A DISTRIBUTED SERVICE REGISTRY FOR
RESOURCE SHARING AMONG AD-HOC
DYNAMIC COALITIONS

Ravi Mukkamala,! Vijayalakshmi Atluri*,? and Janice Warner?

1Depam‘ment of Computer Science
Old Dominion University
Norfolk, VA 23529

mukka@cs.odu.edu
2 Mmsis Department and CIMIC

Rutgers University
Newark, NJ 07012

{janice,atluri } @cimic.rutgers.edu

Abstract In a dynamic coalition environment, it is essential to allow automatic sharing of
resources among coalition members. The challenge is to facilitate such sharing
while adhering to the security policies of each coalition. To accomplish this,
a dynamic coalition-based access control (DCBAC) has been proposed earlier,
where security policies enforced by each coalition member are published in a
centralized coalition service registry (CSR). In this paper, we propose a dis-
tributed coalition service registry (DCSR) system. In the DCSR system, several
service registry agents cooperate to provide controlled access to resources. Dis-
tribution of the registries results in improved availability, higher concurrency,
better response times to user queries, and enhanced flexibility. We employ se-
cure group multicasting to communicate among the DCSR agents. The paper
outlines the DCSR system, the supported functionalities and its underlying in-

frastructure.

1. Introduction

It is often necessary for organizations to come together to share resources
without prior planning to accomplish a certain task at hand. This is driven
by a number of applications including emergency and disaster management,
peace keeping, humanitarian operations, or simply virtual enterprises. As an

*The work of Atluri and Warner is supported in part by the National Science Foundation under grant IIS-

0306838.

320 A Distributed Service Registry for Resource Sharing

example, in a natural disaster scenario, such as the earth quake in Turkey on
May 1, 2003 and the Tsunami in Asia on December 26, 2004, government
agencies (e.g., FEMA, local police and fire departments), non-government or-
ganizations (e.g., Red Cross) and private organizations (e.g., Doctors without
Borders, suppliers of emergency provisions) needed to share information about
victims, supplies and logistics [14]. Similar examples include homeland secu-
rity applications where sharing of information across different organizations is
needed for identifying criminal and terrorist behaviors, illegal shipments, and
the like. In a commercial setting, organizations may share resources and infor-
mation in order to cater to their clients by providing comprehensive services by
drawing complementary services and skills from participating organizations.

Typically, resource sharing is done by establishing alliances and collabora-
tions, also known as coalitions. Secure sharing often incurs significant admin-
istrative overhead since it may be required to provide access identification for
each user who will have rights to the resources. Such a process does not suit
the needs of a dynamic coalition where entities may join or leave the coalition
in an ad-hoc manner.

Moreover, when coalition entities agree to share their information resources,
the access control policies are agreed upon at the coalition level. These coali-
tion level agreements are not at the level of fine-grained policies, in the sense
that they do not specify which subjects are allowed to access specific resources.
For example, an agreement between entities A and B is not an access control
policy stating “a user Alice of entity A can access the immigration file of en-
tity B.” However, secure sharing of data requires enforcing fine-grained ac-
cess control governed by each organization’s security policies over the shared
resources. Therefore, enforcing the coalition-level security policies requires
transforming the high-level policies to implementation level. Likewise, it is
necessary to ensure that local implementation level policies are not violated by
coalition level policies.

In an earlier work [19], we have proposed a dynamic coalition-based access
control (DCBAC) model that is specified based on the credentials possessed
by coalitions as well as subjects. The DCBAC system comprises of four layers
— (i) coalition level, which interacts with other coalition entities and is respon-
sible for ensuring the authenticity of the coalition entity requesting access to
its resources, (ii) credential filter, which is responsible for examining incom-
ing credentials, and attaching appropriate credentials to outgoing requests, (iii)
credential <= local access control mapper, which converts local access con-
trol rules to policies concerning credentials for outgoing requests, and vice
versa for incoming requests, and (iv) local access control layer, responsible
for uniformly serving the access requests independent of whether it is a local
access request or an external access request. Essentially, a request originating
at a coalition entity, is transformed into a coalition level request as it perco-

A Distributed Service Registry for Resource Sharing 321

lates through the four layers at its end. Similarly, the incoming coalition level
request is translated into a local access request as it flows down through the
different layers. The information appended at each layer at one coalition en-
tity is understood and dealt with the corresponding layer at the other coalition
entity, much like the TCP/IP network protocol.

To accommodate sharing among true dynamic and ad-hoc coalitions, DCBAC
employs a centralized coalition service registry (CSR) for coalition entities to
publish their coalition level access policies. Any coalition entity wishing to
access a specific resource of another coalition entity can obtain a ticket by sub-
mitting its entity credentials which are subsequently evaluated by the CSR.
However, CSR suffers from the same limitations of any centralized system,
such as limited availability and poor response time. In this paper, we extend the
DCBAC model through a decentralized CSR (DCSR). Essentially, the coalition
'service registry is distributed among several coalition members. As we show in
this paper, the distribution of the CSR functions enhances DCBAC’s availabil-
ity as there are multiple registries. Of course, the actual realized availability
depends on the amount of replication of registry services and data among the
DCSR functions. For example, in a fully-replicated scheme a service is regis-
tered at all agents resulting in high availability. However, the availability (for a
particular service) with a non-replicated DCSR may be no different from that
of a CSR. A partially-replicated scheme where a service is registered at one
or more registries enhances the availability, with the degree of enhancement
depending on the degree of replication. Of course, the cost of maintaining
the replicas also increases with the degree of replication. The replication and
distribution of CSR also increase concurrency of query execution, improve re-
sponse times to user queries, and enhance flexibility. The benefits are achieved
at the cost of additional communication cost. We propose the use of secure
multicasting to maintain distributed registries.

This paper is organized as follows. Section 2 describes the DCBAC sys-
tem on which the current system is based. Section 3 provides details of the
proposed distributed registry system, the functionalities it supports, and details
on the underlying infrastructure. Section 4 discusses the additional desirable
functionalities supported by our DCSR system. Finally, section 5 summarizes
our conclusions and outlines future research in this area.

2. Distributed Coalition-based Access Control (DCBAC)

In this section, we briefly review the DCBAC system proposed in [19],
which is comprised of a four-layered architecture at the coalition entities and
an independent component, the Coalition Service Registry (CSR). (The four
layers are shown in Figure 1 but it has DCSR instead of CSR).

322 A Distributed Service Registry for Resource Sharing

The CSR is the key to facilitating dynamic and ad-hoc collaboration as it
allows any entity to describe the resources it is willing to share and its coalition
level policies associated with the resources. Essentially, CSR is used to define
the set of resources that coalition entities wish make available and to describe
the interfaces and credentials used to access those resources. It mitigates the
need to negotiate and establish collaboration policies among coalition entities.

To gain access to a desired resource, a user (or an organization on behalf
of its user) submits the requested organizational level credentials to the CSR.
CSR verifies these organization-level credentials and issues a ticket which can
be submitted by individuals in the organization when sending an access re-
quest for the advertised resources. This ticket is a SAML assertion that asserts
that the requester’s organizational credentials match described policy require-
ments. Any user from the authenticated coalition entity must present to attempt
to access the resources of another coalition entity would append this ticket to
his request. Note that receipt of the ticket is not sufficient for access to the
resources. Instead, the ticket merely confirms that the user is from an organi-
zation that matches the organizational level policy of the organization offering
the resources.

We describe the functionalities of each layer in the following. The top layer
is the coalition level. It interacts with the coalition level at other coalition en-
tities and with the CSR. For outgoing requests, it is responsible for consulting
the CSR to find the source of requested resources and for submitting orga-
nizational level credential to the CSR to obtain a “ticket” that indicates that
it is allowed to make the request. On receiving an external service request,
this layer validates the requesting coalition entity by validating the “ticket” re-
ceived with the request. It checks if the coalition policy has changed since
the ticket was issued. If so, the request is rejected by this level. The ticket is
stripped off and the request is then forwarded to the credential filter.

The credential filter layer is responsible for filtering outgoing requests and
their associated credentials. It filters out those credentials that the coalition
entity does not want to reveal for privacy reasons. If it knows the full creden-
tial requirements for accessing the requested resource (because the requested
resource has been previously accessed), it also filters out any unneeded creden-
tials.

The credential <=L AC mapper takes the local access control rules and con-
verts them into a policy based on credential attributes and resource attributes.
For incoming requests, it is responsible for mapping the requester’s creden-
tials to the local access control terminology and vice versa. When a request is
received, it looks at the rights that can be associated with the submitted cre-
dentials and sees if they match the credential requirements for the requested
resource. If the requested resource is a cluster, it identifies the specific re-
sources that can be accessed.

A Distributed Service Registry for Resource Sharing 323

The local access control layer enforces control on local services for both
local and non-local requests. Local requests are received through the Local-
user-Interface (LUI). The non-local requests are received through the Mapper
layer. The LAC retrieves the requested resources and makes them available to
the external requesting user. For outgoing requests, it submits the requests to
the Mapper level.

3. Distributed Coalition Service Registry (DCSR)

In this paper, the centralized CSR component of the DCBAC architecture
is distributed (using multiple agents), referred to as distributed coalition ser-
vice registry (DCSR). In this section, we first describe the functionalities of
the DCSR and then show how the proposed DCSR system satisfies these re-
quirements.

DCSR Functionalities

1 Register: Maintain a registry of all shared services available: register,
cancel, and update services

2 Authenticate: Authenticate the service requester’s credentials

3 Check conditions: Check for any preconditions necessary to offer the
requested service

4 Generate ticket: On successful checking, generate a ticket (token) as-
serting the requester’s claim to use the service

In [19], we have shown how the above functionalities can be supported when
a single centralized service registry (CSR) is employed. In the following, we
discuss the additional challenges involved when a DCSR is employed. Our
proposed DCSR system is illustrated in Figure 2. In particular, we present
the details of the communication and computation infrastructure needed to im-
plement the proposed DCSR system. The CSR agents are shown to be logi-
cally connected using a secure multicast group. The agents together implement
DCSR.

3.1 Secure Communication Infrastructure

In a dynamic coalition environment, members join and leave in an ad-hoc
manner. Accordingly, new registries (CSR) may join and leave the DCSR.
In addition, new registries may be created to improve performance or some
removed when the load is reduced. One way to achieve secure communication
within such an ad-hoc group is to have a group key used by the sending agents
to encrypt data, and the receiving agent to decrypt. Such a key is known as

324 A Distributed Service Registry for Resource Sharing

Coalition
Service Registry
Agent (CSRj)

Coalition
Service Registry
Agent (CSRk)

Coalition
Service Registry
Agent (CSRi)

Coalition Level

Multicast Group

Coalition Level

Coalition
Service Registry
Agent (CSRI)

o
o
e

e,
(T

Credential Filter Credential Filter|

Credential to Credential to
LAC Mapper LAC Mapper
Se——
Local Services Local Access Local Access Local Services
(shared and private) Control (LAC) Control (LAC) (shared and private)
Local User Local User
Interface Interface

Figure 1. Distributed Coalition-based Access Control: Architecture

Traffic Encryption Key (TEK). The group key can be used as well in different
security services such as authentication and maintenance of message integrity
among the agents [22].

To facilitate the dynamic, distributed and secure nature of the registries, and
to make the development of the registries independent of the communication
infrastructure, we propose the use of an underlying secure communication in-
frastructure (SCI).

SCI supports the distributed CSR functions and DCBAC applications that
are built on top of it in two ways. First, it facilitates the application devel-
opment by separating the underlying communication and security functions
from the CSR functionality. Second, since SCI communication primitives are
generic, they can also be used to develop other DCBAC applications on top of
the proposed services. Examples of SCI’s communication primitives include
secure propagation of update messages to support full or partial replication, a
transparent fault tolerance mechanism to mitigate the effects of failures, sup-
port for confidentiality (current, forward, and backward secrecy), key manage-
ment (key generation, assignment and distribution), etc [12].

Developing SCI involves designing group communication services and a
key management scheme. The design and implementation of such components
will vary based on the type of network connecting the CSR agents (e.g., the
Internet, a wired or wireless LAN, a Mobile Ad-hoc Network (MANET), etc),

A Distributed Service Registry for Resource Sharing 325

as well as the number of CSR agents in DCSR. In the following, we describe
some possible design options to fit different environments.

= Wired-network In case the coalition services are implemented on a
wired network, (e.g., the Internet or a LAN), designing SCI will involve
selecting a suitable group communication service as well as a key man-
agement scheme. Since most wired networks are IP-based, a network-
level group communication scheme (such as IP-multicast) might be used
[20]. Selecting a key management protocol will depend basically on the
number of parties (agents) involved as well as the dynamic nature of the
coalition membership. For small to medium sized coalitions (e.g., 10 to
50 members), a simple protocol such as GKMP [7] may be used. If the
coalition size is large (e.g., more than 50) or if the frequency of member-
ship changes (joins and leaves) is high, a more efficient protocol such as
LKH [18] or EBS [5] may be used. It is worth noting that all of protocols
involve a centralized key manager to perform rekeying. Such centralized
entity may be replicated for reliability.

= Wireless network In some applications such as military or disaster man-
agement, a coalition may be formed on the spot by co-located agents
that communicate via wireless radio. In such a case, group communica-
tion might be provided through broadcast and/or on-demand multicast.
Broadcast may be appropriate for a small number of stationary agents
colocated in a limited area that may be easily covered by short wave
radio. In case of mobile agents and/or large coverage area, the service
is considered as deployed in Mobile Ad-hoc Network (MANET) envi-
ronment. Here, group communication may be provided through an on-
demand multicast protocol (e.g., MAODV [17], ODMRP [21], etc). Key
management can be performed through either GKMP or LKH based on
the number of agents.

= Ad-hoc network Some applications may involve an ad-hoc coalition
that interacts with base station agents on a wired network. In such case,
group communication may be provided through Application-Level Mul-
ticast (ALM). The basic idea is to have end systems (agents) to establish
an overlay network composed of their unicast links to distribute mul-
ticast traffic. Different topologies of ALM overlays were used in the
literature including Single Tree [6, 8], Mesh Graphs [2, 3] or Logical
Coordinate System [10, 16]. ALM provides the flexibility of delivering
messages via unicast or multicast independent of the underlying net-
work. Key management may be provided through any standard scheme
(e.g., GKMP or LKH). However, ALM can assist in key distribution
through selective unicast/multicast message delivery. An example of an
architecture that utilizes this idea can be found in [13].

326 A Distributed Service Registry for Resource Sharing

Algorithm 1 New Service Registration
1: INPUT: newsvc, User_—credentials, replication_degree, registry_set
2: OUTPUT: exception_code
3: /* Check the user credentials */
4: if The registry can verify User_credentials then
5. verify_credentials (User_credentails)
6: else
7.
8

: Invoke verify_credentials (User _credentials) at another registry or authenticator

: end if
9: if The credentials are invalid then

10: return (1); /* Return exception code 1 */

11: end if

12: /* Check if the new service is already available */

13: if find(newsvc) then

14: return (2); /* Return exception code 2*/

15: end if

16: /* Register the new service */

17: if registry-set = {} then

18: agent._set = Select replicationgegree registries from the DCSR agent list based on

current load

19: else

20: agent_set =registry_set

21: end if

22: Multicast (or Unicast) new-svc-reg request to agent_set

23: return (0); /* Return normal code 0 */

3.2 Computational infrastructure

Assuming the availability of a secure communication infrastructure (as de-
scribed above), we now discuss ways to implement the basic functionality of
DCSR on top of this infrastructure.

Registration Phase: First, consider the registration of a service (also shown
in Algorithm 1). When a coalition member intends to register its local service
for use by the coalition members, it uses this operation (new-svc-reg). This
requires the user to specify the service details such as the service API, the
required user credentials to use the service, details of authentication, the loca-
tion of service, etc (embedded in newwvc parameter). In addition, to provide
fault-tolerance at the DCSR level, the requester has the option of specifying
the degree of fault-tolerance (replication_degree). Finally, a member may
wish to register the service with any set of DCSR agents. Alternately, he may
specify a given set of agents, the (registry_set), where it needs to be regis-
tered . Since DCSR offers location transparency and replication transparency,
the registering user may submit this request to any agent. The receiving DCSR
agent validates the request and the requester (using User credentials), and

A Distributed Service Registry for Resource Sharing 327

then starts implementing the request. Suppose the service is to be registered at
a small number of agents, then the receiving agent may select these sites based
on their current load and send the registration requests to them in a secure uni-
cast fashion. If the set is large, the secure multicast could be used. To ensure
that the registering user gets a prompt reply, the receiving agent immediately,
without waiting for replies from the related agents, sends a reply. This is simi-
lar to the gossip protocol [1].

Algorithm 2 Query for a Service
1: INPUT: svc, User_credentials

OUTPUT: returncode, ticket

/* Check the user credentials */

: if The local registry can verify U ser _credentials then
verify-credentials (U ser credentails)

else
Invoke verify_credentials (User _credentials) at another registry or authenticator

: end if

9: if Credentials are Invalid then

10: return (3,{}); /* Return exception code 3 */

11: end if

12: /* Check if the service is available */

13: if svc s registered locally then

14: generate_ticket (svc, User_credentails, ticket)

RXIFDILELN

15: else
16: Multicast (or unicast) generate ticket (svc, User_credentails, ticket) to a chosen
set of registries

17: Await response from at least one registry
18: if No response within the timeouf period then

19: Repeat the above step by choosing a different set of registries
20: endif

21: if No reply after repeated attempts then

22: return (4,{}); /* Service unavailable */

23: endif

24: end if

25: if ticket={} then

26: return (5,{}); /*Return exception code 5*/
27: else

28: return(0, ticket);

29: end if

Querying Phase: Second, consider the query service (also shown in Algo-
rithm 2). Here, a coalition member intends to search for a service registered
with DCSR. It sends the requested service details (included in swc) and its
credentials (User_credentials). It has several options. It can unicast the re-
quest to a specific DCSR agent or multicast it to DCSR agents (with multicast
address). In case of unicast, the receiving agent has two options. If the re-

328 A Distributed Service Registry for Resource Sharing

quested service is registered with it, it responds to the user and then interacts
with it for authentication and then generating the token. In case the service is
not registered with it, the agent multicasts the request to other DCSR agents.
The agents that have the request service registered with them respond to to
the original agent who then forwards it to the requester. While this offers
complete location and replication transparency, there is a performance penalty
due to several redirections. The performance may be improved by reducing
the redirection in several ways. For example, the agent with the registration
can directly respond to the user and then on directly interact with the user.
Other performance penalty is due to a possibility of multiple agents (in case of
replication) responding to the request. This may be minimized using several
options. For example, the DCSR could internally maintain a directory service
with information about all the agents. The original agent could first communi-
cate with this directory service and then unicast the user’s request to one of the
agents with the registered service. The second option of a user multicasting its
request to DCSR, the request may be handled by any agent that has the service
registered with it. In this case, the performance penalties discussed are relevant
here also. The same solutions suggested above are equally applicable.

Modification Phase: Third, consider changes to a registered service. Suppose
a coalition member intends to withdraw a prior registered service. Once again,
if the service has been registered with a known agent, the member could use
unicast. Otherwise, multicast could be used. In this case, an agent that has the
service registered with it would take the necessary action. However, there are
several options to authenticate the coalition member. For example, one of the
agents carries the authentication and then multicasts it to all others. Alternately,
depending on the underlying infrastructure, the withdrawal message could be
propagated using gossip messages.

4. Additional Functionalities

In addition to the functionalities in the earlier section, the proposed DCSR
is expected to provide the following functionalities associated with distributed
services.

Supporting transparency Since one of the primary requirements of any dis-
tributed system is transparency, we need to ensure that the distributed service
registry system satisfies this requirement. Here, due to space limitation, we
discuss a few types of transparencies, and show how the proposed system sup-
ports them.

1 Location transparency: This refers to the feature that enables service
registries to be accessed without knowledge of their location. Our sys-

A Distributed Service Registry for Resource Sharing 329

tem implements transparency to the user as well as the credential filter
layer that interacts with the rest of the service registries at other loca-

tions.

Our system supports this transparency through redirection and secure
multicasting among the service registries. We illustrate this concept us-
ing an example. Suppose a user at coalition C; wants to register a service
S;1 with a service registry, the request is sent to his coalition gateway.
The request, after appropriate checks, is forwarded by the gateway to
one of the service registries that it is aware of. In case, it is not aware of
any or the one it is aware is not available, it could send the request to the
DCSR multicast address. In either case, the request is received by one
or more of the service registries and using a protocol (based on factors
such as load balancing, type of service being registered, the coalition
that is registering the service, etc.), the service is registered at one or
more registries. Any authentication needed prior to the registration may
be carried out by an assigned member of the DCSR. The authenticator
is not necessarily the one where the service will be registered with. On
successful registration, the coalition gateway is informed.

Similarly, if a user from C; were to request for a service from other
coalitions, the request is first forwarded to the coalition gateway which
in turn forwards it to either the registry that it is aware of or to the DCSR
multicast address. The request is received and processed by the relevant
member. After appropriate authentication, the generated token is sent
back to the gateway.

2 Replication transparency: A service may be registered at one or more
service registries. But this aspect of replication is transparent to the user
as well as the coalition gateway. The degree of replication may depend
on several factors such as the desired availability of the service, the de-
mand of the service among the coalition members, and the desired re-
sponse time from the registry for that service.

In DCSR, the service registries, in coordination with a QoS server, de-
cide on the number of registries that a service should be registered at.
While the registering user gets a response immediately after one of the
registries authenticates and registers it, the other copies are updated via
secure multicast. The details of selection of the agents is omitted here.

Similarly, in case a user queries an agent for a service, either the agent
directly handles it (if it has the entry), or send it over the multicast for
other agents with information to reply. Finally, the reply is sent to the
user by the original agent only.

330 A Distributed Service Registry for Resource Sharing

3 Failure transparency: Failure or unavailability of registries should be
concealed from a user of a coalition gateway. This is achieved by having
replication as well as the multicasting feature to access the DCSR (as
discussed above).

Supporting Failure handling In a distributed registry, with multiple service
registries, the registries are likely to fail and later recover. In addition, new
registries may be added and some of the current ones may disappear. The
DCSR system handles these dynamic changes. This requires that the system
detect failures, mask failures, and recover from failures.

First, consider the case of detecting registry failures. Clearly, the multicast
membership protocol that maintains the service registry group is responsible
for this function. Some of the standard techniques used for failure detection
are timeouts, periodic message exchange, and primary-secondary associations.
Typically, these functions are implemented either with a dynamic master con-
troller or in a purely distributed manner [1]. Since there are several standard
means to achieve this, we do not describe it any further [1].

Supporting Scalability In most cases, a coalition may start out with one
or two members, and grow over time to several members. As the coalition
grows, the load on the service registry is also likely to grow. In such cases,
the DCSR system should scale itself accordingly. In our system, scalability is
facilitated by the creation of new registries and making them members of the
registry multicast group. The level of automation of the creation of new reg-
istries depends on the coalition policies. For example, to create a new registry
on a node, if manual permission of its administrator is needed, then the system
can only detect the need for a new registry and send messages to the coalition
administrators. The rest of the process will be manual. On the other hand,
if DCSR is permitted to create additional registries on certain nodes, it could
carry this task automatically.

Determining the number of registries needed depends on the QoS expected
from DCSR, load on the system, and current availability of the registries. Sev-
eral heuristic solutions are available to solve this problem [9, 11]. The QoS
server determines this factor.

Support for Currency Since a service could be registered at multiple reg-
istries in DCSR, there is a potential problem of currency or up-to-datedness of
the registries. For example, if a new service were to be registered by a user, and
from its QoS requirements it is determined that it should be registered at two
specific registries, then the registration may take place either in an atomic man-
ner or asynchronously. In order to place minimal overhead on the system, we
have adopted the latter approach. So the service will be eventually registered

A Distributed Service Registry for Resource Sharing 331

at all the selected registries but there could be a period where it is registered at
some but not so at others. This inconsistency does not pose much of a problem.

What is more serious is deregistration or removal of services at user’s re-
quest. Since a service is potentially registered at multiple registries, when it
is rescinded (or revoked), it should be revoked at all registries. The proposed
secure multicast supports the propagation of the updates. In addition, DCSR
could impose a limited time registration (as in Jini [4] and .Net [15]) of ser-
vices and require periodic renewals when a coalition demands higher level of
currency or consistency for a service.

Support for Concurrency DCSR operates in a concurrent an distributed
environment where multiple users could register services, revoke services, or
query for services. The requests may be either received at individual registries
or via the multicast address. In the case of queries, the individual registry
may handle the request or send it on the multicast group. The case of reg-
istration/revocation are handled differently. In this case, in situations where
a request is received at individual registry, it multicasts the same and awaits
treats it as any other multicast request. In any case, the user is unaware of the
concurrent operations.

Supporting Placement Flexibility Since we are dealing with a coalition
with heterogeneous members, the proposed system allows flexibility in the
selection of registries for registering services and executing queries. For exam-
ple, a coalition may require that its services be registered at its own registries
or a set of coalition sites. In addition, there could be certain sites designated
to act as registries while others could be implemented along with other coali-
tion functions. In fact, some coalitions may not have the capability to hold any
registries and hence all its services may be registered elsewhere. The DCSR
registry system affords this flexibility once again with the help of the multicast
group of CSRs. When a coalition member requests for service registration, it
may request for a particular CSR (or CSRs) or any CSR. The default is as-
sumed to be any, and hence the selection left to the QoS server.

Supporting Functional Flexibility Due to the heterogeneous capabilities of
the coalition members stated above, all members may not be capable of in-
stalling registries that are fully functional. For example, if one of the members
is not capable of performing authentication functions for a service requester, it
should be possible to offload this function to another registry at another mem-
ber. Our DCSR allows this flexibility. For example, it may be possible to have
sites which specialize in authentication while some specialize in answering the
queries, once they have been authenticated. Similarly, some sites may insist
that they themselves issue tokens for their members while others want the reg-

332 A Distributed Service Registry for Resource Sharing

istries to issue tokens. These flexibilities are allowed by the system through
multicast. For example, if a CSR does not have the capability to authenticate
the requester, it could pass the credentials to another server (or a specialized
authentication server) that could carry it out. Subsequently, it would send a
reply to the requesting CSR. The user is unaware of these functional distribu-
tions.

5. Conclusions and Future Work

In this paper, we have presented a distributed service registry system for a
dynamic coalition. This is an extension of our previous work (DCBAC) on a
coalition-based access control system to automatically translate coalition level
policies into subject-resource level policies by employing an attribute-based
approach. DCBAC considers the attributes associated with user credentials
and those associated with resources, making the formation of specific groups
of subjects and resources unnecessary. While DCBAC employed a centralized
registry service for coalition members, the current work employs a distributed
registry service (DCSR). The proposed system employs secure multicasting to
securely communicate among the CSRs. We have described the several fea-
tures of a distributed service such as different types of transparency, fault han-
dling, scalability, placement flexibility, and functional flexibility that it offers.
In addition, we provided details on how the system supports these features.
We intend to carry out a performance analysis of the proposed system in small,
medium, and large-scale coalition environments. In addition, we plan to deter-
mine the off-the-shelf products that could be used to prototype the system and
measure its performance.

References

[1] K. Birman. Reliable distributed systems: Technologies, web services, and applications.
Springer, 2005.

[2] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: Reliable multicast for heterogeneous
networks. IEEE Infocom, pp. 795-804, 2000.

[3] Y. Chu, S.G. Rao, and H. Zhang. A case for end system multicast. ACM SIGMETRICS
2000, Santa Clara, California, USA, 2000.

[4] WXK. Edwards. Core Jini, Prentice-Hall, 1999.

[5] M. Eltoweissy, H. Heydari, L. Morales, and H. Sudbourough. Combinatorial optimization
of key management in group communications. Journal of Network and Systems Manage-
ment: Special Issue on Network Security, March 2004.

[6] P. Francis. Yoid: Extending the Internet multicast architecture. April 2000,
http://www.aciri.org/yoid/docs/index.html.

[7]1 H. Hamey, and C. Muckenhirn. Group Key Management Protocol (GKMP) Specification.
RFC 2093, 1997.

A Distributed Service Registry for Resource Sharing 333

[8] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. O’Toole. Overcast: Re-
liable multicasting with an overlay network. Fourth Symposium on Operating Systems
Design and implementation. pp. 197-212, San Diego, CA, October 2000. USENIX Asso-
ciation.

[9] V. Kalogeraki, L.E. Moser, P.M. Melliar-Smith. Dynamic modeling of replicated objects
for dependable softreal-time distributed object systems. Proceedings Fourth International
Workshop on Object-Oriented Real-Time Dependable Systems, pp. 48-55, January 1999.

[10] J. Liebeherr, T. Beam. HyperCast: A Protocol for maintaining multicast group members
in a logical hypercube topology. First International Workshop on Networked Group Com-
munication (NGC ’99), Lecture Notes in Computer Science, Vol. 1736, pp. 72-89, 1999.

[11] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris. Consistent data replication:
Is it feasible in WANs? Europar Conf., Lisbon (Portugal), 2005.

[12] M. Moharrum, R. Mukkamala, and M. Eltoweissy, Efficient secure multicast with well-
populated multicast key trees. Tenth Int. Conf. Parallel and Distributed Systems (IC-
PADS’04), pp. 215-224, 2004.

[13] M. Moharrum, R. Mukkamala, and M. Eltoweissy. A novel collusion-resilient architecture
for secure group communication in wireless ad-hoc networks. Journal of High Speed
Networks, 2005 (to appear).

[14] C. Philips, T.C. Ting, , and S. Demurjian. Information sharing and security in dynamic
coalitions. SACMAT, 2002.

[15] J. Prosise. Programming Microsoft .Net, Microsoft Press, 2002.

[16] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using
content-addressable networks. Third International Workshop on Networked Group Com-
munication (NGC ’01), London, England, 2001.

[17] E. Royer and C. Perkins. Multicast operation of the ad-hoc on-demand distance vector
routing protocol. Sth Annual ACM/IEEE International Conference on Mobile Computing
and Networking (MOBICOM’99), Seattle, WA, USA, August 1999, pp. 207-218.

[18] D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and architec-
tures. RFC 2627, 1999.

[19] J. Warner, V. Atluri, and R. Mukkamala. A credential-based approach for facilitating
automatic resource sharing among ad-hoc dynamic coalitions. /9th Annual IFIP WG 11.3
Conference on Data and Application Security, Storrs, CT, August 2005, Springer LNCS
3654,pp. 252-266.

[20] R. Yavatkar, J. Friffioen, and M. Sudan. A Reliable dissemination protocol for interactive
collaborative applications. ACM Multimedia 1995, pp. 333-343. November 1995.

[21] Y.Yi,S. Lee, W. Su, and M. Gerla. On-demand multicast routing protocol (ODMRP) for
ad hoc networks. JETF MANET Working Group Internet Draft, Feb. 2003.

[22] M. Younis, M. Youssef, and K. Arisha. Energy-aware management in cluster-based sensor
networks. Computer Networks, Vol. 43, No. 5, pp. 649-668, December 2003.

