
Task-Driven Plasticity: One Step Forward with UbiDraw

Jean Vanderdonckt, Juan Manuel Gonzalez Calleros

Belgian Laboratory of Computer-Human Interaction (BCHI)

Louvain School of Management (LSM), Université catholique de Louvain
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

E-mail: jean.vanderdonckt@uclouvain.be, juan.gonzalez@student.uclouvain.be

Abstract. Task-driven plasticity refers to as the capability of a user interface to
exhibit plasticity driven by the user’s task, i.e. the capability of a user interface
to adapt itself to various contexts of use while preserving some predefined us-
ability properties by performing adaptivity based on some task parameters such
as complexity, frequency, and criticality. The predefined usability property con-
sidered in task-driven plasticity consists of maximizing the observability of user
commands in a system-initiated way driven by the ranking of different tasks
and sub-tasks. In order to illustrate this concept, we developed UbiDraw, a vec-
torial hand drawing application that adapts its user interface by displaying, un-
displaying, resizing, and relocating tool bars and icons according to the current
user’s task, the task frequency, or the user’s preference for some task. This ap-
plication is built on top of a context watcher and a set of ubiquitous widgets.
The context watchers probes the context of use by monitoring how the user is
carrying out her current tasks (e.g., task preference, task frequency) whose defi-
nitions are given in a run-time task model. The context watcher sends this in-
formation to the ubiquitous widgets so as to support task-driven plasticity.

Keywords: adaptation of user interface, context-aware adaptation, plasticity of
user interface, task-based design, task-driven plasticity, user interface descrip-
tion language.

1 Introduction and Motivations

The rise of ubiquitous computing [20] poses significant challenges for designing
User Interfaces (UIs) that are adapted to new contexts of use [3,6,20,22]. In conven-
tional interactive systems, the context of use is both limited (e.g., in terms of screen
resolution, available input devices) and known (e.g., a person sitting in front of a PC).
As computing platforms become more embedded in our daily environment or carried
with us, the surrounding world essentially becomes an interface to virtually any type
of interactive system. This implies some major changes in the design of these UIs.
Porting the UI of specific systems (e.g., a route planning system) or of traditional,
popular applications (e.g., a word processing system) to new computing platforms al-
ways faces the challenge of designing a UI that is compatible with the constraints im-
posed by the new computing platform. For instance, porting the UI of a vectorial
drawing system from a PC to a PocketPC not only poses constraints of the screen
resolution but also introduces alternative modalities of interaction for which the initial

UI was not designed initially. For this purpose, many different strategies have been
adopted that affect the initial UI design or not.

Techniques that do not affect the initial design include simple porting (when the
initial UI is merely reproduced in contents and shapes to the new platform without
any change) or zooming (when zoom in/out is applied to the initial UI to in-
crease/decrease the size of a UI portion currently in use according to a focus of inter-
est). While these techniques preserve the consistency between the different versions,
the simple porting may dramatically reduce the available screen real estate while the
zooming may induce many operations related to the zoom manipulation. Keeping a
high number of menu options displayed continuously also maintains a high level of
uncertainty on the UI and a high decision time.

The Hick-Hyman Law [16] specifies that this decision time is proportional to the
logarithm of equally distributed options. This may suggest that a single screen with
more options is more efficient for target selection than a series of screens with less
options. But in this case, the screen density may increase, thus impacting the time for
searching an item on the screen. For instance, Fig. 1 shows how a traditional UI for a
PC-based drawing application is almost entirely reproduced for a PocketPC. Only the
bottom left portion of the drawing UI displays some more options depending on the
function selected. The rest of the UI remains constant over time.

Fig. 1. Simple drawing application on a Pocket PC

(from WinCEPaint - http://www.abisoft.spb.ru/products/cepaint.html)

Techniques that affect the initial design statically may keep the same modality or

not when adapting the initial UI. For instance, the UI components can be restructured
into tabbed windows gathering functions that are related in principle to the same task.
The quality of this gathering highly depends on the quality of the task analysis that
has been conducted before. As another example, some Pocket PCs are equipped with
physical buttons that can be reassigned to other functions depending on the system
running. While this may reduce the functions presented on screen, the assignment
may confuse the end user as it is neither systematic nor consistent throughout several

interactive systems. In addition, some icons are drawn on these physical buttons, thus
making them appropriate for one task (e.g., a particular view for a calendar), but ir-
relevant for another (e.g., what does a ”Month view” mean for a drawing system?).
Similarly, information that was previously assigned to a graphical widget can be sub-
mitted to a more general change of modality: sound, voice, or gesture can advanta-
geously replace a graphical widget, like in the sound widgets toolkit [2]. In an ulti-
mate example, related functions can also presented in collapsible tool bars (Fig. 2),
like the icons belt of MacOSX or like object toolbars in Corel PaintShop that change
according to the object currently being drawn.

Figure 2. Collapsible tool bars.

Fig. 2 shows how the arrow at the bottom left corner can be expanded to display
options related to the object being drawn (one property and its value at a time is dis-
played, all properties can be scrolled). When the object is finally drawn, the tool bar is
collapsed. If another object is input, the arrow is expanded again with other similar
properties. Techniques that affect the initial design dynamically open the door to yet
unexplored or unexplored capabilities, including the notion of plastic UIs [3,4,7,24].
The plasticity of UIs concerns the capacity of a multi-context UI to preserve usability
properties across the various contexts of use, the context of use being defined here as
a triple (user, platform, environment) [3]. To exhibit such a capability, some recon-
figuration of the UI is often needed. The reconfiguration of UI widgets such as dialog
boxes, controls, menu bars and pull-down menus is an example of a physical adapta-
tion. Another possibility is to adapt the very task that the system is to perform.
Browne, Totterdell, and Normann [1] present a classification of adaptations in which
they observe and regret that most adaptive systems embed hard wired mappings from
the set of states to the set of possible adaptations, thus making the adaptivity mecha-
nism rather inflexible. To go one step further than this type of adaptivity, while con-
sidering the plasticity, we would like to investigate to what extent UI can be ”plasti-
fied” at a higher level of concern than the physical one.

For this purpose, the remainder of this paper is structured as follows: Section 2 re-
ports on some related work on the different levels of plasticity that have been ex-
plored so far. Section 3 describes UbiDraw, a vectorial drawing system whose UI
supports task-driven plasticity based on a small toolkit of task-driven plastic widgets,
called UbiWidgets. This application has been chosen because it is not a trivial UI: it is

not a simple form web-based application, for which multiple adaptation mechanisms
have been considered so far. Section 4 investigates the effect of using UbiWidgets on
the user preference by conducting some usability testing. Finally, Section 5 concludes
the paper by summarizing the advantages and shortcomings of this approach, mainly
through properties of interest.

2 Related Work

Since the notion of plasticity has been introduced [24], many different works have
been dedicated to experiencing how to implement an interactive system that satisfies
this property. The notion of plasticity leaves open the usability or quality properties
(e.g., [12]) with respect to which some level of usability should be maintained and
leaves open the contextual characteristics with respect to which the UI should be
made plastic. In the Cameleon Reference Framework [3], the context of use is defined
as a triple (user, computing platform, environment), each of these dimensions being
equipped with relevant contextual characteristics. In particular, the UsiXML User In-
terface Description Language (UIDL) [27] is compliant with this framework and de-
ploys a series of attributes for each of these three dimensions. Consequently, any po-
tential variation of one or many of these attributes may represent a change of context
with respect to which the UI should be adapted. Of course, not all such variations
should be supported, only those which are really significant.

The mechanism of the software probe for sensing the context of use has been ex-
plained in [4]: it allows deploying interactive systems that constantly probe the con-
text of use for a significant change and that reflect such a change into a UI adaptation.
As far as we know, this adaptation is performed at the level of the Final UI [3]. Ja-
barin demonstrated how to implement efficient software architecture for such a final-
UI level plasticity [17]. Schneider et al. [21 introduced abstract user interfaces whose
implementation is independent of the underlying computing platform and that offers
multiple representations of concrete UIs for the same description. Therefore, the plas-
ticity is located at the Concrete UI level as defined in the Cameleon Reference
Framework [3]. All widgets, although called abstract, belong to a Graphical UI. They
should not be confused with a AUI belonging to the Abstract UI level [3]. Crease et
al. [5] introduced a toolkit of context-aware widgets that embed plasticity at the Ab-
stract UI level [3]: in this toolkit, widgets have been abstracted with respect to the
underlying physical environment so as to form platform-independent widgets. These
widgets can also change their interaction modality.

Hence, the plasticity can be declined at any level of the Cameleon Reference
Framework as noticed in [8,17], but so far only the lower levels of this framework
have been successfully investigated. The only noticeable exception that we are aware
of is the system of Comets [8], that propagates interaction needs from the final UI to
the task and domain level through concrete and abstract UIs via a set of logical map-
pings. The support for plasticity is therefore distributed continuously from the final UI
(lowest level) to the task and domain level (topmost level).

Our work differs from the aforementioned initiatives in that it drives the plasticity
mechanism from a task model located at the task & domain level. It is then propa-
gated downwards to dedicated widgets. A change of the context of use is firstly inter-
preted in terms of a task variation that is then reflected into the Concrete UI level and

Final UI level, respectively. The difference between Comets [8] and UbiWidgets is
that the task definition is embedded in a Comet that is developed fit-to-the purpose,
while UbiWidgets is based on a mechanism exploiting a task model dynamically. This
makes the system independent of any task. In addition, the concrete UI level is con-
stantly modeled via a CUI as defined in the UsiXML (User Interface eXtensible
Markup Language – http://www.usixml.org) [27] and the navigation is specified
thanks to a system of screen transitions [26]. Not all attributes used in a UsiXML-
compliant CUI are used here though, only a subset of them. On the other hand, the
Comets maintain a perpetual correspondence between the Comet type (which is aware
of the task it is supporting) and the FUI through AUI and CUI, thus making it more
flexible than UbiWidgets supporting only the CUI level.

3 UbiDraw: a Task-Driven Plastic Drawing System

This section is structured as follows: first, a general overview of UbiDraw is provided
that shows how the UI is adaptive with respect to the users’ task; then, the underlying
software architecture is explained, along with its context watcher; finally, Ubi-
Widgets, the toolkit of widgets supporting plastic-driven plasticity, is described.

3.1 General Overview of UbiDraw

UbiDraw was developed using Mozart environment [28] and its graphical toolkit Qtk
[13]. This environment is by definition multi-platform since it offers an implementa-
tion layer where a system is implemented once, and running similarly on Linux, Win-
dows, and Mac platforms. Qtk has been itself implemented on top of the Mozart envi-
ronment based on the Oz programming language, which is a multi-paradigm pro-
gramming language. Qtk has been used similarly to implement FlexClock [14].

UbiDraw provides four set of drawing functionalities grouped by similarity in a
toolbar attached to an item of the menu bar: File, Draw, Options, and Retouch. Every
toolbar can be displayed at different locations of the main application window de-
pending on the size and resolution of the application running on a particular platform.
Each group may be displayed in three different ways according to its status (Fig. 3):

1. Hidden: all icons of the toolbar attached to the menu item are not visible.
2. Vertically displayed: all icons are arranged in a vertically-displayed tool bar.
3. Horizontally displayed: all icons are arranged in a horizontally-displayed tool

bar.

Fig. 3 graphically depicts these three possible displays: Fig. 3a has the “File” and
“Draw” toolbars displayed while the “Options” and “Retouch” toolbars are hidden so
as to maximize the screen real estate (here, of a PocketPC running UbiDraw); Fig. 3b
has the toolbar “Retouch” in vertical state since it is currently being displayed in a
vertical way when activated; Fig. 3c has the “Options” and “Retouch” tool bars in
horizontal state since they are displayed horizontally corresponding to the active
menu items. Each toolbar does not necessarily displays all icons of the group: its size
can range from none (when its status is hidden) to maximum (when all icons are dis-
played either in vertical or in horizontal status).

Figure 3. The three different possible displays of tool bars.

In order to determine the size of a non-hidden toolbar and how many icons should be
displayed, UbiDraw is relying on a priority scale system where the icons being dis-
played are regulated by 3 priorities: the last icon being clicked, the rank representing
the users’ preference/need for this icon, and the amount of clicks on this icon. There-
fore, the higher the priority of an icon is, the more likely it will be displayed. In this
way, UbiDraw can determine at run-time the UI configuration to be displayed. Fig. 4
reproduces a situation before and after run-time plasticity where the horizontal screen
resolution has been increased.

Figure 4. UbiDraw before and after horizontal resizing of the main window.

3.2 Software Architecture of UbiDraw

If we consider the process of plasticity with respect to a view of the software architec-
ture, its processing can be located at different places [12]:
- At the UI component: the plasticity is then embedded in the widget level and be-

comes transparent for the developer;
- At the UI adaptation component: the plasticity is embodied in the component so

that it can regulated more flexibly through appropriate techniques, such as produc-
tion rules, inference mechanisms, decision trees, etc.

- At the UI control component: the plasticity is regulated at the highest possible level
in the metamodel. In this case, only control rules govern the plasticity. We are not
aware of ongoing work regarding this level of plasticity apart in Comets [8].

(a) (b) (c)

GUI

UbiDraw

UndoList

CustomCanvas

UbiWidgetsFileSystemDataProcess

DrawObjects

Class

« Uses » relationship

GUI

UbiDraw

UndoList

CustomCanvas

UbiWidgetsFileSystemDataProcess

DrawObjects

Class

« Uses » relationship

Figure 5. Software architecture of UbiDraw.

Figure 6. Steps of run-time plasticity in UbiDraw.

For UbiDraw, we chose the last option. UbiDraw is implemented in several classes
(Fig. 5): the main class uses respectively a GUI class (implemented as a concrete UI
that will be further described later on), an undo list to keep track of action history, and
a dataProcess class that uses the various drawing objects and facilities. The GUI
mainly consists of a customCanvas that is in turn decomposed of UbiWidgets (the
items of the menu bar and their associated tool bars with icons). The customCanvas
selects one of the three states for each UbiWidget depending on the ContextWatcher
(that is further described in the next sub-section) that is similar to the context probe
[4]. The central component for the adaptation mechanism is the UbiWidget compo-
nent. It contains a class called ContextWatcher, responsible for the placement of the
widgets populating the application, and a class UbiWidget, whose instances are plas-
tic widgets.

Figure 7. The run-time mechanism of UbiWidget.

Each drawing task of each group is assigned to a UbiWidget, which registers itself
to the contextWatcher (Fig. 7) that assigns an initial size. Depending on that status,
the UbiWidget displays itself or not. If the context changes, that is if the size of the
main application window changes, the contxtWatcher, watching this display surface,
is notified and, after calculation, sets a new status and size for each UbiWidget.
Ubidraw is composed of a set of components, each assuming a set of functionalities of
the application. Fig. 6 shows a general framework identifying several steps for run-
time plasticity as it is implemented in UbiDraw. These steps are:
1. Situation recognition involves sensing the context, detecting context change and

identify context change. In the case of UbiDraw window resize listener triggers
the computation of a reaction;

2. Computation of a reaction consists in the following: identify candidate reaction,
select candidate reactions. UbiDraw has one possible reaction i.e. recalculate lay-
out, its calculation mechanism is explained below

3. Execute reaction consists of three steps: prepare the reaction, execute and close
the reaction.

UbiDraw applies instantaneously a reaction result. Adaptation with UbiDraw al-
ways results from a user initiative (either he/she resizes a window or uses a different
platform). Consequently, no particular precaution has to be taken to execute a reaction
and there is no need to incorporate an initiative step since it the adaptive UI always
triggers adaptivity after a significant change of context occurs. For this purpose,
UbiDraw contains a watch method whose main algorithm is explained in pseudo-code
below.

meth watch()

Sx={QTk.wInfo width(@canvashandle)}
Sy={QTk.wInfo height(@canvashandle)}

% LeftSize provides information on space available
LeftSizeX={NewCell Sx}
LeftSizeY={NewCell Sy}

% ScrollX determines where to locate UbiWidgets
ScrollX={NewCell 0}

% StatusList specifies if a UbiWidget should be displayed
StatusList = {List.make {List.length @ubiwidgets $} $}

in

% UbiWidgets are sorted according to their rank of importance
rankedubiwidgets <- {List.sort @ubiwidgets
 fun{$ O1 O2}
 if O1.rank > O2.rank
 then
 false
 else
 true
 end
 end}

 % First selection of UbiWidgets to be displayed
 {List.forAllInd @rankedubiwidgets
 proc{$ I UW}

 % If the available size is smaller than the minimal size of
 % the UbiWiget, the nit will be undisplayed. If not, it
 % will be displayed.
 if {Access LeftSizeX $}<{UW getMinSizeX($)}
 then
 % UbiWidget will be undisplayed (hidden)
 {UW hide()}
 {List.nth StatusList I $}='Hide'
 else
 % UbiWidget will be displayed and its minimal size will
 % be removed from pool of available space
 {Assign LeftSizeX {Access LeftSizeX $}
 -{UW getMinSizeX($)}}
 {List.nth StatusList I $}='Show'
 end
 end}

 % Now, we know which UbiWidgets will be displayed. The
 % remaining available space is then shared among them.
 % For this purpose, all UbiWidgets coordinates are computed
 % via the Scroll function and the allocated space is then
 % passed to them.
 {List.forAllInd @rankedubiwidgets
 proc{$ I UW}
 if {List.nth StatusList I $}=='Show'

 then
 % Only the maximum size should be allocated to UbiWidg.
 if {Access LeftSizeX $}<{UW getMaxSizeX($)}

 -{UW getMinSizeX($)}
 then
 % If the space allocated is less than the UbiWidget

 % maximum size, this means that it benefits from
 % remaining available space thanks to the priority
 {UW setCoords({Access ScrollX $} 0)}

 {Assign ScrollX {Access ScrollX $}
 +{UW getMinSizeX($)}+{Access LeftSizeX $}}

 {Assign LeftSizeX 0}
 else

 {UW setCoords({Access ScrollX $} 0)}
 {Assign LeftSizeX {Access LeftSizeX $}

 -({UW getMaxSizeX($)}-{UW getMinSizeX($)})}
 {Assign ScrollX {Access ScrollX $}
 +{UW getMaxSizeX($)}}
 end
 end
 end}
end

3.3 The ContextWatcher

The ContextWatcher is equipped with a method called watch which observers any
change in the drawing canvas size and applies the appropriate presentation. In order to
compute the most appropriate trasformation the ContextWatcher needs three informa-
tion from every UbiWidgets registered to it: its minimal size, its maximal size, the
ranking of the task it supports. The ranking establishes a priority mechanism. The
ContextWatcher sorts the UbiWidgets according to their ranking level and, conse-
quently, the widget with the highest ranking will be rendered first. The placement al-
gorithm will always try to place a maximal number of widgets onto the canvas. Con-
sequently UbiWidget minimal sizes are firstly taken into account. If, considering all
minimal sizes, all widgets can not be rendered, the space left by unrendered widgets is
distributed, on a first rank first serve, among remaining widgets.

The ContextWatcher communicates to each UbiWidget its actual size, and location
onto the canvas. UbiWidget can now draw itself. Some tasks are considered as indis-
pensable to the application. In this case, their ranking can be set to 0. Consequently
the widgets that support them will be rendered whatever the available size, even if this
size in lower than the min size of the widget. Furthermore the registration mechanism
allows widgets to register or unregister dynamically. That is to say that from the mo-
ment that a widget provides its minimal size, maximal size and the ranking of the
task it supports, it can be integrated into the current UI at run-time. The Con-
textWatcher communicates their position and size constraints to UbiWidgets. Consid-
ering this, UbiWidgets have the faculty to choose between different states. The show
method assumes the selection of the appropriate presentation.

Table 1 shows different UbiWidget size allocations over time: in the first three
rows, 3 UbiWidgets are being allocated a minimum size, a maximum size, and a rank.
If the screen resolution is increased to, say, 55 pixels, then the next three rows show
the new mimimum size, the increment, and the final allocated size. The last three
rows show the same when the screen resolution has been increased of 90 pixels.

Table 1. Example of UbiWidget size allocations.

 UbiWidget1 UbiWidget2 UbiWidget 3
Minimum size 20 30 10
Maximum size 40 60 20
Rank 1 2 2
Minimum size 20 30 10
Increment 5 0 0
Allocated size 20 + 5 = 25 30 /
Minimum size 20 30 10
Increment 40 60 20
Allocated size 20 + 20 = 40 30 + 10 = 40 10

Fig. 8 graphically depicts the links between the various UbiDraw components (in

particular, the context watcher) and the underlying models: a minimal task model
consists of decomposition of tasks into sub-tasks, each with its own parameters; each
task is linked to appropriate graphicalCIO (according to UsiXML name) such as
textComponent, drawingCanvas, etc. wich are then associated to a menu item in the

menu bar. In this way, a simple concrete UI is maintained at run-time from which the
context watcher can retrieve properties values (e.g., the rank of each task as repre-
sented in the top left corner of Fig. 8) and to which the context watcher can assign
new values. The model of the CUI is then interpreted into a final UI thanks to the run-
time mechanism of Qtk that stores a GUI in terms of records. Each time a plasticity
operation occurs, these records maintaining the models are updated.

task

id
name
importance
taskType
frequency

plasticWidget
id
minHeight
minWidth
maxHeight
maxWidth

GraphicalCio

id
name
icon
content
defaultCaption
isVisible
isEnabled
fgColor
bgColor

graphicalContainergraphicalIndividualComponent

menuItem
id
icon
content
type

textComponent
imageComponent

button

menu

drawingCanvas

Task

Concrete User Interface (CUI)

Final User Interface (FUI)

3:selectsBestAppearance

contextWatcher

1:detectsChange

2:setSpaceConstraints

4:tellAppearance

5:display

task

id
name
importance
taskType
frequency

task

id
name
importance
taskType
frequency

plasticWidget
id
minHeight
minWidth
maxHeight
maxWidth

plasticWidget
id
minHeight
minWidth
maxHeight
maxWidth

GraphicalCio

id
name
icon
content
defaultCaption
isVisible
isEnabled
fgColor
bgColor

GraphicalCio

id
name
icon
content
defaultCaption
isVisible
isEnabled
fgColor
bgColor

graphicalContainergraphicalContainergraphicalIndividualComponentgraphicalIndividualComponent

menuItem
id
icon
content
type

menuItem
id
icon
content
type

textComponent
imageComponent

button

menu

drawingCanvas

textComponent
imageComponent

button

menu

drawingCanvas

Task

Concrete User Interface (CUI)

Final User Interface (FUI)

3:selectsBestAppearance

contextWatcher

1:detectsChange

2:setSpaceConstraints

4:tellAppearance

5:display

Figure 8. Links between the context watcher and the underlying models.

4. Usability analysis by user testing
Method. In order to test the UbiDraw usability, a questionnaire-based evaluation

was performed on a sample of 9 users chosen for their heterogeneous level 1) of ex-
pertise in computer manipulation expertise, the fact that they already used an iPaq
PocketPC was notably taken into account 2) familiarity with the task at hand that is to
say computer supported drawing. Users were asked to perform four different tasks:
load an existing drawing, draw a line, draw a rectangle with mid-sized lines and, fi-
nally, draw a house. The first three tasks had to be realized as quick as possible. The
last task (a higher level task) was proposed to be realized on a desktop-based plat-
form. For this last task, the user was explicitly invited to test the plasticity of the ap-
plication, that is to say to resize the main window to fit his/her task. Furthermore, the
user was asked to indicate which adaptation mechanism s/he favored. These choices
refer to heuristics presented in section i.e., ranking click number, click number Rank-
ing. The user was then invited to rank the available tasks according to his preferences.
S/he was then invited to test the application with and without his customized ranking.
The results were collected in a questionnaire with items represented according to 7-
point Likert scale. Items were 7-point graphic scales, anchored at the end points with
the terms "Strongly agree" for 1, "Strongly disagree" for 7, and a "Not applicable"
(N/A) point outside the scale. Some space was left at the end of the questionnaires for
positive and negative aspects, and for further comments.

Results and discussion. From the adaptation perspective it seems that most of the
users preferred the ’task ranking’ heuristic to the ’number of clicks’ heuristic. This
choice was mainly made by experienced users. This may be explained by the fact that
experienced users knew a priori which tasks where more important for them in a
drawing application whether inexperienced users wanted to feel the system adapt
while using the software. It is also very interesting to note that there was no real con-
sensus between users on the ranking of tasks. This provides us with an unexpected ar-
gument foe the need of adaptation mechanisms. Finally, most of the users found that
the adaptation mechanism did not disturb them at all in the realization of tasks. Table
2 shows the results collected from this user testing: all participants were able to com-
plete each task in a reasonable amount of time (the last task being of course the long-
est) and a moderate error rate. Table 3 reports on the final preference for the groups of
items. Table 4 gives the average score for each item found in the questionnaire
(UbiDraw is easy to use, UbiDraw is more handy than a piece of paper, UbiDraw
benefits from a useful context-sensitive help, UbiDraw provides a clear feedback for
available functions, UbiDraw enables me to draw what I want, UbiDraw is flexible to
use and its adaptation does not disturb task completion, UbiDraw is pleasant to use).

Table 2. Results collected from the user testing.

Task Task completion rate Speed Error rate
1 100 % 12 s 0,1
2 100 % 19 s 0,7
3 100 % 18 s 0,7
4 100 % 232 s 1,4

Table 3. Participants’ preference for groups of icons.
 File Draw Options Retouch

Rank in first configuration 1 2 3 4
Rank in second configuration 2 1 1 2

Table 4. Results from the questionnaire.

Item 1 2 3 4 5 6 7
Average 6 4 6 5 5 6 6

4 Conclusion

In this paper, a drawing application called UbiDraw has been presented that benefit
from some original properties:
– A unique form of plasticity: a mechanism for UI plasticity of both the presentation

and the dialogue levels was implemented in order to maximize the observability
[12] of UI widgets throughout task completion.

– A task-driven mechanism: the display of the four tool boxes is influenced by the
respective task frequencies or ranking of these tasks by the user, thus providing
some support to plasticity at the task level rather than at the interface level.

– An instantiation of the general software architecture for plasticity as introduced in
[4]: thanks to the UbiWidget, the UbiMenu, and the ContextWatcher, the plasticity
mechanism is supported in a way that leaves room for further inclusion of other
functions and tool boxes without affecting the whole architecture. Again, the gen-
eral software architecture [4] has been proved applicable to an unreached level of
flexibility.

– A distribution of responsibilities: it is interesting to notice that the control of
screen real estate is not concentrated into one single place: rather than having each
widget with total local control or totally governed by a higher level controller, the
control of screen space in UbiDraw is distributed between the ContextWatcher
level, which is responsible for assigning a location and a portion of the screen to a
UbiWidget, and the UbiWidget itself, which is responsible for finding out the most
usable presentation among the set of alternatives maintained at the widget level.
The algorithm used for that has been briefly outlined.

– A reasonable usability: although a preliminary user testing conducted to assess the
plasticity of UbiDraw revealed that UbiDraw was rather positively adopted by
both novice and expert users, it is important to proceed with more empirical stud-
ies. Adaptive UIs are well known to induce some sort confusion in the behavior of
the end user, whatever the type of adaptation. Indeed, as soon as there is some
automatic change in the UI without the prior demand or consent of the end user,
some sort of perturbation may arise. We are not aware of any empirical study that
proves the positive impact of plasticity on usability, but there are several studies
[10,25,29] that prove that for UI adaptivity. Therefore, we reasonable believe that,
since plasticity could be considered as a particular case of UI adaptivity, the ob-
servation may apply as well to plasticity. Jameson et al. [18] argues for the need of
empirical basis for adaptation in general and provides a framework for this pur-
pose. Right now, different usability criteria may be considered in evaluating task-

driven plastic UIs like the one implemented in UbiDraw to analyse the perturba-
tion type that may be induced by plasticity. For instance, SUPPLE++ demonstrated
that it is possible to automatically generate graphical UIs that positively affect
predictability and accuracy [10] for general users or motor-impaired [11]. Since
today there is no consensus on how to assess the adaptation in general [18,25], we
do not know exactly what metric to use for assessing the plasticity, although it has
been recognized that it should be a multi-criteria approach.

– Consistency: each UI change resulting from changing the context of use (here, the
screen resolution changes) should be uniformly applied and perceived as such by
the end user. This may turn out hard to achieve as small close changes of window
sizes may be perceived as rather different adaptations of the UI.

– Continuity: more general than consistency, each UI change resulting from chang-
ing the context of use should preserve the three levels of continuity: perceptual,
functional, and cognitive [3,9]. Continuity is also a property that can be significant
for adaptation to the context of use, as observed in [9].

These criteria, and perhaps other ones, prove that further investigation is required
to fully assess the usability properties of interest that are predefined in the plasticity
notion. UbiDraw is on the other hand restricted to a simple context change: window
resizing and change of platform. We did not investigate further how other changes of
contextual properties may significantly or not affect the UI plasticity.

References

1. Brown, D., Totterdell, P., Norman, M.: Adaptive User Interfaces. Academic Press (1990)
2. Brewster, S.: The Design of Sonically-Enhanced Widgets. Interacting with Computers 11,

2, 211–235 (1998)
3. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for the Develop-

ment of Plastic User Interfaces. In: Proc. of 8th IFIP WG2.7 (13.2) Working Conf. on Engi-
neering for Human-Computer Interaction EHCI'2001 (Toronto, May 11-13, 2001). LNCS,
vol. 2254, pp. 173–192. Springer, Heidelberg (2001)

4. Calvary, G., Coutaz, J., Thevenin, D.: Supporting Context Changes for Plastic User Inter-
faces: A Process and a Mechanism. In: Proc. of Joint Conf. on Human-Computer Interac-
tion IHM-HCI’2001 (Lille, September 12-14, 2001), pp. 349–363. Springer, London (2001)

5. Crease, M., Brewster, S., Gray, Ph.: Caring, Sharing Widgets: A Toolkit of Sensitive Wid-
gets. In: Proc. of BCS Conf. on Human-Computer Interaction HCI’2000 “People and com-
puters XIV” (Sunderland, September 5-8, 2000), pp. 257–270. Springer, London (2000)

6. Coutaz, J., Balme, L., Alvaro, X., Calvary, G., Demeure, A., Sottet, J.-S.: An MDE-SOA
Approach to Support Plastic User Interfaces in Ambient Spaces. In: Proc. of Int. Conf. on
Universal Access in Human-Computer Interaction UAHCI’2007 (Beijing, July 22-27,
2007). LNCS, vol. 4555, pp. 63–72. Springer, Heidelberg (2007)

7. Coutaz, J., Calvary, G.: HCI and Software Engineering: Designing for User Interface Plas-
ticity. In: A. Sears, J. Jacko (eds.): “The Human-Computer Interaction Handbook: Funda-
mentals, Evolving Technologies, and Emerging Applications”, pp. 1107–1125. Taylor &
Francis CRC Press, Human Factor and Ergonomics series (2008)

8. Demeure, A., Calvary, G., Coutaz, J., Vanderdonckt, J.: The Comets Inspector: Towards
Run Time Plasticity Control based on a Semantic Network. In: Proc. of 5th Int. Worksho on
Task Models and Diagrams for User Interface Design TAMODIA’2006 (Hasselt, October 23-
24, 2006), pp. 324–338. LNCS, vol. 4385. Springer, Heidelberg (2007)

9. Florins, M., Trevisan, D., Vanderdonckt, J.: The Continuity Property in Mixed Reality and
Multi-platform Systems: a Comparative Study. In: Proc. of 5th Int. Conf. on Computer-
Aided Design of User Interfaces CADUI’2004 (Funchal, January 14-16, 2004), pp. 321–
332. Kluwer Academics Pub., Dordrecht (2004)

10. Gajos, K., Everitt, K., Tan, D.S., Czerwinsky, M., Weld, D.S.: Predictability and Accuracy
in adaptive user interfaces. In: Proc. of ACM Conf. on Human Aspects in Computing Sys-
tems CHI’2008 (Florence, April 5-10, 2008), pp. 1271-1274. ACM Press, New York
(2008)

11. Gajos, K., Wobbrock, J.O., Weld, D.: Improving the performance of motor-impaired users
with automatically-generated, ability-based interfaces. In: Proc. of ACM Conf. on Human
Aspects in Computing Systems CHI’2008 (Florence, April 5-10, 2008), pp. 1257-1266.
ACM Press, New York (2008)

12. Gram, Ch., Cockton, G.: Design Principles for Interactive Software. Chapman & Hall Pub-
lishers, London (1996)

13. Grolaux, D., Van Roy, P., Vanderdonckt, J.: QTk: A Mixed Model-Based Approach to De-
signing Executable User Interfaces. In: Proc. of 8th IFIP Working Conf. on Engineering for
Human-Computer Interaction EHCI’01 (Toronto, May 11-13, 2001). LNCS, vol. 2254, pp.
109–110. Springer, Heidelberg (2001)

14. Grolaux, D., Van Roy, P., Vanderdonckt, J.: FlexClock, a Plastic Clock Written in Oz with
the QTk toolkit. In: Proc. of 1st Int. Workshop on Task Models and Diagrams for user inter-
face design TAMODIA’2002 (Bucharest, July 18-19, 2002), pp. 135–142. Academy of Eco-
nomic Studies of Bucharest, INFOREC Printing House, Bucharest (2002)

15. Grolaux, D., Vanderdonckt, J., Van Roy, P.: Attach me, Detach me, Assemble me like You
Work. In: Proc. of Int. Conf. on Human-Computer Interaction INTERACT’2005 (Rome, Sep-
tember 12-16, 2005). LNCS, vol. 3585, pp. 198–212. Springer, Heidelberg (2005)

16. Hick, W.E.: On the rate of gain of information. Quarterly Journal of Experimental Psychol-
ogy 4, 11–26 (1952)

17. Jabarin, B., Graham, N.T.C.: Architectures for Widget-Level Plasticity. In: Proc. of 10th Int.
Workshop on Design, Specification, and Verification of Interactive Systems DSV-IS'2003
(Funchal, June 11-13, 2003). LNCS, vol. 2844, pp. 124–138. Springer, Heidelberg (2003)

18. Jameson, A., Grossman-Hutter, B., March, L., Rummer, R.: Creating an empirical basis for
adaptation techniques. In: Proc. of ACM Conf. on Intelligent User Interfaces IUI’2000
(New Orleans, January 9-12, 2000), pp. 149–156. ACM Press, New York (2000)

19. Montero, F., López-Jaquero, V., Molina, J.P., González, P.: An Approach to Develop User
Interfaces with Plasticity. In: Proc. of 10th Int. Conf. on Design, Specification, and
Verification of Interactive Systems DSV-IS'2003 (Funchal, June 11-13, 2003). LNCS, vol.
2844, pp. 420–423. Springer, Heidelberg (2003)

20. Rekimoto, J., Masanori, S.: Augmented Surfaces: A Spatially Continuous Work Space for
Hybrid Computing Environments. In: Proc. of ACM Conf. on Human Aspects in Comput-
ing Systems CHI’99 (Pittsburgh, May 15-20, 1999), pp. 378–385. ACM Press, NY (1999)

21. Schneider, K.A., Cordy, J.R.: Abstract User Interfaces: A Model and Notation to Support
Plasticity in Interactive Systems. In: Proc. of 9th Int. Conf. on Design, Specification and
Verification of Interactive Systems DSV-IS'2002 (Rostock, June 12-14, 2002). LNCS, vol.
2545, pp. 28–48. Springer, Heidelberg (2002)

22. Sendin, M., Lores, J., Montero, F., Lopez, V.: Towards a Framework to develop plastic
user interfaces. In: Proc. of 5th Int. Conf. on Human-Computer Interaction with Mobile De-
vices MobileHCI’2003 (Udine, 8-11 September 2003). LNCS, vol. 2795, pp. 428–433.
Springer, Heidelberg (2003)

23. Sottet, J.-S., Calvary, G., Favre, J.-M., Coutaz, J., Demeure, A., Balme, L.: Towards
Model-Driven Engineering of Plastic User Interfaces. In: Proc. of MoDELS’2005 Satellite
Events (Montego Bay, October 2)7, 2005). LNCS, vol. 3844, pp. 191–200. Springer, Hei-
delberg (2005)

24. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.
In: Proc. of IFIP Int. Conf. on Human-Computer Interaction Interact’99 (Edinburgh, Sept.
1999), pp. 110–117. IOS Press, Amsterdam (1999)

25. Tsandilas, T., Schraefel, M.C.: An empirical assessment of adaptation techniques. In: Proc.
of ACM Conf. on Human Aspects in Computing Systems CHI’2005 (Portland, April 2-7,
2008), pp. 2009–2012. ACM Press, New York (2005)

26. Vanderdonckt, J., Limbourg, Q., Florins, M.: Deriving the Navigational Structure of a User
Interface. In: Proc. of 9th IFIP TC 13 Int. Conf. on Human-Computer Interaction INTER-
ACT’2003 (Zurich, September 1-5, 2003), pp. 455–462. IOS Press, Amsterdam (2003)

27. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Proc. of 17th Conf. on Advanced Information Systems Engineering
CAiSE'05 (Porto, June 13-17, 2005). LNCS, vol. 3520, pp. 16–31. Springer, Heidelberg
(2005)

28. Van Roy, P., Haridi, S., Concepts, Techniques, and Models of Computer Programming,
MIT Press, New York (2004)

29. Weibelzahl, S.: Evaluation of adaptive systems. In: M. Bauer, P. J. Gmytrasiewicz, & J.
Vassileva (Eds.), Proc. of the 8th Int. Conf. on User Modeling UM’2001 (Sonthofen, July
13-17, 2001), pp. 292–294, Berlin, Heidelberg (2001)

