforehand, and the use of namespaces allow for arbitrarily
(application-speci�c) named capabilities without the risk of collisions. However,
this data structure does not allow for constant-time processing of sets.

5 Combining The Capabilities-Based Approach With

Service Agents

As summarized in Sect. 3, we have proposed a middleware architecture that
realizes self-X properties using service agents that coordinate using an auction
mechanism. Essentially, for a given task, an announcement is sent out to suitable
agents within the system � where the suitability of an agent can be checked by
comparing its set of provided capabilities to the task's set of required capabilities.
Every suitable agent determines the cost processing the task would incur and
sends this information to the core. The agent with the best o�er gets awarded
the task.

For this auction mechanism, it is vital that a service agent be able to compute
a sensible cost/bene�t function for processing the task. Such a function should
consider the cost of using needed resources, and also capture quality-of-service
parameters (such that the price for processing a task depends on the quality
of the result). Thus, it makes sense to attach cost information directly to the
capabilities. This means, that using a resource is mapped to �using� a capability,
and the provider of that capability (e.g. the node operating system or another
service agent) determines an appropriate cost value. Of course, the same is true
for delegating subtasks to other agents, which also would be mapped to using the
corresponding set of capabilities. Quality-of-service parameters can be attached
to the cost inquiry. Thus, the total cost for processing a given task is composed
of the cost of the needed resources and subtask processing, represented by the
corresponding capabilities.

6 Integrating Capabilities With Node-Local Organic

Management

Within the CAR-SoC project, we are currently implementing our proposed ap-
proach in a middleware we call CARISMA1. CAR-SoC aims to build a dis-
tributed embedded real-time system, with organic properties being employed
throughout the whole stack. The individual nodes within the network run an
operating system (called CAROS [22]) that features node-local organic manage-
ment as described in [23]. We will not go into this concept in detail here, but
only summarize the basic principles in a very concise and simpli�ed manner as
far as it concerns the interaction of the middleware layer's organic manager with
the individual nodes (Fig. 1).

CAROS employs a two-staged organic management approach. On the lower
level, small management units, so-called Module Managers, each manage a small
set of system parameters, usually tied to a speci�c hardware or software mod-
ule. Module managers receive raw monitoring data and can directly change the
system parameters they manage. If a decision cannot be made on this lowest
level, pre-interpreted monitoring data in a generic format is forwarded to the
upper level, the node-local organic manager, which can make decisions based on
node-wide status information.

As it turns out, this approach integrates very well with the capability-based
approach for global organic management we propose here. A special middleware
service agent (called HAL Agent, for Hardware Abstraction Layer) manages the
interaction between the middleware core and the underlying node operating sys-
tem. Its main task is to translate the speci�c hardware features into capabilities,
and to attach a sensible cost/bene�t function to using a given capability in or-
der to in�uence the global organic management by way of the a�orementioned
auctioning mechanism. To accomplish that, the HAL agent registers itself as
a module manager for the system parameters that can be monitored and/or
in�uenced by the middleware layer.

On the middleware level, using a capability will generally require the usage of
node resources. The module manager for a given resource attaches a cost scale to
using that resource. In addition, system parameters might need to be adjusted.
For example, using a capability might require a certain amount of processing
power, which in turn might require to increase the node's processor frequency.
On the node level, any actor that changes system parameters also has a cost scale
attached. Changing a parameter, or a combination of parameters, will improve
or worsen the node's state; for example, increasing the processor frequency in
order to o�er required computing power also increases energy consumption and
system temperature and therefore the overall cost value of the action. In order to
in�uence the global organic management, the node's cost scales are integrated
by the HAL Agent and attached to the capabilities to be used by the global
auctioning mechanism. Summarizing this, the cost/bene�t function for using a

1 Connected Autonomous Real-time Intelligent Service-based Middleware Architec-
ture

Fig. 1. Integration of node-local and global organic management. The shaded parts
are components of the HAL Service agents, while white boxes belong to local organic
management.

given capability is derived from both the cost scales for the needed resources and
for changing the node's state.

On the other hand, the HAL Agent can also register its own actors on the
node level, thus allowing the node's organic manager to actively in�uence global
organic management. For example, one actor might be �move this service from
this node to another�. The attached cost scale would re�ect the possible alter-
native locations for running the given service (obtained as the result of an auc-
tioning round). Another possibility might be to change quality-of-service (QoS)
parameters of a running service in order to improve the node's state; the cost
scale the HAL agent provides for this actor would re�ect the incurring quality
degradation on a global level.

This shows that within the architecture proposed in the CAR-SoC project,
both global and local organic management can interact in various ways. Capa-
bilities as suggested here allow mapping global properties to local resources and
system parameters and vice versa. This diversity in implementation of organic
features will be very interesting to explore; in particular, how to �ne-tune the
balance between the global and local organic managers, since both levels can
in�uence the other's decisions passively (by modifying cost values) or actively
(by performing actions).

7 Example

For a better understanding, we will in this section discuss a simple example that
demonstrates auction-based task allocation using capabilities in order to provide
self-X properties. For the sake of brevity and simplicity, we will only describe
the global level of organic management and not consider the interaction with
the node-local organic management as described in Sect. 6.

Consider the front lighting control of a car. We assume that this car has a left
and a right headlight, a left and a right turn signal and a left and a right front

fog light. These lights are controlled by two microcontrollers running our agent-
based middleware (Fig. 7). As example scenario for self-X properties, consider
that one of the turn signals breaks and can no longer be used. The system shall
detect this failure and then autonomously decide to let the corresponding fog
light blink in the future, since this behavior (signaling a turn with a fog light) is
still safer than not signaling a turn at all. In addition, if the fog light also stops
working, the system shall decide to use the headlight instead (which is the worst
method, but still better than nothing). This is an example for self-healing.

Fig. 2. Example scenario. Two controllers (Node A and B) each control three lights.
Hardware is accessed through the HAL service providing appropriate capabilities. Con-
trol services make these available to higher-level, more complex services such as Sig-

nalLeft and SignalRight.

The system nodes provide capabilities (possibly through a hardware abstrac-
tion layer service HAL) that describe the hardware con�guration. Each node
has the capabilities HEADLIGHT, TURNSIGNAL and FOGLIGHT. In addi-
tion, the physical location of these lights needs to be de�ned, so the nodes have
the capabilities RIGHT resp. LEFT. Each light is controlled by a service that
allows to toggle its state and that monitors the function of the corresponding
light. Thus, these services need the corresponding capability to run, and they
provide the capabilities ON and OFF for their lamp. In addition, information
about the nature of the light is provided. All lights can ILLUMINATE the road,
and all lights can SIGNAL a turn. However, they are not equally suited for these
tasks, so these capabilities carry a cost value2 with them that describes how ap-
propriate a job is for the given light. Here, application-speci�c knowledge is used
in order to in�uence the organic management appropriately. Since a headlight
can illumante the road quite well, the cost is 0; on the other hand, using it as
a turn signal is only desired if it is the only working light left, so we associate

2 Note that the absolute number does not matter; it is the relation between di�erent
cost values that guides task allocation.

a cost of 100 with that. A fog light can illuminate the road somewhat, but not
very good. We give it a cost of 50. It also can signal a turn if necessary, and is
preferred to the headlight for that task, so the cost for signaling should not be
0, but also less than 100. We give it a 50. The turn signal can hardly illuminate
the road, but we still want to turn it on if the other lights are all broken; so the
cost for illumination is 500. Of course, it signals a turn for free because it is the
preferred device for that task. The services, capabilities and cost are summarized
in Tab. 1.

Service Capability Cost

HEADLIGHT 0
Node A FOGLIGHT 0
HAL TURNSIGNAL 0

LEFT 0

HEADLIGHT 0
Node B FOGLIGHT 0
HAL TURNSIGNAL 0

RIGHT 0

Service Capability Cost

ON 0
HeadlightCtrl OFF 0

ILLUMINATE 0
SIGNAL 100

ON 0
FoglightCtrl OFF 0

ILLUMINATE 100
SIGNAL 50

ON 0
TurnSignalCtrl OFF 0

ILLUMINATE 500
SIGNAL 0

Table 1. System services in the example scenario, provided capabilities and associated
cost. The left table shows the capabilities provided by the hardware con�guration of
the two nodes; the right table shows the services for controlling the lighting.

7.1 Capabilities in Action

Now, services for signaling a right or left turn shall be started. To run, these
services (named SignalLeft and SignalRight) need the capabilities SIGNAL and
LEFT or RIGHT, respectively. Consider the service SignalLeft. The middleware
core can only start this on Node A, which provides the necessary capabilities. If
all lights are working, SignalLeft will use the SIGNAL capability provided by the
TurnSignalCtrl service, since it is the cheapest. It can then o�er the capability
SIGNAL_LEFT with an attached cost of 0 to the application. Now assume that
the blinker lamp breaks. TurnSignalCtrl will notice this and notify the system
that it can no longer provide its capabilities. This information is forwarded
to SignalLeft. It now tries to �nd another service that provides the SIGNAL
capability; FoglightCtrl can do this for 50. This means that SIGNAL_LEFT is
still being provided to the application, but for a cost of 50 now. Only if the fog
light also breaks will SignalLeft resort to the headlight, since it is even more
expensive to use. Should all lights on the left side be disabled, SignalLeft could
no longer �nd the SIGNAL capability and would need to shut down. A similar

scenario can be imagined for road illumination, causing the system to resort to
the fog light if the headlight breaks, and still using the turn signal if all else is
gone.

7.2 Summary

This example demonstrates how capabilities can be used to describe the hard-
ware con�guration of a system, and how an auction-based task allocation mech-
anism can make use of appropriately de�ned capabilities for realizing self-con�-
guration and self-healing.

8 Conclusion

In this paper, we have presented a method for describing dependencies between
services and resources in a service-oriented organic middleware. In such a mid-
dleware, self-X properties are realized by allocating tasks to the most suitable
service, and executing services on the most suitable node. This information is
often application-speci�c and cannot be hard-coded within the middleware. We
have shown a generic mechanism based on capabilities that allows guiding the
organic management. It is possible to specify both dependencies between services
and dependencies on resources. By combining the capability mechanism with an
auction-based task allocation mechanism as described in [7], self-optimization,
self-con�guration and self-healing can be achieved.

We are currently implementing the proposed mechanism in our middleware
CARISMA, which is part of the CAR-SoC project [13]. This project extends
the focus of organic computing to the hardware by developing an embedded
hard-real-time system supporting autonomic computing principles. CARISMA
closely interacts with the local (per-node) organic management to create a robust
self-con�guring, self-optimizing and self-healing distributed system. We have de-
scribed how we plan to integrate both the global and node-local organic man-
agement by mapping capabilities and attached cost functions to local monitors
and actors.

References

1. Gibbs, W.W.: Software's chronic crisis. Scienti�c American (September 1994)
72�81

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
(January 2003) 41�50

3. Horn, P.: Autonomic Computing: IBM's Perspective on the State of Information
Technology. IBM Research, Armonk, NY. (October 2001)

4. Müller-Schloer, C., v.d. Malsburg, C., Würtz, R.P.: Organic computing. Aktuelles
Schlagwort in Informatik Spektrum (2004) 332�336

5. Schmeck, H.: Organic computing � a new vision for distributed embedded systems.
In: Proc. of the Eighth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC'05), IEEE Computer Society (2005) 201�203

6. VDE/ITG/GI: Positionspapier Organic Computing: Computer und Systemar-
chitektur im Jahr 2010 (2003)

7. Nickschas, M., Brinkschulte, U.: Using multi-agent principles for implementing an
organic real-time middleware. In: Proc. 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07),
Santorini, Greece, IEEE Computer Society (2007) 189�195

8. Deutsche Forschungsgemeinschaft: DFG SPP 1183 Organic Computing
9. Becker, J., Brändle, K., Brinkschulte, U., Henkel, J., Karl, W., Köster, T., Wenz,

M., Wörn, H.: Digital on-demand computing organism for real-time systems. In:
ARCS Workshops. Volume 81 of LNI., GI (2006) 230�245

10. Trumler, W.: Organic Ubiquitous Middleware. PhD thesis, Universität Augsburg
(2006)

11. Picioroag , F.: Scalable and E�cient Middleware for Real-Time Embedded Sys-
tems. A Uniform Open Service Oriented, Microkernel Based Architecture. PhD
thesis, Université Louis Pasteur, Strasbourg (December 2004)

12. Nickschas, M.: Konzeption einer Anwendungsschnittstelle für eine echtzeitfähige
Middleware mit Selbst-X-Eigenschaften. Master's thesis, Universität Karlsruhe
(TH) (September 2006)

13. Uhrig, S., Maier, S., Ungerer, T.: Toward a Processor Core for Real-time Capable
Autonomic Systems. In: Proceedings of the 5th IEEE International Symposium
on Signal Processing and Information Technology. (December 2005) 19�22

14. Kluge, F., Mische, J., Uhrig, S., Ungerer, T.: Car-SoC � towards an autonomic
SoC node. L'Aquila, Italy ACACES 2006 Poster Abstracts (July 2006) Academia
Press, Ghent (Belgium).

15. Kasinger, H., Bauer, B.: Combining multi-agent-system methodologies for or-
ganic computing systems. In: Proceedings of the 16th International Workshop on
Database and Expert Systems Applications (DEXA'05), IEEE Computer Society
(2005)

16. Mamei, M., Zambonelli, F.: Self-organization in multi agent systems: A middleware
approach. In: Engineering Self-Organising Systems. (2003) 233�248

17. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-organization in multi-
agent systems. Knowl. Eng. Rev. 20(2) (2005) 165�189

18. Weiss, G., ed.: Multiagent Systems. A Modern Approach to Distributed Arti�cial
Intelligence. The MIT Press, Cambrigde, MA (1999)

19. Smith, R.G.: The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on ComputersC-29(12) (December
1980) 1104�1113

20. Sandholm, T.W.: An implementation of the contract net protocol based on
marginal cost calculations. In: Proceedings of the 12th International Workshop
on Distributed Arti�cial Intelligence, Hidden Valley, Pennsylvania (1993) 295�308

21. Sandholm, T.W.: Contract types for satis�cing task allocation: I Theoretical re-
sults. In: AAAI Spring Symposium Series: Satis�cing Models, Stanford University,
CA (March 1998) 68�75

22. Kluge, F., Mische, J., Uhrig, S., Ungerer, T.: An Operating System Architecture
for Organic Computing in Embedded Real-Time Systems. In: Proceedings of the
5th International Conference on Autonomic and Trusted Computing (ATC-08),
Oslo, Norway, Springer (Jun 2008)

23. Kluge, F., Uhrig, S., Mische, J., Ungerer, T.: A two-layered management archi-
tecture for building adaptive real-time systems. In: Proceedings of the 6th IFIP
Workshop on Software Technologies for Future Embedded & Ubiquitous Systems
(SEUS 2008). (2008)

