
Error Detection Rate of MC/DC for a Case Study from
the Automotive Domain ?

Susanne Kandl and Raimund Kirner

Institute of Computer Engineering
Vienna University of Technology, Austria

{susanne,raimund }@vmars.tuwien.ac.at

Abstract. Chilenski and Miller [1] claim that the error detection probability of
a test set with full modified condition/decision coverage (MC/DC) on the system
under test converges to 100% for an increasing number of test cases, but there are
also examples where the error detection probability of an MC/DC adequate test
set is indeed zero. In this work we analyze the effective error detection rate of
a test set that achieves maximum possible MC/DC on the code for a case study
from the automotive domain. First we generate the test cases automatically with
a model checker. Then we mutate the original program to generate three differ-
ent error scenarios: the first error scenario focuses on errors in the value domain,
the second error scenario focuses on errors in the domain of the variable names
and the third error scenario focuses on errors within the operators of the boolean
expressions in the decisions of the case study. Applying the test set to these mu-
tated program versions shows that all errors of the values are detected, but the
error detection rate for mutated variable names or mutated operators is quite dis-
appointing (for our case study 22% of the mutated variable names, resp. 8% of
the mutated operators are not detected by the original MC/DC test set). With this
work we show that testing a system with a test set that achieves maximum possi-
ble MC/DC on the code detects less errors than expected.

1 Introduction

Safety-critical systems are systems where a malfunction causes crucial damage to peo-
ple or the environment. Examples are applications from the avionics domain or control
systems for nuclear power plants. Nowadays also applications from the automotive do-
main become more and more safety-critical, for instance advanced driver assistance
systems, like steer-by-wire or drive-by-wire. Safety-critical embedded systems have to
be tested exhaustively to ensure that there are no errors in the system. The evaluation of
the quality of the testing process is usually done with some code coverage metrics that
determine the proportion of the program that has been executed within the testing pro-
cess. For instance, a value of 60% for decision coverage means that 6 of 10 branches of
all if-else decisions have been tested. Apart from very simple and small programs it is in
general not possible to test all execution paths. This is especially true for programs with

? This work has been partially supported by the Austrian Science Fund (Fonds zur Förderung der
wissenschaftlichen Forschung) within the research project “Sustaining Entire Code-Coverage
on Code Optimization (SECCO)” under contract P20944-N13.

complex boolean expressions within the decisions. For a decision depending on a con-
dition that consists ofn boolean subconditions we would need to generate2n inputs to
test all possible combinations. That means the testing effort would growexponentially
with increasing complexity of the condition within the decision.

Modified condition/decision coverage (MC/DC) is a metric originally defined in the
standard DO-178B [2], a standard for safety-critical systems in the avionics domain.
In principle MC/DC defines that the set of test data has to show that each condition
within a decision can independently, i.e., while the outcome of all other conditions in
the decision remain constant, influence the outcome of the decision. It can be shown that
MC/DC needs onlyn+1 test cases to test a decision that containsn conditions. Thus the
testing effort grows onlylinearly with the number of conditions per decision. Until now
MC/DC was mainly an important coverage metric for applications from the avionics
domain. Due to the fact that more and more applications for cars are also high-safety
critical and because of the fact that these applications become even more complex, the
coverage metric MC/DC is now also an issue for the testing process for components
from the automotive domain. Existing standards for safety-critical systems for cars are
IEC 61508 [3] or ISO 26262 (Road vehicles - Functional safety) [4] which is available
as a draft, the final version is expected for 2011.

An ideal testing process is capable of finding any error within the system. Our aim
in practice is a test set consisting of the smallest possible number of test cases that is
able to detect as many errors as possible. MC/DC is seen as a suitable metric to evaluate
the testing process of safety-critical systems with a manageable number of test cases.
But what about the effective error detection rate of MC/DC for a real case study? In
[1] it is stated that the error detection probability of MC/DC is nearly 100% for an
increasing number of test cases. On the other hand side there are examples containing
coding errors for which the probability of detecting an error with an MC/DC adequate
test set is actually zero, see [5]. This contradiction motivated us to evaluate the error
detection rate of an MC/DC adequate test set for a real case study from the automotive
domain. Our goal was to find out how the coverage correlates with the error detection
rate and to prove whether a test set with full MC/DC on the code is capable to find the
errors.

For our experiments we define three error scenarios: In the first scenario only con-
cretevaluesfor output variables are changed. The second error scenario focuses on
errors in thenamesof output variables. The third error scenario considers errors of the
operatorsin the boolean expressions in the decisions. The test cases are generated au-
tomatically with a model checker to confirm a suitable MC/DC test set. The test runs
are executed with the mutated program versions and the MC/DC adequate test set. The
results show that a MC/DC adequate test set is capable to reveal all errors of concrete
values, but it fails in detecting errors for variable names or operators.

The paper is organized as follows: In the following section we recapitulate the cov-
erage metric MC/DC. Subsequently we describe our test case generation method. In
Section 5 we describe in detail how the program versions for our test runs are mutated.
Section 6 shows our experimental results. In the concluding section we discuss what
these results mean for practice, i.e. how applicable MC/DC is for the evaluation of the
testing process for safety-critical systems in the automotive domain.

2

2 Unique-Cause MC/DC

MC/DC is a code coverage metric introduced in DO-178B [2], discussed in detail in [6],
resp. expanded with variations of the metric in [7]. The metric is a structural coverage
metric defined on the source code and is designed to test programs with decisions that
depend on one or more conditions, likeif ((A ∧ (B ∨ C)) statement 1 else
statement 2.

In MC/DC we need a set of test cases to show that changing the value for each
particular condition changes the outcome of the total decision independently from the
values of the other conditions. (This works as long there is no coupling between differ-
ent instances of conditions.)

A test suite conforming to MC/DC consists of test cases that guarantee that [2], [6]:

– every point of entry and exit in the model has been invoked at least once
– every basic condition in a decision in the model has been taken on all possible

outcomes at least once, and
– each basic condition has been shown toindependentlyaffect the decision’s out-

come.

The independence of each condition has to be shown. If a variable occurs several times
within a formula each instance of this variable has to be treated separately, e.g. for
(A ∧ B) ∨ (A ∧ C) beside the independence ofB andC the independence ofA has
to be shown for the first occurrence and the second occurrence ofA. Independence is
defined viaIndependence Pairs. For details please refer to [7].

Consider the exampleA∧(B∨C): The truth table is given in Table 1 (third column).
In the following 0̄ represents the test case(0, 0, 0), 1̄ represents the test case(0, 0, 1),
and so on. The independence pairs for the variableA are(1̄, 5̄), (2̄, 6̄) and(3̄, 7̄), the
independence pair for the variableB is (4̄, 6̄) and the independence pair for the variable
C is (4̄, 5̄). Thus we have the test set for MC/DC consisting of{4̄, 5̄, 6̄} plus one test
case of{1̄, 2̄} (remember that forn conditions we needn + 1 test cases).

TestcaseA B C A ∧ (B ∨ C) (A ∧B) ∨ C (A ∧B)⊕ C
0̄ 0 0 0 0 0 0
1̄ 0 0 1 0 1 1
2̄ 0 1 0 0 0 0
3̄ 0 1 1 0 1 1
4̄ 1 0 0 0 0 0
5̄ 1 0 1 1 1 1
6̄ 1 1 0 1 1 1
7̄ 1 1 1 1 1 0

Table 1.Truth Table for Different Boolean Expressions

3

3 Error Detection Probability - Theoretical Assumption and
Counterexample

In [1] different code coverage metrics are compared and a subsumption hierarchy for
the most relevant code coverage metrics is given. It is stated that “the modified condi-
tion/decision coverage criterion is more sensitive to errors in the encoding or compila-
tion of a single operand than decision or condition/decision coverage”, as we can see in
Figure 1.

�� � � �� � �� � 	 �

� � �
 � � �� � � � � � � �
�� � � � � 	 �

 � � � � � � � �� � � � � � � � �
� �� �� � � � �� � �� � 	 �

�� � � � � � � � � � � � � � � � �
�� � � � � 	 �

� � � � � � � � �� � � � � 	 �

� �� � �� � � � �� � � � � 	 �

Fig. 1. Subsumption Hierarchy for Control Flow Metrics [1]

Moreover the probability of detecting an error is given as a function of tests exe-
cuted. For a given set ofM distinct tests, the probabilityP(N,M) of detecting an error in
an incorrect implementation of a boolean expression withN conditions is given by [1]

P(N,M) = 1−
[

2(2N−M) − 1
22N

]
.

This correlation is shown in Figure 2 forN = 4.

One important result of this relation is the relatively low probability of detecting
errors with only two test cases, as normally required in decision or condition decision
testing. AsM increases there is a rapid increase in the error detection probability. As
N grows,P(N,M) rapidly converges to1 − 1/2M and the sensitivity changes only
marginally withN . That means forN increasing the likelihood of detecting an error in
an expression ofN conditions withN + 1 test cases increases also. This non-intuitive
result occurs because the dominant factor (the number of tests) increases withN while
the sensitivity to errors remains relatively stable.[1]

4

��� �

��� �

��� �

��� �

��� �

� � �

� 	
 � � � � � � � �

�

 �

� �
��
���
��
�

��
��
���
� �

�� � �� � !" � # $ %& #� #

Fig. 2. Error Detection Probability of MC/DC [1]

3.1 Counterexample for Theoretical Assumption

In contrast to the assumption above one can easily construct examples similar to [5]
that show that the error detection probability is actually zero for a given decision with
a complex boolean expression. The example shows that for(A ∧ B) ∨ C the test set
for achieving full MC/DC consists of the test cases{2̄, 4̄, 6̄} plus one test case out of
{1̄, 3̄, 5̄}. Mutating the logical operatorOR to a logicalXORchanges the output only
for the test casē7, i.e. for the combination True, True, True for the variables A, B and
C, thus the occurring error is not detected with a given minimal MC/DC test set. (See
also the last two columns in the Table 1.) Furthermore it can also be shown that a test
set for decision coverage would detect the error with a probability of 20%, so this is
also a counterexample for the statement that MC/DC subsumes decision coverage.

We were interested if such counterexamples are only artificial outliers that have
no influence on the overall error detection probability of MC/DC test sets or if such
counterexamples really decrease the error detection probability of MC/DC. First we
constructed a few examples manually for small programs that showed that in the worst
case even about 30% of operator errors were not detected with a MC/DC adequate test
set. This result was quite alarming for testing safety-critical systems. Then we executed
our test runs on a real case study from the automotive domain. The results are given in
Section 6. In the following we describe our test case generation method and the error
scenarios.

4 Test Case Generation

The generation of test cases that result in full MC/DC is a non-trivial issue. As we have
seen in Section 2 the test cases have to be determined by deriving the independence
pairs for each sub-condition. We generate the test cases automatically with a model
checker [8], in our case NuSMV1.

1 http://nusmv.irst.itc.it

5

4.1 Principle

A model checker takes a model of the system under test and proves whether a given
property is valid within the model or not. In the case of a violation of a given property
the model checkers produces acounterexample, that means a trace where the property
is violated. This trace is a concrete execution path for the program we want to test
and can therefore be used as a test case. The big challenge for generating suitable test
cases consists mainly in the methodhowthe trap properties (the properties that produce
counterexamples that can be used as test cases) are formulated.

4.2 Method

Our test case generation method is motivated by works from Whalen et al [9]. In this
paper a metric calledUnique First Cause Coverage (UFC)is introduced. This metric
is adapted from the MC/DC criterion and is defined on LTL (linear temporal logic) for-
mulas. For a given set of requirements for a program to test we have to translate the
requirements into a formal language (in our case LTL). Then the trap properties for de-
riving an MC/DC adequate test set are directly derived from these formal properties by
mutation with rules that are similar to the definition of MC/DC on the code. That means
if we have a sufficient set of trap properties, the model checker produces a complete test
set for full MC/DC.

4.3 Example

We want to demonstrate the test case generation method on the following example. List-
ing 1.1 shows a small C program, for which the corresponding NuSMV-model is given
in Listing 1.2. In the program we have a decision which evaluates to True (res=42)
or False (res=24) depending on the boolean expressionA ∧ (B ∨ C) similar to the
example in Section 2. The NuSMV-model represents the behavior of the program in
the automaton language of NuSMV. After the declaration of the variables within the
ASSIGN block the model calculatesres depending on the validity of the boolean ex-
pression. The specification for this small program consists only of two requirements,
from these we can derive the properties we need to generate the test cases (MC/DC-trap
properties in Listing 1.2). With the given trap properties we gain the test set for MC/DC
consisting of{2̄, 4̄, 5̄, 6̄}. Applying these test cases to the original implementation re-
sults in full MC/DC.

4.4 Unreachable Code

Applying this test case generation method to our case study from the automotive domain
showed that some of the formulated trap properties are true within the model, that means
that no counterexample is produced. Analyzing these cases showed that there are a few
infeasible paths in the program caused by a program structure depicted in Listing 1.3.
In this program structure there is no possible combination for the input variablesa and
b to reach the else-branch of the decision in line 7. (with 0,0 statement2 is executed,
with 0,1 also statement2, with 1,0 - statement3 and with 1,1 statement1 is executed).

6

1 #include<stdio .h>
2 typedef int bool ;
3 int erg ;

5 int tes t (bool a , bool b , bool c)
6 {
7 i f (a && (b | | c))
8 res = 42;
9 else

10 res = 24;
11 }

13 int main()
14 {
15 tes t (0 ,0 ,1) ;
16 pr in t f (”Result: %d \n” , res) ;
17 }

Listing 1.1. C Source Code

1 MODULEmain
2 VAR -- Variables
3 a: boolean;
4 b: boolean;
5 c: boolean;
6 res: {0, 42, 24};
7 ASSIGN
8 init (res) := 0;
9 next (res) := case

10 a & (b | c): 42;
11 !(a & (b | c)): 24;
12 1: res;
13 esac ;

15 -- REQUIREMENTS - original
16 PSLSPEC AG(a&(b|c)->AX(res=42));
17 PSLSPEC AG(!(a&(b|c))->AX(res=24));

19 -- MC/DC - trap properties
20 PSLSPEC AG(a&(!b|!c)->AX!(res=24));
21 PSLSPEC AG(a&(!b|c)->AX!(res=42));
22 PSLSPEC AG(a&(b|!c)->AX!(res=42));
23 PSLSPEC AG(!a&(b|c)->AX!(res=24));

Listing 1.2. NuSMV Model

4.5 Test Traces vs. Test Steps

The described test case generation method produces complete traces within the pro-
gram. A testtrace consists of multiple teststeps. A test step is a mapping between
input data and the expected output for a decision. See the example given in Listing 1.3.
If we want to test the decision in line 4 we need a trace to statement2 (line 5) and a
trace to the else-branch of this decision (line 6). For testing the if-decision in line 7
again we need a trace to the else-branch of the previous decision (line 6) to reach the
if-decision in line 7 and to execute the corresponding statement3 (line 8). This yields
the side effect that the generated test set is redundant in that way that a) the same state-
ment (e.g., statement2) maybe executed several times and b) also the corresponding
values are checked multiple. For a minimal MC/DC test set we only need the test data
for the different decisions, so we can reduce the test traces to singular test steps. So we
reduced the generated traces to the necessary test steps to gain aminimalMC/DC test
set (without redundant test data).

For our testing process it is important to mention that we test not only the input-
output mappings of the program, but also the values of the internal variables. Consider
the following case: For given input data the output in the testing process conforms to
the expected output, but nevertheless there is an erroneous value during the calculation
of the output values. This case would be also detected within the testing process. The

7

evaluation of the coverage was done with Tessy2. In the overall with the generated test
set we achieve the maximal possible MC/DC coverage of 92,77%.

1 i f (a && b)
2 statement1
3 else
4 i f (! a)
5 statement2
6 else
7 i f (! b)
8 statement3

Listing 1.3. Unreachable Code

5 Case Study and Error Scenarios

For our experiment we define three different error scenarios:

– Value Domain: The first error scenario investigates how many errors are de-
tected by the produced test set for a erroneous value, i.e. for a given variable
variable 1 with a specified value of 2, we change the specified value to the
value, for instance, 3.

– Variable Domain: The second error scenario checks how many errors are detected
by the produced test set if there are erroneous variable names for the output vari-
ables within the implementation, for instance, in the program there exist 2 variables
with the namesvariable 1 andvariable 2 we change some occurrences of
the variablevariable 1 to the name of the other variablevariable 2 and vice
versa. (In that case we just have to take care that these changes are compatible with
the referring data types of the different variables.)

– Operator Domain: The third error scenario focuses on coding errors for the oper-
ators of the boolean expressions within the decisions. The given test set is executed
on the erroneous program versions to find out if the test cases succeed or fail. For
the example from Listing 1.1 we may change the first operator inA∧ (B∨C) from
the logicalAND to the logicalORand vice versa for the second occurring operator.

We use the termerror for some program property that differs from the correct im-
plementation due to the system specification. Our case study is a low safety-critical
control system from the automotive domain. It regulates a steering mechanism con-
trolled by various input values through multiple output values, these output values are
dependent on the input values and the program’s internal values. To give a draft of the
complexity of the program the control flow graph is given in Figure 3.

2 http://www.hitex.com/index.php?id=module-unit-test

8

Fig. 3. Case Study - Control Flow Graph

For the test runs the original program is mutated systematically on basis of the
predefined error scenarios and the resulting program versions were executed with the
given MC/DC test set. If at least one test case fails in the test run, we know that the
coding error has been detected, otherwise if all test cases run successfully we register
that the error has not been detected in the test run.

6 Experimental Results of the Testing Process

Remember that with our test case generation method we gained a minimal test set that
achieves 92,77% MC/DC on the code. This is the maximum value for the achievable
coverage due to some parts of unreachable code. We mutated the original program
referring to the three error scenarios (Value DomainErr Val, Variable DomainErr Var
and Operator DomainErr Op) and executed it with the test sets for different values of
MC/DC, namely a test set with 20%, 40%, 60%, 80% and the maximum of 92,77%
coverage. The following table shows the percentage of detected errors, i.e. a value of
28% means that 28 out of 100 error were detected. The results are also given in the
diagram Figure 4.

9

CoverageErr Val Err Var Err Op
20 16 14 40
40 36 28 58
60 46 40 80
80 70 56 90

max 100 78 92

Table 2. Error Detection Rate (in %)
for Test Sets with Different MC/DC
Coverage

�

� �

� �

� �

� �

� �

� �

� �

� �

	 �

� � �

� � � � � � � � � � � � � � � � � 	 � � � �

�
� �
�

 �
��
���
��
� �
��
��
�

� � �� ��� �� � �� ! � "# $

%& &('
)* +

%& &('
)* &

%& &('
,-

Fig. 4. Experimental Results

7 Discussion of the Results

As we can see the error detection rate for errors in the value domain increases like
expected with the increasing coverage, resp. with a larger test set. For the maximum
possible coverage the error detection rate is indeed 100% for our case study. This means
full MC/DC coverage guarantees that an error will be detected with a given test set.

The results for errors in the variable and the operator domain differ significantly
from that. The error detection rate for errors in the variable domain also increases with
the coverage, resp. with a bigger set of test cases, but with the complete test set there
are still 22% of errors undetected. Looking at the original program we see that there are
several statement blocks where different variables are assigned. See Listing 1.4. If the
name of the variable1 in line 2 is changed to the name variable2, the assignment of
value1 to the variable1 gets lost, that means the value for variable2 is still correct, the
value for variable1 may be correct (depending on the initial value before the assign-
ment in line 2). Vice versa if we mutate the name of variable2 in line 3 to variable1,
the value of variable1 is overwritten with value2. This may also be undetected for the
case value1 equals value2, which is an improbable coincidence for integer values but
quite thinkable for boolean values. This may be an explanation for such a high amount
of undetected errors for variable names.

1 i f (a && b)
2 variable 1 = value 1
3 variable 2 = value 2

Listing 1.4. Mutation Variable Name

For the third error scenario with mutated operators for the boolean expressions
within decisions we see that already a test set with low coverage is capable to iden-
tify many errors, for instance the test set with 40% coverage already finds more than
the half of errors. But still with a complete MC/DC test 8% of erroneous operators re-
main undetected. This value demonstrates the empirical evaluation of the example given
in Section 3.1. We think that 22, resp. 8 of 100 undetected errors for a safety-critical
system is quite risky.

10

8 Related Work

Besides the original definition of the code coverage metric MC/DC in the standard
DO-178B [2] and the corresponding documentFinal Clarification of DO-178B[6] the
metric is discussed and extended in [7]. The applicability is studied in Chilensky and
Miller [1], in this document an assumption for the error detection probability is given
but not proved with empirical data. An empirical evaluation of the MC/DC criterion
can be found in [10]. Although the most important issue for the quality of a code cover-
age metric for safety-critical systems is indeed the capability of detecting an error, it is
surprising that there are hardly any empirical studies of the error detection probability
of MC/DC for real case studies. A principal comparison of structural testing strategies
is [11], whereas an empirical evaluation of the effectiveness of different code coverage
metrics can be found in [12]. Also in [13] MC/DC is compared to other coverage crite-
ria for logical decisions. Rajan et al. show in [14] that even the structure of the program
(for instance, if a boolean expression is inlined or not) has an effect on the MC/DC cov-
erage. The introduced test case generation method using model checkers is described
in Gargantini et al. [15], Hamon et al. [16] and Okun et al. [17] and [18]. For the test
case generation of MC/DC adequate tests the trap properties have to be formulated to
enforce the model checker to produce the appropriate paths we need to achieve MC/DC.
This is discussed in Raydurgan and Heimdahl [19] or Whalen et al. [9]. The last work
gives results that show that for a given complete test set for MC/DC (derived from the
implementation or model of the SUT) does not achieve full MC/DC caused by special
structure in the code, for instance, macros, that where not considered in the model used
for test case generation.

9 Summary and Conclusion

A testing process is only as good as it is capable to reveal errors within the system under
test. Coverage metrics like MC/DC are a means of evaluating the testing process, i.e.
to measure which parts of the program have been executed within the testing process.
In the standard DO-178B a high-safety critical system has to be tested with a test set
that achieves full MC/DC coverage on the code. Recently upcoming standards like ISO
26262 will also prescribe this metric for safety-critical applications from the automotive
domain. In this work we have shown that by achieving full MC/DC during testing it is
not guaranteed that the probability of undetected errors is sufficiently low concerning
reliability requirements for safety-critical system. An MC/DC adequate test set seems
to be capable to reveal all errors in the value domain, but many errors concerning erro-
neous variable names or erroneous operators are not detected with this test set: for our
case study 22%, resp. 8% of the errors were not detected which is really precarious for
a safety-critical system. Similar works (e.g., [14]) also show that MC/DC is not robust
to structural changes in the implementation.

Overall it is important to be aware of that so far MC/DC is the best metric for testing
safety-critical system with complex boolean expressions within decisions referring to
the tradeoff between testing effort (number of test cases to achieve full coverage) and
efficiency in the error detection rate,butalthough achieving full MC/DC coverage there
may be still a high amount of errors undetected.

11

References

1. Chilenski, J., Miller, S.: Applicability of modified condition/decision coverage to software
testing. Software Engineering Journal9(5) (Sep 1994) 193–200

2. RTCA Inc.: DO-178B: Software Considerations in Airborne Systems and Equipment Cer-
tification. Requirements and Technical Concepts for Aviation, Washington, DC (December
1992)

3. International Electrotechnical Commission: IEC 61508: Functional Safety of Electrical/
Electronic/ Programmable Safety-Related Systems (1999)

4. ISO: International Organization for Standardization: ISO 26262: Functional safety road
vehicles, draft (2009)

5. Bhansali, P.V.: The MCDC paradoxon. SIGSOFT Softw. Eng. Notes32(3) (2007) 1–4
6. RTCA Inc.: DO-248B: Final Report for Clarification of DO-178B: Software Considerations

in Airborne Systems and Equipment Certification. Requirements and Technical Concepts
for Aviation, Washington, DC (October 2001)

7. John Joseph Chilenski: An investigation of three forms of the modified condition decision
coverage (MCDC) criterion. U.S.Department of Transportation, Federal Aviation Adminis-
tration, DOT/FAA/AR-01/18 (April 2001)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)
9. Whalen, M.W., Rajan, A., Heimdahl, M.P., Miller, S.P.: Coverage metrics for requirements-

based testing. In: ISSTA ’06: Proceedings of the 2006 international symposium on Software
testing and analysis, New York, NY, USA, ACM (2006) 25–36

10. Dupuy, A., Leveson, A.: An empirical evaluation of the MC/DC coverage criterion on the
HETE-2 satellite software. Digital Aviation Systems Conference (October 2000)

11. Ntafos, S.: A comparison of some structural testing strategies. Software Engineering, IEEE
Transactions on14(6) (June 1988) 868 –874

12. Kapoor, K., Bowen, J.: Experimental evaluation of the variation in effectiveness for DC,
FPC and MC/DC test criteria. In: Empirical Software Engineering, 2003. ISESE 2003. Pro-
ceedings. 2003 International Symposium on. (Sept.-1 Oct. 2003) 185–194

13. Yu, Y.T., Laub, M.L.: A comparison of MC/DC, MUMCUT and several other coverage
criteria for logical decisions. Journal of Systems and Software79(Issue 5) (May 2006) 577–
590

14. Rajan, A., Whalen, M.W., Heimdahl, M.P.: The effect of program and model structure on
MC/DC test adequacy coverage. In: ICSE ’08: Proceedings of the 30th international confer-
ence on Software engineering, New York, NY, USA, ACM (2008) 161–170

15. Gargantini, A., Heitmeyer, C.: Using Model Checking to Generate Tests From Requirements
Specifications. In: 7th European Software Engineering Conference, Held Jointly with the 7th
ACM SIGSOFT Symposium on the Foundations of Software Engineering. (1999) 146–162

16. Hamon, G., de Moura, L., Rushby, J.: Generating Efficient Test Sets with a Model Checker.
In: Proceedings of the 2nd International Conference on Software Engineering and Formal
Methods. (2004) 261–270

17. Okun, V., Black, P., Yesha, Y.: Testing with model checkers: Insuring fault visibility (2003)
18. Okun, V., Black, P.E.: Issues in software testing with model checkers (2003)
19. Rayadurgam, S., Heimdahl, M.P.: Generating MC/DC adequate test sequences through

model checking. In: Proceedings of the 28th Annual IEEE/NASA Software Engineering
Workshop – SEW-03, Greenbelt, Maryland (December 2003)

