
An Ontology Supported Meta-Interface for the
Development and Installation of Customized Web Based

Telemedicine Systems

Jackei H.K. Wong1, Wilfred W. K. Lin1, Allan K.Y. Wong1, Tharam S. Dillon2

1 Department of Computing, Hong Kong Polytechnic University, Hung Hom, Kowloon, H.K.S.A.R.
2 Digital Ecosystems & Business Intelligence Institute, Curtin University of Technology, Australia
{cshkwong,cswklin,csalwong}@comp.polyu.edu.hk, tharam.dillon@cbs.curtin.edu.au

Abstract. The novel and generic meta-interface (MI) paradigm proposed in this
paper automates the generation of customized telemedicine software systems
(CTSS), directly from the customized application interface (CAI) specifications
given. The MI paradigm was tested and verified in the TCM (Traditional
Chinese Medicine) telemedicine environment of Nong’s Company Limited of
the PuraPharm Group, a local Hong Kong TCM telemedicine developer that
funded this research. The CAI specification is made by “gluing” together icons
selected from the enterprise icon library (IL). The CTSS generation, in effect,
extracts the corresponding portion of the subsumption hierarchy from the
master ontology, an enterprise standard. Since CTSS prototypes were verified
in the Nong’s TCM telemedicine environment, they were built with the Nong’s
master TCM ontology core (onto-core) as the basis and reference. In this light,
the ontological extraction for a CAI specification is turned into the local TCM
onto-core for the CTSS prototype. The enterprise TCM onto-core, the local
TCM onto-core, and the icons in IL all contain formal knowledge derived from
the enterprise TCM vocabulary. In Nong’s case the enterprise vocabulary is the
standard of CTSS terminology, gathered from TCM classics, treatises, and case
histories by domain experts with consensus certification. Using CAI as the
single input to automate the whole CTSS generation process would eliminate
MSPM (multi-site project management) problems. Since the Nong’s MC
(mobile clinics) based telemedicine system is web-based and pervasive, the
CTSS is also referred to as the Nong’s web-based telemedicine systems (WTS).

Keywords:. Meta-interface paradigm, software development, CAI, CTSS,
WTS, telemedicine system, ontology, enterprise vocabulary, automated

1 Introduction

We propose in this paper the innovative meta-interface (MI) paradigm for developing
remotely deployable ubiquitous web-based telemedicine systems (WTS). The goal is
to customize each client's WTS from a single master ontological core (onto-core),
which would then be maintained by the enterprise (i.e. enterprise/master onto-core).
Nong’s Company Ltd., of the PuraPharm Group in the Hong Kong SAR, is one such

enterprise and a local leader in supplying TCM (Traditional Chinese Medicine) WTS
to hospitals and clinics across the globe. The company had created its own enterprise
TCM onto-core with consensus certification [1] to support MC (mobile clinics) based
telemedicine systems. From this enterprise TCM onto-core, Nong’s customizes WTS
variants specified by the customers. After deployment each customized WTS is
automatically linked over the mobile Internet to the PuraPharm/Nong’s (PP/N)
mobile-business (MB) core.The proposed MI paradigm now offers a solution to the
PP/N management's long search for a way to effectively automate the WTS
customization process. Their lengthy search is understandable because successful
development of qualitative software systems and applications is no easy task. This
development process needs to satisfactorily address different contemporary issues [2]
that deal with problem domains, varied operational environments, and cultural
differences (e.g. natural languages). These issues could be complicated when
developing web-based applications that are distributed over diverse geographic
locations and involve complex ICT (information communications technology)
concerns and MSPM (multi-site project management) activities. Even with the same
project requirements MSPM linguistic variations could cause ambiguity, resulting in
incorrect implementation or non-interoperable software modules [3]. The lack of an
enterprise vocabulary to coordinate and disambiguate software development activities
means a high cost-effectiveness ratio, indicated by the following surveys:
a) High cost: In Australia and USA it is common for 50% or more of enterprise

expenditures to be spent on software development and maintenance.
b) Prone to failure: Less than 50% of software development projects in the Western

world were completed successfully.
c) Same trend: The trend of roughly 70% software project failures will continue into

the future, remaining the same as it was three decades ago.

Although the software engineering discipline has been evolving fast [1], the generic
waterfall model in Figure 1 can still abstract the system development cycle in four
phases:
a) Phase 1 - Requirement specification and analysis. Its goal is to analyze and

accurately extract the following elements from the narrated requirements: the
necessary and sufficient number of functions for the target system; formal
parameters for each of these functions; and the execution serializability (logical
control flow) among the identified functions to ensure coherent and meaningful
results. A function normally performs only one application-specific task of
transforming the actual parameters into the expected result. For example,
if),(21 xxf is a function,),(21 xx are two formal parameters that would
assume actual values/parameters before execution (i.e. the transformation process).
The functions and their intertwined logical relationships form the functional
specification; constraints specified for these relationships form the constraints
specification to govern the ambit of system behavior/dynamics. The functional
and constraints (F&C) specifications together form the domain of semantics for
the system to know exactly what to do.

b) Phase 2 – Design specification. Details of how the final system should work are
addressed by: i) organizing the system semantics into small manageable modules
(modularization) by the principle of information hiding; ii) specifying how the

modules should synchronize and associate; iii) proposing the subsumption
hierarchy for the modules that can be separated into two basic groups by their
nature: control-oriented (CO) and data-oriented (DO); higher-level CO does little
computation but controls the timely invocation of other modules; the objective of
the lower-level DO is to produce useful information from actual parameters for
use by the higher-level modules; iv) proposing the system architecture to support
the final system operation; and v) evaluating data structures and
algorithms/protocols to support information retrieval and inter-modular
synchronizations for coherent operations.

c) Phase 3 – Implementation. This phase aims to correctly translate the design
specification into an intermediate form for: i) human understanding and
manipulation, and ii) conversion into the machine-executable representation. The
intermediate form is a program or software of a specific language (e.g. C++ or
Visual Basic). To humans, the program syntactically represents the system
semantics; the machine executes its compiled form (executable code).

d) Phase 4 – Testing and debugging. Test cases are created to validate and verify that
the implemented system prototype indeed fulfils all the functions indicated in the
requirement specification. Debugging a distributed application is more an art than
science for we can rarely apply traditional approaches. From the literature the only
recognized technique to debug distributed software effectively is program
visualization (e.g. [4,5]).

 Fig. 1. Generic waterfall development life cycle

The feedback loops (Figure 1) show that if errors are found in the engineering process,
changes have to be repeatedly made in the upper source(s). Too many loop-backs
make the process expansive. Thus, the emphasis is on producing correct F&C
specifications, and this can be achieved by using practical formal methods (e.g. Petri
net). The errors in translating the F&C specifications into the design specification can
be reduced by using semi-formal, semi-automatic tools such as the DBDesigner
(DBD) by Microsoft. The DBD converts the semantic net in the form of a
subsumption hierarchy (e.g. DOM (document object code) tree drawn in the DBD
format) into logically matched XML-annotated code. The SQL system (also by
Microsoft) then can convert the annotated code directly into a usable database. If the
CO and DO modules are programmed in VB.net (Visual Basic for the Internet), they
interact readily with the SQL database. DBD, SQL, VB.net together fulfill the
congruent automation principle (CAP) to be explained later. If the activities in Figure
1 are supported by a management scheme that controls system migration, software
changes, system versioning, and maintenance, a configuration control (CC)
framework is formed [1].

2 Related Work

Successful software engineering in the 21st century needs to overcome a set of
formidable challenges, including rapid and uncertain technological
changes/emergence, cultural diversity leading to ambiguous understanding of the
target system, and heterogeneity in hardware and software that prevents
interoperability. The paper by Boehm [6] sums these formidable challenges nicely,
and one of his guidelines is to avoid THWADI (“that’s how we’ve always done it”).
This applies well to developing remotely deployable ubiquitous web-based
telemedicine systems, which is an emerging phenomenon of the 21st century. In
reality, the THWADI guideline is unavoidable, for computing requirements evolve
rapidly in different eras, governed by the Moore’s Law [7]: i) Amdahl’s era (early
1960s) – synchronizing sequential processes correctly was the focus; ii) Gustafson-
Barsis era (mid-1980s) – parallel computing (i.e. High Performance Computing
(HPC)) to yield speedup; iii) megacomputing era (mid-1990s) – distributed systems
formed with an Internet basis; and iv) pervasive era (early 2000) – concern for the
mobility of hardware and software entities supported by location-aware capability.
Despite the rapid evolution driven by various contemporary forces, we still find that: i)
the waterfall model is the foundation; ii) optimal placement of program tasks is a
focal issue; and ii) coherent synchronization of these tasks is needed for correct
results. From the literature we identified ten major forces that affect the success of
developing remotely deployable web-based telemedicine systems. These forces are
represented as entries in the set },,,,,,,,,{ JIHGFEDCBAF = as depicted in
Figure 2:
A. Synchronization and serializability methods: These govern how entities in the

system interact coherently. Examples include CR (critical region), RPC (remote
procedure call), Corba, and MPI. The method used depends on the problem
domain and the intended environment of operation.

B. Channel reliability methods: These shorten the service roundtrip time in
client/server interaction. Usually dynamic or adaptive methods are more effective
than static methods [8].

C. User participation: This is a necessity for effective fast prototyping so that
immediate user feedback improves the prototype. It is ideal if the user participates
in all stages of the waterfall model.

D. Software engineering by parts: This is integration of software parts
(modules/artifacts) built by other groups into the system being built. It can be
physical code inclusions (into the system software) or logical remote invocation
via predefined linkages. The parts can be in various programming languages but
do not affect the final system performance [4].

E. Tools/methods for creating/managing data structures and databases: These
represent the paradigm that data structures on the blueprint are realized
automatically into physical databases; for example, converting a DBD drawing
directly into a physical SQL database (i.e. Microsoft environment).

F. Testing and debugging tools: These support different testing and debugging
situations. For example, program/system behavior visualization is suitable for

monitoring distributed agent-based software in which agents are mobile in a real-
time sense [4].

G. System security issues: The aim is allow a system run smoothly without
unnecessary interruptions.

H. MSPM (multi-site project management): Usually teams based in different
geographic locations are involved in the development of a successful enterprise
software system. To eliminate ambiguity a vocabulary to bridge cultural and
language differences among working groups needs to be created. The creation of
such a vocabulary is regarded by many researchers as an ontological approach (i.e.
the vocabulary is the “enterprise ontology”) [9].

I. ICT (information communications technology): This discipline combines
appropriate technologies to build an efficient web application.

J. Trend and era issues/laws: Inevitably, as the computing industry advances through
various trend-setting eras and laws into today's mobility era with mobile hardware
for location-aware networks and mobile software agents that migrate at will, some
of the older methods and tools will be invalidated.

Fig. 2. Ten external forces that affect software system success

The longitudinal and latitudinal axes in Figure 2 form the backbone of the
configuration control (CC) to balance these ten forces into equilibrium. Although the
waterfall model is the basis for the CC, the two key issues of modular task placement
into network nodes and ensuring correct task synchronization to achieve coherent
results still need to be addressed. Unfortunately, no previous experience on devising
an effective CC scheme for pervasive telemedicine system development has been
found in the literature. The Nong’s in-house experience, which used the traditional
waterfall model as the basis to balance (by trial-and-error) some of the forces shown
in Figure 2 is the only useful clue so far. Besides, very limited experience can be
found in the literature about formulating telemedicine system architectures. The only
useful example that we encountered was the UMLS (Unified Medical Language
System) [10].

Fig. 3. A pervasive telemedicine system model

3 Nong’s Telemedicine Framework Background

Telemedicine, a term that was consolidated around 1999 [12], aim is to electronically
deliver healthcare (i.e. e-health) to every corner of the globe. Its realization over the
mobile Internet, however, is an art for there is little experience published in the
literature for this budding discipline. Since the mobile Internet supports both wireline
and wireless communication technologies, interacting agents of a telemedicine system
on the web require reliable mobility and communication supports. A telemedicine
operation is basically a digital ecosystem, in which agents/entities of different species
(e.g. mobile clinics (MC) and surrogate agents) collaborate closely [13]. In response
to the potential business benefits of telemedicine the Nong’s Company Ltd. developed
several WTS, which are now deployed in different locations over the globe. The
fundamental Nong’s WTS concept is depicted in the Figures 3 and 4. Figure 3
shows the mobile nature of the Nong’s telemedicine approach, which has a central
PCI (pervasive computing infrastructure) support on a high-speed wireline network.
Once an MC has moved into a smart space (a wireless communication cell with
location-aware capability) it could interact with other MCs and the PCI at will.
Typical MC tasks invoked via the application interface of the system include: i)
patient record retrieval/update; ii) drug inventory update (both central (in PCI) and
local (on MC)); iii) diagnostic help solicitation from remote physicians (i.e.
collaborated diagnosis); and iv) statistics for effective MC management and disease
control (e.g. as required by the Hong Kong SAR government). An MC (i.e. local
telemedicine unit) is manned typically by: a physician, a dispenser, a paramedic, and
the customized telemedicine software system (CTSS) which is conceptually depicted
in Figure 4 as CAI. The CTSS is architecturally similar to the UMLS by having three
distinctive layers (Figure 5) but functionally it differs by supporting real-time
frontline clinical practice.

Fig. 4. Conceptualized CTSS (customized telemedicine software system)

The CTSS (or WTS (web-based telemedicine system)) architecture has three layers:
a) Bottom layer (i.e. CTSS bottom-domain in Figure 5): This is the local TCM onto-

core customized from the enterprise’s time-honored total knowledge as logically
indicated by [V] in Figure 5.

b) Middle layer (i.e. CTSS middle-domain in Figure 5): This is the semantic net
(network) that fully and logically represents the local CTSS TCM onto-core in the
machine process-able form. The parsing mechanism (parser) is the software that
draws the logical conclusion for the query input from the top layer (e.g.

},,{ 321 pppQ ; },,{ 321 ppp are parameters to drive the parsing mechanism).
c) Top layer (i.e. CTSS top-domain): This is the customized application interface

(CAI) specification for the target CTSS (i.e. F&C specifications together) to
syntactically represent the local CTSS semantic net for human understanding. The
CAI specification is made up of icons selected from IL; new icons can be created
and added to IL anytime. The terms in an icon are standardized by [V]. The whole
CTSS or WTS is realized from the given CAI specification by the MI paradigm,
and the physical GUI of the target WTS has the same appearance as the given CAI
specification.

The most engineered CTSS part is the top layer or the CAI specification because once
it has been verified the whole system can be generated automatically. Working
together, the three layers comprise a customized CTSS that effectively realizes the
philosophical arguments of Gruber [14] in an integrated fashion. Gruber’s ontology is
a consensus-certified conceptualization, which is understandable to humans and
meanwhile machine process-able. Guarino deepened this ontology concept by arguing
that it should have a subsumption hierarchy of sub-ontologies with axiomatic
associations to constrain interpretation [11].

Fig. 5. The three-layer architecture of CTSS

4 Meta-Interface Paradigm – Proposed Innovative Software
Development Approach

The meta-interface (MI) paradigm combines the THWADI and CAP philosophies to
automate CTSS generation with the software-engineered CTSS application interface
specification as the only required input; that is the customized application interface
(CAI) specification. The physical CTSS has three layers (Figure 5). Its graphical user
interface (GUI) has the same characteristics as the original CAI specification. Key
elements in the MI paradigm include:
a) Enterprise TCM vocabulary: All CTSS terms are verified against it (i.e. [V] in

Figure 5).
b) Unique icon library (IL): This contains all the graphic icons that Nong’s

accumulated over time. Any new icons created for customers will be added to IL
as evolution. An icon in the context of the MI paradigm is a modular semantic
structure backed up by its modular ontological structure (Figure 5). For machine
processing, every icon is supported by a group of “control-oriented” and “data-
oriented” object classes. An application interface to be customized is physically a
collection of selected icons from IL that meet specific clinical functions of stated
constraints. Icon creation is a formal process, for its terminology is checked and
verified against the standard enterprise vocabulary [V]. This disambiguates
communications within the Nong’s enterprise, between Nong’s and the global
TCM community, and among the Nong’s customers (e.g. customized WTS).

c) Customized application interface (CAI): In its business plan Nong’s would
customize the MC based telemedicine software and remotely install it for the

client [13]. The customization process is basically fast prototyping, and the clients
need only to customize the CAI specification correctly together with Nong’s. With
the final CAI specification the generation of the customized WTS artifact and its
remote installation (client’s site) are automated. Verification and validation of the
final WTS can be conducted anytime and anywhere by using the semantic TCM
visualizer (STV) – a mandatory element in the MI paradigm. In our research the
customized CAI specification is the input to the automatic meta-interface (MI)
process.

d) Annotated master/enterprise TCM onto-core blueprint: It is the huge piece of
annotated code (or blueprint) for the subsumption hierarchy of the entire
enterprise TCM onto-core to match the formal knowledge in the enterprise
vocabulary [V]. The blueprint creation is semi-automatic to quicken rectification
of errors by the group of TCM domain experts who perform consensus-
certification. This semi-automatic process has two phases:

i. Manual phase: The DOM (document object model) tree for the master TCM
onto-core has to be drawn manually. The drawing helps experts visualize and
verify the necessary facts quickly against the canonical information in [V]. In
fact, there are usable commercial tools in the field that can be support such
drawing; the DBDesigner (DBD) by Microsoft is an example.

ii. Automatic phase: Firstly, the annotated blueprint is automatically generated
from a drawn DOM tree. Annotation can be achieved by different metadata
systems. For example XML, RDF, and OWL metadata systems are popular
because the codes generated for them are interoperable [1]. In fact, the DBD
system can generate the corresponding XML-annotated codes from its own
drawings. Secondly, the GUI (graphical user interface) subsystem is
automatically generated for the final WTS system for human interaction.

e) Automatic CTSS/WTS database generation: A physical CTSS/WTS is generated
from the given CAI specification that indicates what portion of the enterprise
TCM onto-core blueprint to be extracted automatically by the MI paradigm. The
extraction, in the form of a piece of annotated code (blueprint), is then
automatically instantiated into the respective local TCM onto-core.

f) Appropriate programming language(s) for the logical object classes: The
executable forms of those functions in an icon in the IL are object classes. In the
MI paradigm functions in an icon are instantiated as object classes selected from
the main enterprise object library; the MI paradigm is object-based.

g) Semantic TCM visualizer (STV): This converts an XML-annotated code into the
matching DOM tree and traces the parsing mechanism on line. In this way it
verifies and validates any part of the physical CTSS anytime and anywhere.

h) Remote CTSS installation: The CTSS package contains: the GUI for human
interaction; wireless communication capability for the MC; the CTSS database;
object classes; and other auxiliary software tasks. It is sent via the web to remote
sites for installation.

5 Experimental Results

Many experiments were carried out in the Nong’s WTS (mobile clinics (MC) based)
environment over the mobile Internet. The results verified that the novel MI paradigm
proposed by this paper is indeed effective in customizing usable WTS. The set of
results presented here include: i) the CAI specification customized for the physicians’
diagnosis/prescription (D/P) procedure to treat patients; ii) the actual D/P GUI
generated from a CAI specification by the MI paradigm; and iii) a partial DOM tree
and its corresponding XML-annotated code or blueprint as visualized by using STV.
The Chinese TCM terms in the results were translated into English by using the
World Health Organization (WHO) standard [15].
Table 1. Traditional 4-step TCM diagnostic procedure and result examples
look (“望”) listen & smell

(“聞”)
question (“問”) pulse-diagnosis

(“切”)
e.g. pale face e.g. cough, bad

breath
e.g. headache? fever?
loathe cold ambience?
(“惡寒/怕冷”)

e.g. taut and fast

Fig. 6. The GUI generated from a CAI of chosen icons from the IL

5.1 The CAI Example
Figure 6 is a CAI specification (for generating the corresponding physical GUI) that
includes: a) icon (I) – control bar; b) icon (II) – patient registration number (i.e.
MX6060303001) and fields to be filled in the D/P process by the physician, including:
patient’s complaint (“主訴”), and diagnosis (“診斷”) (e.g. illness/type (“病”/“証”)
and treatment principle (“治則治法”)); c) icon (III) – symptoms (“現病史”) obtained
by a standard TCM diagnostic procedure; d) icon (IV) – pulse diagnosis (“脈診”); e)

icon (V) – prescription(s) (“處方”) to be dispensed with respect to the diagnosis; f)
icon (VI) – experience window (record) entrance specific to the logon physician with
medical practice registration (e.g. 003623); g) icon (IX) –diagnostic questions (e.g.
Do you loathe cold ambience conditions (“惡寒/怕冷”)?) and general physical
inspections (e.g. complexion (“面色”) – pale or red); h) icon (X) – tongue diagnosis
(“舌診”) (e.g. texture and coating color). Table 1 shows four steps in the traditional
TCM diagnostic procedure: look (“望”), listen & smell (“聞”), question (“問”), and
pulse-diagnosis (“切”).

5.2 A Customized WTS Example
This example shows the operation of the physical WTS generated automatically from
a given CAI (e.g. Figure 6) by the MI paradigm. The physical GUI for the operating
WTS will appear the same as the parent/input CAI. In the GUI the set of symptoms,

{S 怕冷重 (dislike cold ambience), 發熱輕 (light fever), 無汗 (no perspiration} ,
obtained from the patient were keyed-in and echoed in the symptoms window “現病

史”. Normally the parser will works automatically with the input query (e.g. {Q 怕

冷重, 發熱輕, 無汗}). The parsing process can also be visualized by pressing the
Parse button that invokes the STV (as shown in Figure 7). The parsed result for the
symptoms (in the “現病史” window) includes: a) Diagnosed (診斷) illness (病): Flu
(感冒) & type (証) is “wind cold” (風寒); b) Treatment principle (治則): heating &
sweating (辛温解表); and c) Prescription (處方): “荊防敗毒散”.

Fig. 7. Invoked STV to visualize a parsing operation

6 Conclusion

In this paper the meta-interface (MI) paradigm, which combines the THWADI and
CAP philosophies, is proposed. It automates the generation of a client’s CTSS
directly from the given customized application interface (CAI) specification. This

specification is constructed by “gluing” together icons selected from the enterprise
icon library (IL) as part of a fast prototyping process. The automatic process extracts
the portion of the subsumption hierarchy in the enterprise TCM onto-core that
corresponds to the given CAI specification. The next step is to perfect the STV so that
it visualizes and debugs more effectively.

Acknowledgement

The authors thank the Hong Kong Polytechnic University and the PuraPharm Group
for funding the research, grants A-PA9H and ZW93.

References

1. R. Rifaieh and A. Benharkat, From Ontology Phobia to Contextual Ontology Use in Enterprise
Information System, in Web Semantics & Ontology, ed. D. Taniar and J. Rahayu, Idea Group Inc., 2006
2. L.J. Osterweil, C. Ghezzi, J. Kramer and A.L. Wolf, Determining the Impact of Software Engineering
Research on Practice, IEEE Comp., March 2008, 39-49
3. C. Chan, Ontological Methodologies, - From Open Standards Software Development to Open Standards
Organizational Project Governance, Journal of Computer Science and Network Security, 7(3), March 2007
4. Allan K.Y. Wong, Wilfred W.K. Lin and Tharam S. Dillon, Local Compilation: A Novel Paradigm for
Multilanguage-Based and Reliable Distributed Computing over the Internet, Special Issue: Mobile &
Wireless Communications & Information Processing, Journal of Simulation, 75(1), July 2000, 18-31
5. A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis and E. Giannopoulou, Ontology Visualization
Methods – A Survey, ACM Surveys, 39(4), October 2007
6. B. Boehm, Making a Difference in the Software Century, IEEE Computer, March 2008, 32-38
7. J.E. Bardram and H.B. Christensen, Pervasive Computing Support for Hospitals: An overview of the
Activity-Based Computing Project, IEEE Pervasive Computing, 6(1), 44-51
8. Wilfred W.K. Lin, Allan K.Y. Wong and Tharam S. Dillon, Application of Soft Computing Techniques
to Adaptive User Buffer Overflow Control on the Internet, IEEE Transactions on Systems, Man and
Cybernetics, Part C, 36(3), May 2006, 397-410
9 M. Uschold, M. King, S. Moralee and Y. Zorgios, The Enterprise Entology, Artificial Intelligence
Applications Institute, University of Edinburg, UK,
http://citesee.ist.psu.edu/cache/papers/cs/11430/ftp:zSzzSzftp.aiai.ed..ac.ukzSzpubzSzdocumentszSz1998z
Sz98-kerent-ontology.pdf/uschold95enterprise.pdf
10. UMLS, http://www.nlm.nih.gov/research/umls/
11. D. Taniar and J.W. Rahayu, Web Semantics & Ontology, Idea Group Publishing, 2006
12. J.F. Kaar, International Legal Issues Confronting Telehealth Care, Telemedicine Journal, March 1999
13. Jackei H.K. Wong, Allan K.Y. Wong, Wilfred W.K. Lin and Tharam S. Dillon, Dynamic Buffer
Tuning: An Ambience-Intelligent Way for Digital Ecosystem, Proc. of the 2nd IEEE International
Conference on Digital Ecosystems and Technologies (IEEE-DEST 2008), February, 2008, Phitsanulok,
Thailand
14. T. R. Gruber, A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition,
5(2), 1993, 199-220
15. WHO International Standard terminologies on traditional medicine in the Western Pacific Region,
ISBN 978 92 9061 248 7, World Health Organization, 2007

