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Abstract. The novel and generic meta-interface (MI) paradigm proposed in this 
paper automates the generation of customized telemedicine software systems 
(CTSS), directly from the customized application interface (CAI) specifications 
given. The MI paradigm was tested and verified in the TCM (Traditional 
Chinese Medicine) telemedicine environment of Nong’s Company Limited of 
the PuraPharm Group, a local Hong Kong TCM telemedicine developer that 
funded this research. The CAI specification is made by “gluing” together icons 
selected from the enterprise icon library (IL). The CTSS generation, in effect, 
extracts the corresponding portion of the subsumption hierarchy from the 
master ontology, an enterprise standard. Since CTSS prototypes were verified 
in the Nong’s TCM telemedicine environment, they were built with the Nong’s 
master TCM ontology core (onto-core) as the basis and reference. In this light, 
the ontological extraction for a CAI specification is turned into the local TCM 
onto-core for the CTSS prototype. The enterprise TCM onto-core, the local 
TCM onto-core, and the icons in IL all contain formal knowledge derived from 
the enterprise TCM vocabulary. In Nong’s case the enterprise vocabulary is the 
standard of CTSS terminology, gathered from TCM classics, treatises, and case 
histories by domain experts with consensus certification. Using CAI as the 
single input to automate the whole CTSS generation process would eliminate 
MSPM (multi-site project management) problems. Since the Nong’s MC 
(mobile clinics) based telemedicine system is web-based and pervasive, the 
CTSS is also referred to as the Nong’s web-based telemedicine systems (WTS).   
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1   Introduction 

We propose in this paper the innovative meta-interface (MI) paradigm for developing 
remotely deployable ubiquitous web-based telemedicine systems (WTS). The goal is 
to customize each client's WTS from a single master ontological core (onto-core), 
which would then be maintained by the enterprise (i.e. enterprise/master onto-core). 
Nong’s Company Ltd., of the PuraPharm Group in the Hong Kong SAR, is one such 



enterprise and a local leader in supplying TCM (Traditional Chinese Medicine) WTS 
to hospitals and clinics across the globe. The company had created its own enterprise 
TCM onto-core with consensus certification [1] to support MC (mobile clinics) based 
telemedicine systems. From this enterprise TCM onto-core, Nong’s customizes WTS 
variants specified by the customers. After deployment each customized WTS is 
automatically linked over the mobile Internet to the PuraPharm/Nong’s (PP/N) 
mobile-business (MB) core.The proposed MI paradigm now offers a solution to the 
PP/N management's long search for a way to effectively automate the WTS 
customization process. Their lengthy search is understandable because successful 
development of qualitative software systems and applications is no easy task. This 
development process needs to satisfactorily address different contemporary issues [2] 
that deal with problem domains, varied operational environments, and cultural 
differences (e.g. natural languages). These issues could be complicated when 
developing web-based applications that are distributed over diverse geographic 
locations and involve complex ICT (information communications technology) 
concerns and MSPM (multi-site project management) activities. Even with the same 
project requirements MSPM linguistic variations could cause ambiguity, resulting in 
incorrect implementation or non-interoperable software modules [3]. The lack of an 
enterprise vocabulary to coordinate and disambiguate software development activities 
means a high cost-effectiveness ratio, indicated by the following surveys: 
a) High cost: In Australia and USA it is common for 50% or more of enterprise 

expenditures to be spent on software development and maintenance. 
b) Prone to failure: Less than 50% of software development projects in the Western 

world were completed successfully. 
c) Same trend: The trend of roughly 70% software project failures will continue into 

the future, remaining the same as it was three decades ago.  
 
Although the software engineering discipline has been evolving fast [1], the generic 
waterfall model in Figure 1 can still abstract the system development cycle in four 
phases:  
a) Phase 1 - Requirement specification and analysis. Its goal is to analyze and 

accurately extract the following elements from the narrated requirements: the 
necessary and sufficient number of functions for the target system; formal 
parameters for each of these functions; and the execution serializability (logical 
control flow) among the identified functions to ensure coherent and meaningful 
results. A function normally performs only one application-specific task of 
transforming the actual parameters into the expected result. For example, 
if ),( 21 xxf  is a function, ),( 21 xx  are two formal parameters that would 
assume actual values/parameters before execution (i.e. the transformation process). 
The functions and their intertwined logical relationships form the functional 
specification; constraints specified for these relationships form the constraints 
specification to govern the ambit of system behavior/dynamics. The functional 
and constraints (F&C) specifications together form the domain of semantics for 
the system to know exactly what to do.  

b) Phase 2 – Design specification. Details of how the final system should work are 
addressed by: i) organizing the system semantics into small manageable modules 
(modularization) by the principle of information hiding; ii) specifying how the 



modules should synchronize and associate; iii) proposing the subsumption 
hierarchy for the modules that can be separated into two basic groups by their 
nature: control-oriented (CO) and data-oriented (DO); higher-level CO does little 
computation but controls the timely invocation of other modules; the objective of 
the lower-level DO is to produce useful information from actual parameters for 
use by the higher-level modules; iv) proposing the system architecture to support 
the final system operation; and v) evaluating data structures and 
algorithms/protocols to support information retrieval and inter-modular 
synchronizations for coherent operations. 

c) Phase 3 – Implementation. This phase aims to correctly translate the design 
specification into an intermediate form for: i) human understanding and 
manipulation, and ii) conversion into the machine-executable representation. The 
intermediate form is a program or software of a specific language (e.g. C++ or 
Visual Basic). To humans, the program syntactically represents the system 
semantics; the machine executes its compiled form (executable code). 

d) Phase 4 – Testing and debugging. Test cases are created to validate and verify that 
the implemented system prototype indeed fulfils all the functions indicated in the 
requirement specification. Debugging a distributed application is more an art than 
science for we can rarely apply traditional approaches. From the literature the only 
recognized technique to debug distributed software effectively is program 
visualization (e.g. [4,5]).  

 
      Fig. 1. Generic waterfall development life cycle 
        
The feedback loops (Figure 1) show that if errors are found in the engineering process, 
changes have to be repeatedly made in the upper source(s). Too many loop-backs 
make the process expansive. Thus, the emphasis is on producing correct F&C 
specifications, and this can be achieved by using practical formal methods (e.g. Petri 
net). The errors in translating the F&C specifications into the design specification can 
be reduced by using semi-formal, semi-automatic tools such as the DBDesigner 
(DBD) by Microsoft. The DBD converts the semantic net in the form of a 
subsumption hierarchy (e.g. DOM (document object code) tree drawn in the DBD 
format) into logically matched XML-annotated code. The SQL system (also by 
Microsoft) then can convert the annotated code directly into a usable database. If the 
CO and DO modules are programmed in VB.net (Visual Basic for the Internet), they 
interact readily with the SQL database. DBD, SQL, VB.net together fulfill the 
congruent automation principle (CAP) to be explained later. If the activities in Figure 
1 are supported by a management scheme that controls system migration, software 
changes, system versioning, and maintenance, a configuration control (CC) 
framework is formed [1].  



2   Related Work 

Successful software engineering in the 21st century needs to overcome a set of 
formidable challenges, including rapid and uncertain technological 
changes/emergence, cultural diversity leading to ambiguous understanding of the 
target system, and heterogeneity in hardware and software that prevents 
interoperability. The paper by Boehm [6] sums these formidable challenges nicely, 
and one of his guidelines is to avoid THWADI (“that’s how we’ve always done it”). 
This applies well to developing remotely deployable ubiquitous web-based 
telemedicine systems, which is an emerging phenomenon of the 21st century. In 
reality, the THWADI guideline is unavoidable, for computing requirements evolve 
rapidly in different eras, governed by the Moore’s Law [7]: i) Amdahl’s era (early 
1960s) – synchronizing sequential processes correctly was the focus; ii) Gustafson-
Barsis era (mid-1980s) – parallel computing (i.e. High Performance Computing 
(HPC)) to yield speedup; iii) megacomputing era (mid-1990s) – distributed systems 
formed with an Internet basis; and iv) pervasive era (early 2000) – concern for the 
mobility of hardware and software entities supported by location-aware capability. 
Despite the rapid evolution driven by various contemporary forces, we still find that: i) 
the waterfall model is the foundation; ii) optimal placement of program tasks is a 
focal issue; and ii) coherent synchronization of these tasks is needed for correct 
results. From the literature we identified ten major forces that affect the success of 
developing remotely deployable web-based telemedicine systems. These forces are 
represented as entries in the set },,,,,,,,,{ JIHGFEDCBAF =  as depicted in 
Figure 2:   
A. Synchronization and serializability methods: These govern how entities in the 

system interact coherently. Examples include CR (critical region), RPC (remote 
procedure call), Corba, and MPI. The method used depends on the problem 
domain and the intended environment of operation. 

B. Channel reliability methods: These shorten the service roundtrip time in 
client/server interaction. Usually dynamic or adaptive methods are more effective 
than static methods [8]. 

C. User participation: This is a necessity for effective fast prototyping so that 
immediate user feedback improves the prototype. It is ideal if the user participates 
in all stages of the waterfall model.  

D. Software engineering by parts: This is integration of software parts 
(modules/artifacts) built by other groups into the system being built. It can be 
physical code inclusions (into the system software) or logical remote invocation 
via predefined linkages. The parts can be in various programming languages but 
do not affect the final system performance [4]. 

E. Tools/methods for creating/managing data structures and databases: These 
represent the paradigm that data structures on the blueprint are realized 
automatically into physical databases; for example, converting a DBD drawing 
directly into a physical SQL database (i.e. Microsoft environment). 

F. Testing and debugging tools: These support different testing and debugging 
situations. For example, program/system behavior visualization is suitable for 



monitoring distributed agent-based software in which agents are mobile in a real-
time sense [4]. 

G. System security issues: The aim is allow a system run smoothly without 
unnecessary interruptions. 

H. MSPM (multi-site project management): Usually teams based in different 
geographic locations are involved in the development of a successful enterprise 
software system. To eliminate ambiguity a vocabulary to bridge cultural and 
language differences among working groups needs to be created. The creation of 
such a vocabulary is regarded by many researchers as an ontological approach (i.e. 
the vocabulary is the “enterprise ontology”) [9].   

I. ICT (information communications technology): This discipline combines 
appropriate technologies to build an efficient web application.   

J. Trend and era issues/laws: Inevitably, as the computing industry advances through 
various trend-setting eras and laws into today's mobility era with mobile hardware 
for location-aware networks and mobile software agents that migrate at will, some 
of the older methods and tools will be invalidated.   

 
Fig. 2. Ten external forces that affect software system success 

 
The longitudinal and latitudinal axes in Figure 2 form the backbone of the 
configuration control (CC) to balance these ten forces into equilibrium. Although the 
waterfall model is the basis for the CC, the two key issues of modular task placement 
into network nodes and ensuring correct task synchronization to achieve coherent 
results still need to be addressed. Unfortunately, no previous experience on devising 
an effective CC scheme for pervasive telemedicine system development has been 
found in the literature. The Nong’s in-house experience, which used the traditional 
waterfall model as the basis to balance (by trial-and-error) some of the forces shown 
in Figure 2 is the only useful clue so far. Besides, very limited experience can be 
found in the literature about formulating telemedicine system architectures. The only 
useful example that we encountered was the UMLS (Unified Medical Language 
System) [10].  



  
Fig. 3. A pervasive telemedicine system model  

3   Nong’s Telemedicine Framework Background 

Telemedicine, a term that was consolidated around 1999 [12], aim is to electronically 
deliver healthcare (i.e. e-health) to every corner of the globe. Its realization over the 
mobile Internet, however, is an art for there is little experience published in the 
literature for this budding discipline. Since the mobile Internet supports both wireline 
and wireless communication technologies, interacting agents of a telemedicine system 
on the web require reliable mobility and communication supports. A telemedicine 
operation is basically a digital ecosystem, in which agents/entities of different species 
(e.g. mobile clinics (MC) and surrogate agents) collaborate closely [13]. In response 
to the potential business benefits of telemedicine the Nong’s Company Ltd. developed 
several WTS, which are now deployed in different locations over the globe. The 
fundamental Nong’s WTS concept is depicted in the Figures 3 and 4.  Figure 3 
shows the mobile nature of the Nong’s telemedicine approach, which has a central 
PCI (pervasive computing infrastructure) support on a high-speed wireline network. 
Once an MC has moved into a smart space (a wireless communication cell with 
location-aware capability) it could interact with other MCs and the PCI at will. 
Typical MC tasks invoked via the application interface of the system include: i) 
patient record retrieval/update; ii) drug inventory update (both central (in PCI) and 
local (on MC)); iii) diagnostic help solicitation from remote physicians (i.e. 
collaborated diagnosis); and iv) statistics for effective MC management and disease 
control (e.g. as required by the Hong Kong SAR government). An MC (i.e. local 
telemedicine unit) is manned typically by: a physician, a dispenser, a paramedic, and 
the customized telemedicine software system (CTSS) which is conceptually depicted 
in Figure 4 as CAI. The CTSS is architecturally similar to the UMLS by having three 
distinctive layers (Figure 5) but functionally it differs by supporting real-time 
frontline clinical practice. 



  

 
Fig. 4. Conceptualized CTSS (customized telemedicine software system) 

  
 

The CTSS (or WTS (web-based telemedicine system)) architecture has three layers: 
a) Bottom layer (i.e. CTSS bottom-domain in Figure 5): This is the local TCM onto-

core customized from the enterprise’s time-honored total knowledge as logically 
indicated by [V] in Figure 5.  

b) Middle layer (i.e. CTSS middle-domain in Figure 5): This is the semantic net 
(network) that fully and logically represents the local CTSS TCM onto-core in the 
machine process-able form. The parsing mechanism (parser) is the software that 
draws the logical conclusion for the query input from the top layer (e.g. 

},,{ 321 pppQ ; },,{ 321 ppp  are parameters to drive the parsing mechanism). 
c) Top layer (i.e. CTSS top-domain): This is the customized application interface 

(CAI) specification for the target CTSS (i.e. F&C specifications together) to 
syntactically represent the local CTSS semantic net for human understanding. The 
CAI specification is made up of icons selected from IL; new icons can be created 
and added to IL anytime. The terms in an icon are standardized by [V]. The whole 
CTSS or WTS is realized from the given CAI specification by the MI paradigm, 
and the physical GUI of the target WTS has the same appearance as the given CAI 
specification.   

The most engineered CTSS part is the top layer or the CAI specification because once 
it has been verified the whole system can be generated automatically. Working 
together, the three layers comprise a customized CTSS that effectively realizes the 
philosophical arguments of Gruber [14] in an integrated fashion. Gruber’s ontology is 
a consensus-certified conceptualization, which is understandable to humans and 
meanwhile machine process-able. Guarino deepened this ontology concept by arguing 
that it should have a subsumption hierarchy of sub-ontologies with axiomatic 
associations to constrain interpretation [11]. 



 
Fig. 5. The three-layer architecture of CTSS 

4   Meta-Interface Paradigm – Proposed Innovative Software 
Development Approach 

The meta-interface (MI) paradigm combines the THWADI and CAP philosophies to 
automate CTSS generation with the software-engineered CTSS application interface 
specification as the only required input; that is the customized application interface 
(CAI) specification. The physical CTSS has three layers (Figure 5). Its graphical user 
interface (GUI) has the same characteristics as the original CAI specification. Key 
elements in the MI paradigm include: 
a) Enterprise TCM vocabulary: All CTSS terms are verified against it (i.e. [V] in 

Figure 5).   
b) Unique icon library (IL): This contains all the graphic icons that Nong’s 

accumulated over time. Any new icons created for customers will be added to IL 
as evolution. An icon in the context of the MI paradigm is a modular semantic 
structure backed up by its modular ontological structure (Figure 5). For machine 
processing, every icon is supported by a group of “control-oriented” and “data-
oriented” object classes. An application interface to be customized is physically a 
collection of selected icons from IL that meet specific clinical functions of stated 
constraints. Icon creation is a formal process, for its terminology is checked and 
verified against the standard enterprise vocabulary [V]. This disambiguates 
communications within the Nong’s enterprise, between Nong’s and the global 
TCM community, and among the Nong’s customers (e.g. customized WTS).      

c) Customized application interface (CAI): In its business plan Nong’s would 
customize the MC based telemedicine software and remotely install it for the 



client [13]. The customization process is basically fast prototyping, and the clients 
need only to customize the CAI specification correctly together with Nong’s. With 
the final CAI specification the generation of the customized WTS artifact and its 
remote installation (client’s site) are automated. Verification and validation of the 
final WTS can be conducted anytime and anywhere by using the semantic TCM 
visualizer (STV) – a mandatory element in the MI paradigm. In our research the 
customized CAI specification is the input to the automatic meta-interface (MI) 
process. 

d) Annotated master/enterprise TCM onto-core blueprint: It is the huge piece of 
annotated code (or blueprint) for the subsumption hierarchy of the entire 
enterprise TCM onto-core to match the formal knowledge in the enterprise 
vocabulary [V]. The blueprint creation is semi-automatic to quicken rectification 
of errors by the group of TCM domain experts who perform consensus-
certification. This semi-automatic process has two phases: 

i. Manual phase: The DOM (document object model) tree for the master TCM 
onto-core has to be drawn manually. The drawing helps experts visualize and 
verify the necessary facts quickly against the canonical information in [V]. In 
fact, there are usable commercial tools in the field that can be support such 
drawing; the DBDesigner (DBD) by Microsoft is an example. 

ii. Automatic phase: Firstly, the annotated blueprint is automatically generated 
from a drawn DOM tree. Annotation can be achieved by different metadata 
systems. For example XML, RDF, and OWL metadata systems are popular 
because the codes generated for them are interoperable [1]. In fact, the DBD 
system can generate the corresponding XML-annotated codes from its own 
drawings. Secondly, the GUI (graphical user interface) subsystem is 
automatically generated for the final WTS system for human interaction.  

e) Automatic CTSS/WTS database generation: A physical CTSS/WTS is generated 
from the given CAI specification that indicates what portion of the enterprise 
TCM onto-core blueprint to be extracted automatically by the MI paradigm. The 
extraction, in the form of a piece of annotated code (blueprint), is then 
automatically instantiated into the respective local TCM onto-core.   

f) Appropriate programming language(s) for the logical object classes: The 
executable forms of those functions in an icon in the IL are object classes. In the 
MI paradigm functions in an icon are instantiated as object classes selected from 
the main enterprise object library; the MI paradigm is object-based.  

g) Semantic TCM visualizer (STV): This converts an XML-annotated code into the 
matching DOM tree and traces the parsing mechanism on line. In this way it 
verifies and validates any part of the physical CTSS anytime and anywhere. 

h) Remote CTSS installation: The CTSS package contains: the GUI for human 
interaction; wireless communication capability for the MC; the CTSS database; 
object classes; and other auxiliary software tasks. It is sent via the web to remote 
sites for installation.      



5   Experimental Results 

Many experiments were carried out in the Nong’s WTS (mobile clinics (MC) based) 
environment over the mobile Internet. The results verified that the novel MI paradigm 
proposed by this paper is indeed effective in customizing usable WTS. The set of 
results presented here include: i) the CAI specification customized for the physicians’ 
diagnosis/prescription (D/P) procedure to treat patients; ii) the actual D/P GUI 
generated from a CAI specification by the MI paradigm; and iii) a partial DOM tree 
and its corresponding XML-annotated code or blueprint as visualized by using STV. 
The Chinese TCM terms in the results were translated into English by using the 
World Health Organization (WHO) standard [15]. 
Table 1. Traditional 4-step TCM diagnostic procedure and result examples 
look (“望”) listen & smell 

(“聞”) 
question (“問”) pulse-diagnosis 

(“切”) 
e.g. pale face e.g. cough, bad 

breath   
e.g. headache? fever? 
loathe cold ambience?  
(“惡寒/怕冷”) 

e.g. taut and fast 

 
Fig. 6. The GUI generated from a CAI of chosen icons from the IL 
 
5.1 The CAI Example 
Figure 6 is a CAI specification (for generating the corresponding physical GUI) that 
includes: a) icon (I) – control bar; b) icon (II) – patient registration number (i.e. 
MX6060303001) and fields to be filled in the D/P process by the physician, including: 
patient’s complaint ( “主訴”), and diagnosis (“診斷”) (e.g. illness/type (“病”/“証”) 
and treatment principle (“治則治法”)); c) icon (III) – symptoms (“現病史”) obtained 
by a standard TCM diagnostic procedure; d) icon (IV) – pulse diagnosis (“脈診”); e) 



icon (V) – prescription(s) (“處方”) to be dispensed with respect to the diagnosis; f) 
icon (VI) – experience window (record) entrance specific to the logon physician with 
medical practice registration (e.g. 003623); g) icon (IX) –diagnostic questions (e.g. 
Do you loathe cold ambience conditions (“惡寒/怕冷”)?) and general physical 
inspections (e.g. complexion (“面色”) – pale or red); h) icon (X) – tongue diagnosis 
(“舌診”) (e.g. texture and coating color). Table 1 shows four steps in the traditional 
TCM diagnostic procedure: look (“望”), listen & smell (“聞”), question (“問”), and 
pulse-diagnosis (“切”). 
 
5.2 A Customized WTS Example  
This example shows the operation of the physical WTS generated automatically from 
a given CAI (e.g. Figure 6) by the MI paradigm. The physical GUI for the operating 
WTS will appear the same as the parent/input CAI. In the GUI the set of symptoms, 

{S 怕冷重 (dislike cold ambience), 發熱輕 (light fever), 無汗 (no perspiration} , 
obtained from the patient were keyed-in and echoed in the symptoms window “現病

史”. Normally the parser will works automatically with the input query (e.g. {Q 怕

冷重, 發熱輕, 無汗}).  The parsing process can also be visualized by pressing the 
Parse button that invokes the STV (as shown in Figure 7). The parsed result for the 
symptoms (in the “現病史” window) includes: a) Diagnosed (診斷) illness (病): Flu 
(感冒) & type (証) is “wind cold” (風寒); b) Treatment principle (治則): heating & 
sweating (辛温解表); and c) Prescription (處方): “荊防敗毒散”. 
 

 
Fig. 7.  Invoked STV to visualize a parsing operation 

6   Conclusion 

In this paper the meta-interface (MI) paradigm, which combines the THWADI and 
CAP philosophies, is proposed. It automates the generation of a client’s CTSS 
directly from the given customized application interface (CAI) specification. This 



specification is constructed by “gluing” together icons selected from the enterprise 
icon library (IL) as part of a fast prototyping process. The automatic process extracts 
the portion of the subsumption hierarchy in the enterprise TCM onto-core that 
corresponds to the given CAI specification. The next step is to perfect the STV so that 
it visualizes and debugs more effectively. 
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