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Abstract. Task-driven plasticity refers to as the capability of a user interface to 
exhibit plasticity driven by the user’s task, i.e. the capability of a user interface 
to adapt itself to various contexts of use while preserving some predefined us-
ability properties by performing adaptivity based on some task parameters such 
as complexity, frequency, and criticality. The predefined usability property con-
sidered in task-driven plasticity consists of maximizing the observability of user 
commands in a system-initiated way driven by the ranking of different tasks 
and sub-tasks. In order to illustrate this concept, we developed UbiDraw, a vec-
torial hand drawing application that adapts its user interface by displaying, un-
displaying, resizing, and relocating tool bars and icons according to the current 
user’s task, the task frequency, or the user’s preference for some task. This ap-
plication is built on top of a context watcher and a set of ubiquitous widgets. 
The context watchers probes the context of use by monitoring how the user is 
carrying out her current tasks (e.g., task preference, task frequency) whose defi-
nitions are given in a run-time task model. The context watcher sends this in-
formation to the ubiquitous widgets so as to support task-driven plasticity. 

Keywords: adaptation of user interface, context-aware adaptation, plasticity of 
user interface, task-based design, task-driven plasticity, user interface descrip-
tion language. 

1   Introduction and Motivations 

The rise of ubiquitous computing [20] poses significant challenges for designing 
User Interfaces (UIs) that are adapted to new contexts of use [3,6,20,22]. In conven-
tional interactive systems, the context of use is both limited (e.g., in terms of screen 
resolution, available input devices) and known (e.g., a person sitting in front of a PC). 
As computing platforms become more embedded in our daily environment or carried 
with us, the surrounding world essentially becomes an interface to virtually any type 
of interactive system. This implies some major changes in the design of these UIs. 
Porting the UI of specific systems (e.g., a route planning system) or of traditional, 
popular applications (e.g., a word processing system) to new computing platforms al-
ways faces the challenge of designing a UI that is compatible with the constraints im-
posed by the new computing platform. For instance, porting the UI of a vectorial 
drawing system from a PC to a PocketPC not only poses constraints of the screen 
resolution but also introduces alternative modalities of interaction for which the initial 



UI was not designed initially. For this purpose, many different strategies have been 
adopted that affect the initial UI design or not. 

Techniques that do not affect the initial design include simple porting (when the 
initial UI is merely reproduced in contents and shapes to the new platform without 
any change) or zooming (when zoom in/out is applied to the initial UI to in-
crease/decrease the size of a UI portion currently in use according to a focus of inter-
est). While these techniques preserve the consistency between the different versions, 
the simple porting may dramatically reduce the available screen real estate while the 
zooming may induce many operations related to the zoom manipulation. Keeping a 
high number of menu options displayed continuously also maintains a high level of 
uncertainty on the UI and a high decision time. 

The Hick-Hyman Law [16] specifies that this decision time is proportional to the 
logarithm of equally distributed options. This may suggest that a single screen with 
more options is more efficient for target selection than a series of screens with less 
options. But in this case, the screen density may increase, thus impacting the time for 
searching an item on the screen. For instance, Fig. 1 shows how a traditional UI for a 
PC-based drawing application is almost entirely reproduced for a PocketPC. Only the 
bottom left portion of the drawing UI displays some more options depending on the 
function selected. The rest of the UI remains constant over time. 

  
Fig. 1. Simple drawing application on a Pocket PC 

(from WinCEPaint - http://www.abisoft.spb.ru/products/cepaint.html) 
 
Techniques that affect the initial design statically may keep the same modality or 

not when adapting the initial UI. For instance, the UI components can be restructured 
into tabbed windows gathering functions that are related in principle to the same task. 
The quality of this gathering highly depends on the quality of the task analysis that 
has been conducted before. As another example, some Pocket PCs are equipped with 
physical buttons that can be reassigned to other functions depending on the system 
running. While this may reduce the functions presented on screen, the assignment 
may confuse the end user as it is neither systematic nor consistent throughout several 



interactive systems. In addition, some icons are drawn on these physical buttons, thus 
making them appropriate for one task (e.g., a particular view for a calendar), but ir-
relevant for another (e.g., what does a ”Month view” mean for a drawing system?). 
Similarly, information that was previously assigned to a graphical widget can be sub-
mitted to a more general change of modality: sound, voice, or gesture can advanta-
geously replace a graphical widget, like in the sound widgets toolkit [2]. In an ulti-
mate example, related functions can also presented in collapsible tool bars (Fig. 2), 
like the icons belt of MacOSX or like object toolbars in Corel PaintShop that change 
according to the object currently being drawn. 

   
Figure 2. Collapsible tool bars. 

Fig. 2 shows how the arrow at the bottom left corner can be expanded to display 
options related to the object being drawn (one property and its value at a time is dis-
played, all properties can be scrolled). When the object is finally drawn, the tool bar is 
collapsed. If another object is input, the arrow is expanded again with other similar 
properties. Techniques that affect the initial design dynamically open the door to yet 
unexplored or unexplored capabilities, including the notion of plastic UIs [3,4,7,24]. 
The plasticity of UIs concerns the capacity of a multi-context UI to preserve usability 
properties across the various contexts of use, the context of use being defined here as 
a triple (user, platform, environment) [3]. To exhibit such a capability, some recon-
figuration of the UI is often needed. The reconfiguration of UI widgets such as dialog 
boxes, controls, menu bars and pull-down menus is an example of a physical adapta-
tion. Another possibility is to adapt the very task that the system is to perform. 
Browne, Totterdell, and Normann [1] present a classification of adaptations in which 
they observe and regret that most adaptive systems embed hard wired mappings from 
the set of states to the set of possible adaptations, thus making the adaptivity mecha-
nism rather inflexible. To go one step further than this type of adaptivity, while con-
sidering the plasticity, we would like to investigate to what extent UI can be ”plasti-
fied” at a higher level of concern than the physical one. 

For this purpose, the remainder of this paper is structured as follows: Section 2 re-
ports on some related work on the different levels of plasticity that have been ex-
plored so far. Section 3 describes UbiDraw, a vectorial drawing system whose UI 
supports task-driven plasticity based on a small toolkit of task-driven plastic widgets, 
called UbiWidgets. This application has been chosen because it is not a trivial UI: it is 



not a simple form web-based application, for which multiple adaptation mechanisms 
have been considered so far. Section 4 investigates the effect of using UbiWidgets on 
the user preference by conducting some usability testing. Finally, Section 5 concludes 
the paper by summarizing the advantages and shortcomings of this approach, mainly 
through properties of interest. 

2   Related Work 

Since the notion of plasticity has been introduced [24], many different works have 
been dedicated to experiencing how to implement an interactive system that satisfies 
this property. The notion of plasticity leaves open the usability or quality properties 
(e.g., [12]) with respect to which some level of usability should be maintained and 
leaves open the contextual characteristics with respect to which the UI should be 
made plastic. In the Cameleon Reference Framework [3], the context of use is defined 
as a triple (user, computing platform, environment), each of these dimensions being 
equipped with relevant contextual characteristics. In particular, the UsiXML User In-
terface Description Language (UIDL) [27] is compliant with this framework and de-
ploys a series of attributes for each of these three dimensions. Consequently, any po-
tential variation of one or many of these attributes may represent a change of context 
with respect to which the UI should be adapted. Of course, not all such variations 
should be supported, only those which are really significant. 

The mechanism of the software probe for sensing the context of use has been ex-
plained in [4]: it allows deploying interactive systems that constantly probe the con-
text of use for a significant change and that reflect such a change into a UI adaptation. 
As far as we know, this adaptation is performed at the level of the Final UI [3]. Ja-
barin demonstrated how to implement efficient software architecture for such a final-
UI level plasticity [17]. Schneider et al. [21 introduced abstract user interfaces whose 
implementation is independent of the underlying computing platform and that offers 
multiple representations of concrete UIs for the same description. Therefore, the plas-
ticity is located at the Concrete UI level as defined in the Cameleon Reference 
Framework [3]. All widgets, although called abstract, belong to a Graphical UI. They 
should not be confused with a AUI belonging to the Abstract UI level [3]. Crease et 
al. [5] introduced a toolkit of context-aware widgets that embed plasticity at the Ab-
stract UI level [3]: in this toolkit, widgets have been abstracted with respect to the 
underlying physical environment so as to form platform-independent widgets. These 
widgets can also change their interaction modality. 

Hence, the plasticity can be declined at any level of the Cameleon Reference 
Framework as noticed in [8,17], but so far only the lower levels of this framework 
have been successfully investigated. The only noticeable exception that we are aware 
of is the system of Comets [8], that propagates interaction needs from the final UI to 
the task and domain level through concrete and abstract UIs via a set of logical map-
pings. The support for plasticity is therefore distributed continuously from the final UI 
(lowest level) to the task and domain level (topmost level). 

Our work differs from the aforementioned initiatives in that it drives the plasticity 
mechanism from a task model located at the task & domain level. It is then propa-
gated downwards to dedicated widgets. A change of the context of use is firstly inter-
preted in terms of a task variation that is then reflected into the Concrete UI level and 



Final UI level, respectively. The difference between Comets [8] and UbiWidgets is 
that the task definition is embedded in a Comet that is developed fit-to-the purpose, 
while UbiWidgets is based on a mechanism exploiting a task model dynamically. This 
makes the system independent of any task. In addition, the concrete UI level is con-
stantly modeled via a CUI as defined in the UsiXML (User Interface eXtensible 
Markup Language – http://www.usixml.org) [27] and the navigation is specified 
thanks to a system of screen transitions [26]. Not all attributes used in a UsiXML-
compliant CUI are used here though, only a subset of them. On the other hand, the 
Comets maintain a perpetual correspondence between the Comet type (which is aware 
of the task it is supporting) and the FUI through AUI and CUI, thus making it more 
flexible than UbiWidgets supporting only the CUI level. 

3   UbiDraw: a Task-Driven Plastic Drawing System 

This section is structured as follows: first, a general overview of UbiDraw is provided 
that shows how the UI is adaptive with respect to the users’ task; then, the underlying 
software architecture is explained, along with its context watcher; finally, Ubi-
Widgets, the toolkit of widgets supporting plastic-driven plasticity, is described. 

3.1 General Overview of UbiDraw 

UbiDraw was developed using Mozart environment [28] and its graphical toolkit Qtk 
[13]. This environment is by definition multi-platform since it offers an implementa-
tion layer where a system is implemented once, and running similarly on Linux, Win-
dows, and Mac platforms. Qtk has been itself implemented on top of the Mozart envi-
ronment based on the Oz programming language, which is a multi-paradigm pro-
gramming language. Qtk has been used similarly to implement FlexClock [14]. 

UbiDraw provides four set of drawing functionalities grouped by similarity in a 
toolbar attached to an item of the menu bar: File, Draw, Options, and Retouch. Every 
toolbar can be displayed at different locations of the main application window de-
pending on the size and resolution of the application running on a particular platform. 
Each group may be displayed in three different ways according to its status (Fig. 3): 

1. Hidden: all icons of the toolbar attached to the menu item are not visible. 
2. Vertically displayed: all icons are arranged in a vertically-displayed tool bar. 
3. Horizontally displayed: all icons are arranged in a horizontally-displayed tool 

bar. 

Fig. 3 graphically depicts these three possible displays: Fig. 3a has the “File” and 
“Draw” toolbars displayed while the “Options” and “Retouch” toolbars are hidden so 
as to maximize the screen real estate (here, of a PocketPC running UbiDraw); Fig. 3b 
has the toolbar “Retouch” in vertical state since it is currently being displayed in a 
vertical way when activated; Fig. 3c has the “Options” and “Retouch” tool bars in 
horizontal state since they are displayed horizontally corresponding to the active 
menu items. Each toolbar does not necessarily displays all icons of the group: its size 
can range from none (when its status is hidden) to maximum (when all icons are dis-
played either in vertical or in horizontal status). 



  
Figure 3. The three different possible displays of tool bars. 

In order to determine the size of a non-hidden toolbar and how many icons should be 
displayed, UbiDraw is relying on a priority scale system where the icons being dis-
played are regulated by 3 priorities: the last icon being clicked, the rank representing 
the users’ preference/need for this icon, and the amount of clicks on this icon. There-
fore, the higher the priority of an icon is, the more likely it will be displayed. In this 
way, UbiDraw can determine at run-time the UI configuration to be displayed. Fig. 4 
reproduces a situation before and after run-time plasticity where the horizontal screen 
resolution has been increased. 

  
Figure 4. UbiDraw before and after horizontal resizing of the main window. 

3.2 Software Architecture of UbiDraw 

If we consider the process of plasticity with respect to a view of the software architec-
ture, its processing can be located at different places [12]: 
- At the UI component: the plasticity is then embedded in the widget level and be-

comes transparent for the developer; 
- At the UI adaptation component: the plasticity is embodied in the component so 

that it can regulated more flexibly through appropriate techniques, such as produc-
tion rules, inference mechanisms, decision trees, etc. 

- At the UI control component: the plasticity is regulated at the highest possible level 
in the metamodel. In this case, only control rules govern the plasticity. We are not 
aware of ongoing work regarding this level of plasticity apart in Comets [8]. 

(a) (b) (c) 
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Figure 5. Software architecture of UbiDraw. 

 
Figure 6. Steps of run-time plasticity in UbiDraw. 

For UbiDraw, we chose the last option. UbiDraw is implemented in several classes 
(Fig. 5): the main class uses respectively a GUI class (implemented as a concrete UI 
that will be further described later on), an undo list to keep track of action history, and 
a dataProcess class that uses the various drawing objects and facilities. The GUI 
mainly consists of a customCanvas that is in turn decomposed of UbiWidgets (the 
items of the menu bar and their associated tool bars with icons). The customCanvas 
selects one of the three states for each UbiWidget depending on the ContextWatcher 
(that is further described in the next sub-section) that is similar to the context probe 
[4]. The central component for the adaptation mechanism is the UbiWidget compo-
nent. It contains a class called ContextWatcher, responsible for the placement of the 
widgets populating the application, and a class UbiWidget, whose instances are plas-
tic widgets. 

 
Figure 7. The run-time mechanism of UbiWidget. 



Each drawing task of each group is assigned to a UbiWidget, which registers itself 
to the contextWatcher (Fig. 7) that assigns an initial size. Depending on that status, 
the UbiWidget displays itself or not. If the context changes, that is if the size of the 
main application window changes, the contxtWatcher, watching this display surface, 
is notified and, after calculation, sets a new status and size for each UbiWidget. 
Ubidraw is composed of a set of components, each assuming a set of functionalities of 
the application. Fig. 6 shows a general framework identifying several steps for run-
time plasticity as it is implemented in UbiDraw. These steps are: 
1. Situation recognition involves sensing the context, detecting context change and 

identify context change. In the case of UbiDraw window resize listener triggers 
the computation of a reaction; 

2. Computation of a reaction consists in the following: identify candidate reaction, 
select candidate reactions. UbiDraw has one possible reaction i.e. recalculate lay-
out, its calculation mechanism is explained below 

3. Execute reaction consists of three steps: prepare the reaction, execute and close 
the reaction. 

UbiDraw applies instantaneously a reaction result. Adaptation with UbiDraw al-
ways results from a user initiative (either he/she resizes a window or uses a different 
platform). Consequently, no particular precaution has to be taken to execute a reaction 
and there is no need to incorporate an initiative step since it the adaptive UI always 
triggers adaptivity after a significant change of context occurs. For this purpose, 
UbiDraw contains a watch method whose main algorithm is explained in pseudo-code 
below. 

 
meth watch() 

Sx={QTk.wInfo width(@canvashandle)} 
Sy={QTk.wInfo height(@canvashandle)} 
 
% LeftSize provides information on space available 
LeftSizeX={NewCell Sx} 
LeftSizeY={NewCell Sy} 
 
% ScrollX determines where to locate UbiWidgets 
ScrollX={NewCell 0} 
 
% StatusList specifies if a UbiWidget should be displayed 
StatusList = {List.make {List.length @ubiwidgets $} $} 
   
in 
   
% UbiWidgets are sorted according to their rank of importance 
rankedubiwidgets <- {List.sort @ubiwidgets 
         fun{$ O1 O2} 
     if O1.rank > O2.rank 
     then 
        false 
     else 
        true 
     end   
         end} 



  % First selection of UbiWidgets to be displayed  
 {List.forAllInd @rankedubiwidgets 
  proc{$ I UW} 
 
  % If the available size is smaller than the minimal size of 
  % the UbiWiget, the nit will be undisplayed. If not, it 
  % will be displayed. 
  if {Access LeftSizeX $}<{UW getMinSizeX($)} 
     then 
     % UbiWidget will be undisplayed (hidden) 
       {UW hide()} 
       {List.nth StatusList I $}='Hide' 
     else 
     % UbiWidget will be displayed and its minimal size will 
     % be removed from pool of available space 
       {Assign LeftSizeX {Access LeftSizeX $} 
        -{UW getMinSizeX($)}} 
       {List.nth StatusList I $}='Show' 
     end 
  end} 
 
  % Now, we know which UbiWidgets will be displayed. The 
  % remaining available space is then shared among them. 
  % For this purpose, all UbiWidgets coordinates are computed 
  % via the Scroll function and the allocated space is then 
  % passed to them. 
 {List.forAllInd @rankedubiwidgets 
  proc{$ I UW} 
   if {List.nth StatusList I $}=='Show' 

         then 
         % Only the maximum size should be allocated to UbiWidg. 
           if {Access LeftSizeX $}<{UW getMaxSizeX($)} 

             -{UW getMinSizeX($)} 
         then 
         % If the space allocated is less than the UbiWidget 

           % maximum size, this means that it benefits from 
           % remaining available space thanks to the priority 
             {UW setCoords({Access ScrollX $} 0)} 

           {Assign ScrollX {Access ScrollX $} 
 +{UW getMinSizeX($)}+{Access LeftSizeX $}} 

   {Assign LeftSizeX 0} 
         else 

             {UW setCoords({Access ScrollX $} 0)} 
  {Assign LeftSizeX {Access LeftSizeX $} 

              -({UW getMaxSizeX($)}-{UW getMinSizeX($)})} 
  {Assign ScrollX {Access ScrollX $} 
            +{UW getMaxSizeX($)}} 
      end 
     end 
  end} 
end 

 



3.3 The ContextWatcher 

The ContextWatcher is equipped with a method called watch which observers any 
change in the drawing canvas size and applies the appropriate presentation. In order to 
compute the most appropriate trasformation the ContextWatcher needs three informa-
tion from every UbiWidgets registered to it: its minimal size, its maximal size, the 
ranking of the task it supports. The ranking establishes a priority mechanism. The 
ContextWatcher sorts the UbiWidgets according to their ranking level and, conse-
quently, the widget with the highest ranking will be rendered first. The placement al-
gorithm will always try to place a maximal number of widgets onto the canvas. Con-
sequently UbiWidget minimal sizes are firstly taken into account. If, considering all 
minimal sizes, all widgets can not be rendered, the space left by unrendered widgets is 
distributed, on a first rank first serve, among remaining widgets. 

The ContextWatcher communicates to each UbiWidget its actual size, and location 
onto the canvas. UbiWidget can now draw itself. Some tasks are considered as indis-
pensable to the application. In this case, their ranking can be set to 0. Consequently 
the widgets that support them will be rendered whatever the available size, even if this 
size in lower than the min size of the widget. Furthermore the registration mechanism 
allows widgets to register or unregister dynamically. That is to say that from the mo-
ment that  a widget provides its minimal size, maximal size and the ranking of the 
task it supports, it can be integrated into the current UI at run-time. The Con-
textWatcher communicates their position and size constraints to UbiWidgets. Consid-
ering this, UbiWidgets have the faculty to choose between different states. The show 
method assumes the selection of the appropriate presentation. 

Table 1 shows different UbiWidget size allocations over time: in the first three 
rows, 3 UbiWidgets are being allocated a minimum size, a maximum size, and a rank. 
If the screen resolution is increased to, say, 55 pixels, then the next three rows show 
the new mimimum size, the increment, and the final allocated size. The last three 
rows show the same when the screen resolution has been increased of 90 pixels. 

Table 1. Example of UbiWidget size allocations. 

 UbiWidget1 UbiWidget2 UbiWidget 3 
Minimum size 20 30 10 
Maximum size 40 60 20 
Rank 1 2 2 
Minimum size 20 30 10 
Increment 5 0 0 
Allocated size 20 + 5 = 25 30 / 
Minimum size 20 30 10 
Increment 40 60 20 
Allocated size 20 + 20 = 40 30 + 10 = 40 10 

 
Fig. 8 graphically depicts the links between the various UbiDraw components (in 

particular, the context watcher) and the underlying models: a minimal task model 
consists of decomposition of tasks into sub-tasks, each with its own parameters; each 
task is linked to appropriate graphicalCIO (according to UsiXML name) such as 
textComponent, drawingCanvas, etc. wich are then associated to a menu item in the 



menu bar. In this way, a simple concrete UI is maintained at run-time from which the 
context watcher can retrieve properties values (e.g., the rank of each task as repre-
sented in the top left corner of Fig. 8) and to which the context watcher can assign 
new values. The model of the CUI is then interpreted into a final UI thanks to the run-
time mechanism of Qtk that stores a GUI in terms of records. Each time a plasticity 
operation occurs, these records maintaining the models are updated. 
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Figure 8. Links between the context watcher and the underlying models. 



4. Usability analysis by user testing 
Method. In order to test the UbiDraw usability, a questionnaire-based evaluation 

was performed on a sample of 9 users chosen for their heterogeneous level 1) of ex-
pertise in computer manipulation expertise, the fact that they already used an iPaq 
PocketPC was notably taken into account 2) familiarity with the task at hand that is to 
say computer supported drawing. Users were asked to perform four different tasks: 
load an existing drawing, draw a line, draw a rectangle with mid-sized lines and, fi-
nally, draw a house. The first three tasks had to be realized as quick as possible. The 
last task (a higher level task) was proposed to be realized on a desktop-based plat-
form. For this last task, the user was explicitly invited to test the plasticity of the ap-
plication, that is to say to resize the main window to fit his/her task. Furthermore, the 
user was asked to indicate which adaptation mechanism s/he favored. These choices 
refer to heuristics presented in section i.e., ranking click number, click number Rank-
ing. The user was then invited to rank the available tasks according to his preferences. 
S/he was then invited to test the application with and without his customized ranking. 
The results were collected in a questionnaire with items represented according to 7-
point Likert scale. Items were 7-point graphic scales, anchored at the end points with 
the terms "Strongly agree" for 1, "Strongly disagree" for 7, and a "Not applicable" 
(N/A) point outside the scale. Some space was left at the end of the questionnaires for 
positive and negative aspects, and for further comments. 

Results and discussion. From the adaptation perspective it seems that most of the 
users preferred the ’task ranking’ heuristic to the ’number of clicks’ heuristic. This 
choice was mainly made by experienced users. This may be explained by the fact that 
experienced users knew a priori which tasks where more important for them in a 
drawing application whether inexperienced users wanted to feel the system adapt 
while using the software. It is also very interesting to note that there was no real con-
sensus between users on the ranking of tasks. This provides us with an unexpected ar-
gument foe the need of adaptation mechanisms. Finally, most of the users found that 
the adaptation mechanism did not disturb them at all in the realization of tasks. Table 
2 shows the results collected from this user testing: all participants were able to com-
plete each task in a reasonable amount of time (the last task being of course the long-
est) and a moderate error rate. Table 3 reports on the final preference for the groups of 
items. Table 4 gives the average score for each item found in the questionnaire 
(UbiDraw is easy to use, UbiDraw is more handy than a piece of paper, UbiDraw 
benefits from a useful context-sensitive help, UbiDraw provides a clear feedback for 
available functions, UbiDraw enables me to draw what I want, UbiDraw is flexible to 
use and its adaptation does not disturb task completion, UbiDraw is pleasant to use). 

Table 2. Results collected from the user testing. 

Task Task completion rate Speed Error rate 
1 100 % 12 s 0,1 
2 100 % 19 s 0,7 
3 100 % 18 s 0,7 
4 100 % 232 s 1,4 



Table 3. Participants’ preference for groups of icons. 
 File Draw Options Retouch 

Rank in first configuration 1 2 3 4 
Rank in second configuration 2 1 1 2 

Table 4. Results from the questionnaire. 

Item 1 2 3 4 5 6 7 
Average 6 4 6 5 5 6 6 

4   Conclusion 

In this paper, a drawing application called UbiDraw has been presented that benefit 
from some original properties: 
– A unique form of plasticity: a mechanism for UI plasticity of both the presentation 

and the dialogue levels was implemented in order to maximize the observability 
[12] of UI widgets throughout task completion. 

– A task-driven mechanism: the display of the four tool boxes is influenced by the 
respective task frequencies or ranking of these tasks by the user, thus providing 
some support to plasticity at the task level rather than at the interface level. 

– An instantiation of the general software architecture for plasticity as introduced in 
[4]: thanks to the UbiWidget, the UbiMenu, and the ContextWatcher, the plasticity 
mechanism is supported in a way that leaves room for further inclusion of other 
functions and tool boxes without affecting the whole architecture. Again, the gen-
eral software architecture [4] has been proved applicable to an unreached level of 
flexibility. 

– A distribution of responsibilities: it is interesting to notice that the control of 
screen real estate is not concentrated into one single place: rather than having each 
widget with total local control or totally governed by a higher level controller, the 
control of screen space in UbiDraw is distributed between the ContextWatcher 
level, which is responsible for assigning a location and a portion of the screen to a 
UbiWidget, and the UbiWidget itself, which is responsible for finding out the most 
usable presentation among the set of alternatives maintained at the widget level. 
The algorithm used for that has been briefly outlined. 

– A reasonable usability: although a preliminary user testing conducted to assess the 
plasticity of UbiDraw revealed that UbiDraw was rather positively adopted by 
both novice and expert users, it is important to proceed with more empirical stud-
ies. Adaptive UIs are well known to induce some sort confusion in the behavior of 
the end user, whatever the type of adaptation. Indeed, as soon as there is some 
automatic change in the UI without the prior demand or consent of the end user, 
some sort of perturbation may arise. We are not aware of any empirical study that 
proves the positive impact of plasticity on usability, but there are several studies 
[10,25,29] that prove that for UI adaptivity. Therefore, we reasonable believe that, 
since plasticity could be considered as a particular case of UI adaptivity, the ob-
servation may apply as well to plasticity. Jameson et al. [18] argues for the need of 
empirical basis for adaptation in general and provides a framework for this pur-
pose. Right now, different usability criteria may be considered in evaluating task-



driven plastic UIs like the one implemented in UbiDraw to analyse the perturba-
tion type that may be induced by plasticity. For instance, SUPPLE++ demonstrated 
that it is possible to automatically generate graphical UIs that positively affect 
predictability and accuracy [10] for general users or motor-impaired [11]. Since 
today there is no consensus on how to assess the adaptation in general [18,25], we 
do not know exactly what metric to use for assessing the plasticity, although it has 
been recognized that it should be a multi-criteria approach. 

– Consistency: each UI change resulting from changing the context of use (here, the 
screen resolution changes) should be uniformly applied and perceived as such by 
the end user. This may turn out hard to achieve as small close changes of window 
sizes may be perceived as rather different adaptations of the UI. 

– Continuity: more general than consistency, each UI change resulting from chang-
ing the context of use should preserve the three levels of continuity: perceptual, 
functional, and cognitive [3,9]. Continuity is also a property that can be significant 
for adaptation to the context of use, as observed in [9]. 

These criteria, and perhaps other ones, prove that further investigation is required 
to fully assess the usability properties of interest that are predefined in the plasticity 
notion. UbiDraw is on the other hand restricted to a simple context change: window 
resizing and change of platform. We did not investigate further how other changes of 
contextual properties may significantly or not affect the UI plasticity. 
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