
Towards a Semantically-driven Software Engineering
Environment for eGovernment

Dimitris Apostolou1, Ljiljana Stojanovic2, Tomas Pariente Lobo3, Barbara
Thoenssen4

1 Planet S.A., Apollon Tower, 64 Louise Riencourt Str., 11523 Athens, Greece
dapost@planet.gr

2 Forschungszentrum Informatik, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
Stojanovic@fzi.de

3 INDRA, Avda. De Brusselas, 35, 28108 Alcobendas, Spain,
tpariente@indra.es

4 University of Applied Sciences Solothurn, Riggenbachstrasse 16, CH-4600 Olten,
Switzerland,

Barbara.Thoenssen@fhso.ch

Abstract. As software processes for developing eGovernment services become
more complex, it is necessary to provide computer-based tools to support the
software engineering process. Furthermore, actions should be taken to limit the
loss of critical knowledge during the life cycle of eGovernment services. In this
paper we first illustrate the overall architecture of ONTOGOV, an under-
development software engineering environment for developing and managing
the life-cycle of eGovernment services. We then outline two ontologies upon
which ONTOGOV is based. Finally, an application scenario is described and
the paper concludes with the identification of further steps and research
directions.

1 Introduction

In developing eGovernment services, problems arise from the gap and
inconsistencies that exist between the perspective of policy makers and managers of
Public Administrations (PAs) on the one hand and the technical realization of
eGovernment services on the other hand. Moreover, large amounts of information can
be derived in an eGovernment software development project. Such information may
vary form policy-enforcement information to information related to programming
objects (e.g. modules, classes). As software processes for developing eGovernment
services become more complex, it is necessary to provide computer-based tools to
support the software engineering process that spans, horizontally, many PAs and,
vertically, several levels of software engineering – from decision makers to
programmers.

In order to support today’s fast software development approaches (e.g. iterative
prototyping, extreme programming), software models and code must be easily
reconfigurable. Reconfigurability demands consistent representations of software

2 Dimitris Apostolou1, Ljiljana Stojanovic2, Tomas Pariente Lobo3, Barbara Thoenssen4

engineering information, homogeneous means of communication between software
engineers (and other stakeholders) and tools, and support for managing changes in the
software lifecycle. Another dimension of the problem addressed relates to
eGovernment systems’ architectures: Recently, novel component-oriented runtime
environments have paved the way for service oriented infrastructures [1]. In the
eGovernment domain, since there may be a considerable number of service providers
which offer very similar functionality, it is difficult to choose the most appropriate
service by interpreting syntactic operation names as provided by state of the art Web
service interface descriptions [2].

To deal on the one hand with reconfigurability and changes of eGov services and
on the other hand with integration between services provided by different providers,
we need a software engineering environment based on robust conceptual models. We
have used Semantic Web technologies for constructing ontologies, which represent
the meaning of processed data and resources and provided functionality of
eGovernment services. In this paper, we first illustrate the overall architecture of
ONTOGOV, an under-development eGovernment software engineering environment.
We then outline the ontologies upon which ONTOGOV will be based. An application
scenario is described then, and the paper concludes with the identification of further
steps and research directions.

2 Pertinent Technologies and Related Work

2.1 Semantic Technologies in eGovernment

The eGovernment scenario is in some respects a more obvious and promising
application field for ontologies than many other e-business areas, since legislative
knowledge is by nature already “formal” to a big extent and it is by definition shared
by many stakeholders. The e-POWER project [3] has employed knowledge modelling
techniques for inferences for, e.g., consistency checks, harmonisation or consistency
enforcement in legislation. The SmartGov project [4] developed a knowledge-based
platform for assisting public sector employees to generate online transaction services
by simplifying their integration with already installed IT systems. Similarly, the
ICTE-PAN project [5] developed a methodology for modeling PA operations, and
tools to transform these models into design specifications for eGovernment portals.
Further there are a number of ongoing projects e.g. Terregov [6], Qualeg [7] that
make use of semantic technologies for achieving interoperability and integration
between eGovernment systems. Although such projects have convincingly
demonstrated the feasibility of semantic technologies in eGovernment, they did not
adequately address the matter of eGovernment service software engineering, and in
particular the lifecycle aspects of eGovernment services.

Towards a Semantically-driven Software Engineering Environment for eGovernment 3

2.2 Web Services in eGovernment

In developing the ONTOGOV, we assume and utilise Web Services as the
executable application interfaces logically accessible using standard Internet protocols
(WSDL and SOAP). Current languages for describing web services (WSDL) and their
composition on the level of business processes (BPEL4WS1) lack semantic
expressivity that is crucial for capturing service capabilities at abstract levels. OWL-
S2 and WSMO3are the most salient initiatives to describe semantic web services. They
aim at describing the various aspects of services in order to enable the automation of
Web Services discovery, composition, interoperability and invocation. Both of the
proposed approaches focus mostly on the service profile in order to support better
discovery of services but they lack sufficient support for the process model itself. We
argue that business process flow specifications should be defined at abstract task
levels, leaving open the details of specific service bindings and execution flows. This
abstract level enables the definition of domain-specific constraints that have to be
taken into account during the (re)configuration of a process flow. In order to model
this abstract representation of web services, we base our work on and extend the
OWL-S and WSMO ontologies so that they are able to better support process and life-
cycle modeling.

2.3 Semantic-driven Software Engineering Environments

Software Engineering Environments (SEEs) are defined as integrated collections of
tools that facilitate software engineering activities across the software lifecycle [8].
Deng et al. [9] have surveyed a number of knowledge-based software engineering
systems: (i) most existing systems focus on a specific aspect of software development
and do not support the whole lifecycle. In fact only two of the systems surveyed
support the maintenance phase; and (ii) most existing systems aim to replace existing
CASE tools and they do not support assertion of knowledge on top of existing CASE
tools.

Ontologies are a promising means to achieve these conceptual models, since they
can serve as a basis for comprehensive information representation and
communication. Further ontologies can be used to address software engineering sub-
domains, such as software versioning, change management, software quality, etc.
Finally they can allow for involvement of non-technical people (e.g. public
authorities’ officers) in the software engineering process as ontologies can be used as
coarse- or fine-grained models, therefore hiding or exposing details respectively and
according to the intended audience.

1 http://www-106.ibm.com/developerworks/library/ws-bpel/
2 http://www.daml.org/services/owl-s/1.0/
3 http://www.wsmo.org/

4 Dimitris Apostolou1, Ljiljana Stojanovic2, Tomas Pariente Lobo3, Barbara Thoenssen4

3 ONTOGOV Architecture

eGovernment services have strict procedures that do not allow choosing but a
concrete service among several of them that may offer similar functionality. In the
eGovernment domain, it is difficult to select the most appropriate service by querying
dynamically, at run-time (late-binding), a service description interface, as for instance
a UDDI registry. This is particularly true when the selection of the service should be
context-aware. This is the case for instance of some geographically-distributed
services where multiple eGovernment providers (as local authorities) may offer the
same type of service, but the law states how to choose the correct authority that must
provide the service. The complexity that the late-biding approach puts on the service
description interface pointed to an architecture that integrates a top level design of the
process model of the services with the orchestration of the underlying atomic services
that perform the whole process. In this architecture, the sequence of atomic services
execution as well as the conditional paths of execution are being set in advance,
during the configuration phase (early-binding). The proposed approach is a deviation
from a pure Service Oriented Architecture, where the concept of process modelling
does not exist, but a chain of autonomous atomic services that inter-relate ad-hoc,
without supervision or guidelines. Advantages of the early-binding approach include:
(i) Better control of the atomic service selection process and better runtime
performance, as atomic services are set in advance to a Web Service implementation
and thus the time for discovering the most appropriate service is considerably
reduced. (ii) Less deadlocks during the service execution, as pre-setting atomic
services to concrete implementations decreases the possibility of faults during the
execution.

Ontology Editor Service Modeler

Web services interfaces to existing legacy systems

Domain ontology
Lifecycle ontology

Service
ontology Bu

si
ne

ss

M
od

el
in

g

WSOR Editor

C
on

fig
ur

at
io

n

Web Services Orchestration Registry (WSOR)

Web services
orchestration ontology

R
un

-ti
m

e
Fr

am
ew

or
kProcess Engine

Synchronisation Manager

Audit & Tracking Component

I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2

I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2

I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2

I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2

I1
I2

O1
O2
O3

WS2
I1
I2

O1
O2
O3

WS2

(1) Create service model
(2) Modify service model
(3) Query service model
(4) Trigger change

(1) Identify software components
(2) Perform service binding
(3) Propagate change
(4) Prepare deployment of WS

(1) Monitor. Track and
log running WS

Fig. 1. ONTOGOV logical architecture

Towards a Semantically-driven Software Engineering Environment for eGovernment 5

The proposed architecture (shown in Fig. 1) can be divided in three layers:
1. The Business Modelling layer is where a top level service model is drawn. Users of

this layer will typically be PA domain experts that have sufficient knowledge of
the domain. This knowledge includes the legislation that a service is based on,
related directives, prerequisites etc.

2. The Configuration layer allows referencing the implementation of the business
logic in actual software components. This task is carried out by the IT Consultant,
who is responsible for the configuration and deployment of OntoGov services. In
our platform, the software implementation will always be achieved through Web
Services interfaces.

3. The Runtime layer should orchestrate and control the execution of the atomic
services by making the correct invocations of the Web Services configured in the
Configuration layer.
In principal, the lifecycle of an eGovernment service starts when PA Managers

trigger the generation or the change of a service. In order to accomplish this task, PA
Managers need to have a high-level view of service models, links to related laws,
resources involved and inter-relations with other services. Such a high-level view is
provided by the service models developed through the Business Model layer. The
service ontology (or service model) becomes the main source of information for the
Configuration layer. During configuration, the IT Consultant should identify the
actual software components (Web Services) that enact the service model and the
policy and security level that their SOAP messages should accomplish. The WS
Orchestration Registry (described in detail in the next section) is an ontology-based
repository that stores the mappings between atomic services defined in the service
model and Web services that carry on with the task. According to the WSDL
definition, these mappings comprise the selection of the WSDL operation (method)
that should be called once the web service is invoked, and the linking of the WSDL
parts (I/O attributes) to the atomic service inputs and outputs. A Runtime Framework
should be properly installed in a broker machine to allow the execution of Web
services. A key component here is the Process Engine that acts as an orchestration
machine extracting the service ontology from the ontologies and proceeding to deliver
the request to the first atomic service described in the process model. The engine
relies on the use of a component called Synchronization Manager that hides the
complexity of the synchronous or asynchronous behaviour of the Web services.

4 ONTOGOV Ontologies

In [10, 11], we introduced the following ontologies for modeling EGovernment
services (Fig. 2): (i) Meta Ontology contains entities needed to describe services; (ii)
Legal Ontology describes the structure of the legal documents; (iii) Domain Ontology
contains domain specific knowledge; and (iv) Service Ontology describes a concrete
service.

In this paper we extend our previous work aiming to resolve the two previously
mentioned problems (reconfigurability and service integration) and to support the
logical architecture outlined in section 3: (i) Lifecycle ontology that describes the

6 Dimitris Apostolou1, Ljiljana Stojanovic2, Tomas Pariente Lobo3, Barbara Thoenssen4

information flow and the decision making process in the public administration; and
(ii) Web Service Orchestration Ontology that allows binding of services during
execution.

Meta
Ontology

process01 process02 process03

Service
Ontology

Domain
Ontology

Resource ALaw X

Legal
Ontology

Fig. 2. Different ontologies used for describing semantic web services

4.1 Lifecycle Ontology

If an application aims at being useful, it is essential that it is able to accommodate
the changes that will inevitably occur due to changes in the environment, users’ needs
or changes in its internal structures and processes. To avoid drawbacks of ad hoc
management of changes, changes have to be applied on the model of the application.
In order to do so, we developed the so-called Lifecycle Ontology.

The Lifecycle Ontology spans the range from the informal specification of
requirements to a representation focusing on the realization of the service [12]. It is
intended to support the transition from knowledge acquisition to implementation, i.e.
the design phase. It includes entities for documenting design decisions and the
underlying rationale. In this way it gives concrete clues on how a service has to be
modified. Design decisions can be viewed as contributions to the satisfaction of
requirements. Thus, the rationale of a design decision is its relationship to such
requirements. Consequently, the Lifecycle Ontology is used for describing design
decisions and their relationship to affected parts of the service as well as to the
requirements that motivate the decisions.

In the Lifecycle Ontology, the design process is viewed as a succession of states of
the service design. The transition between two adjacent states is effected by activities
of the designer, i.e. by a design decision. Therefore, the main concept is the concept
“Design Decision”. The transition between states is modelled through two inverse
properties “hasReason” and “isReasonFor” that are defined for the top concept of the
concept “Design Decision” i.e. for the concept “Reason”. The hierarchy of the
concept “Design Decision” is shown in Fig. 3.

If the designer takes a design decision, s/he does so since a particular goal shall be
reached, namely a requirement posed towards the service shall be met. Thus, the
justification for a design decision consists of its connection to the requirements which
the design decision helps to meet. This is modelled through the concept

Towards a Semantically-driven Software Engineering Environment for eGovernment 7

“Requirement” and corresponding properties (i.e. the properties “isBasedOn” and
“requires”) that establish references between a design decision and a requirement.

Fig. 3. A part of the Lifecycle Ontology

We identified many types of issues considered in the design process. We observed
that decisions fell into one of these four categories:
� design goals, which are principles to be achieved through the decision process and

that must be realized before the choice is considered complete;
� design resources, which are the resources --both physical and intellectual--

available to achieve the goal;
� design techniques, which are the strategies for achieving the goals using the design

resources available;
� design constraints, which are outside influences that limit the use of resources and

strategies to achieve a goal.
These elements of a design decision are modelled through the concepts “Goal”,

“Resource”, “Technique”, “Constraint” and a set of properties that relate each of them
with the concept “Design Decision”. These concepts share the property
“hasDescription”, which describes in more detail the concrete instance of the
corresponding concept.

The Lifecycle Ontology also models the name of the design decision (the
“hasName” attribute), when the design decision is made (the “hasDate” attribute),
why it is required (the “isRequiredBy” property), why it is realized (the
“isRealisedBy” property) etc. Moreover, it has a reference (modeled through the
“hasReference” property) to the Service Ontology or its activity that is related to this
design decision.

8 Dimitris Apostolou1, Ljiljana Stojanovic2, Tomas Pariente Lobo3, Barbara Thoenssen4

Finally, information supporting decision-making, such as cost, relevance, priority,
impact, profit, textual description of the reason for a service etc. may also be included
(not show in detail herein). A part of the Lifecycle Ontology is shown in Fig. 3. It can
be concluded that the Lifecycle Ontology is a description of the service design
process, which clarifies which design decisions were taken for which reasons, proves
to be valuable for further development and maintenance.

4.2 WS Orchestration Ontology

In order to resolve the integration problem between software components and a
service ontology, we have defined the Web Service Orchestration Registry (WSOR)
ontology. It describes all information needed to finalise the configuration of the Web
Services, which will be called during the service execution. This configuration
consists in linking each atomic service of a service ontology to a WSDL description
of real (existing) web services (i.e. software component). Moreover, it allows the
dynamic binding of services during the execution.

Fig. 4. The WSOR ontology

The WSOR is illustrated in Fig. 4. It includes the WS ontology that is shown in the
upper part, the Meta Ontology shown in the bottom part. The middle part of this
ontology shows entities that are defined in this ontology:
� The concept “Decision” represents the value that a Reference has to hold during

the runtime in order to lead to a concrete software component (WSDLModel).
� “hasReferencedSoftware”, links the Service with its WS implementations

(operations in a WS).
� “isWSDLAttribute” links the Reference concept with the PartModel.

Towards a Semantically-driven Software Engineering Environment for eGovernment 9

� “hasDecisionReference” liks the WSDLModel with the Decision.
� “hasDecision” links the Service with the Decision, since one instance of the

Service may have more than one Decision instance.
� “hasDecisionValue” links the Reference with the Decision.

The WSOR that describes a concrete service establishes the mappings between the
instantiation of the WSDL ontology and the service ontology. Indeed, it comprises the
selection of the WSDL operation (method) that should be called once the web service
is invoked, and the linking of the WSDL parts (I/O attributes) to the atomic service
inputs and outputs. This mapping cannot be completely automated, but at least some
recommendations can be generated. We propose three levels of mappings:
� syntactical mappings –based on the string comparison. The names of the entities

from the WSDL ontologies are compared to the lexical information about entities
from the service ontology as well as to the synset [13] extension of them;

� structural mappings – take into account the all inputs and outputs information at
the same time;

� context mappings – consider a set of activities in order to clarify the context in
which an operation is used.

5 Application Scenario

In this section we illustrate how change detection and reconfiguration are
addressed by ONTOGOV on the basis of an example using the service
“Announcement of move”. Today, the service provided is split into few separated
tasks. De-registration has to be performed in one municipality, while several other
entities, like telecommunication companies, have to be notified about the change of
address. In addition, the person has to register in the new municipality. In order to
improve service quality, there should be one task performed by the citizen regardless
what and how much (technical) processes run behind. However, as a citizen may
move from one municipality to any other – or even abroad – the change of address,
deregistration and registration as well as the link between these processes can not be
hard-coded because participating entities are changing every time the service is being
performed.

The development of this (simplified) service with ONTOGOV will be as follows:
The Domain Expert designs the service using the Service Modeler, based on the
service ontology. Moreover, the domain expert adds more semantics by creating
instances of the related ontologies:
� Domain ontology, comprising concepts like data (e.g. name, first_name,

municipality_from, municipality_to) and documents (e.g. application form,
administration leaflet etc.)

� Legal ontology, comprising instances of process relevant law or regulations, e.g.
basis of the new process is a regulation about settlement. Then several instances
will be initiated in the legal ontology indicating the related law4 (1_Landesrecht),
the paragraph (‘14_Bürgerrecht) and article (‘142_Niederlassungsrecht’).

4 Note: example is taken from the Swiss legislation

10 Dimitris Apostolou1, Ljiljana Stojanovic2, Tomas Pariente Lobo3, Barbara Thoenssen4

� Organisational ontology, comprising instances of process relevant organizational
units, e.g. involved in the new service are the organizational units ‘Registration
Office’ and ‘Administration Office’ with its roles and personal.

� Lifecycle ontology, comprising instances of all (design) decisions relevant for the
new service (e.g. technical or process immanent reasons), including instances of
the legal and organizational ontologies.
Working only with instances of (meta-)ontologies allows for strong governance of

the modelling as a whole. For example, adding the same organisational unit to two
atomic services in a sequence will evoke a warning (as usually the activities will be
performed as one) even though the process flow per se is correct. Up to now no
framework (like BPEL, ivyGrid or others) allow for such semantically checks.

After the design process is completed, a machine readable version of the definition
of the new service will be generated. The IT-Consultant uses the WS Orchestration
Registry in order to finalise the configuration of the web services. S/he links each
atomic service of the service ontology to the WSDL description of real (existing) web
services (e.g. of the municipality of Olten), performs the mappings between the
WSDL and the attributes used in the service ontology and stores the links and the
mappings in the WSOR.

affectsService

affectsService

affectsService

hasReason

isReasonFor

design concepts

design instances

Fig. 5. Links between design decisions

In case a service needs to be modified at a later stage e.g. due to changes of a
regulation, it is important to detect all affected services, respectively activities. That is
why for every service component (activity or control construct), design decisions data

Towards a Semantically-driven Software Engineering Environment for eGovernment 11

are modelled using the lifecycle ontology. In our example, “announce move” (checks,
if all information required is filled in) and “check registration” (checks if the applicant
is registered) are based on various decisions (Fig. 5). One decision is legally grounded:
what data PAs need to know are defined by law (e.g. the applicant must give his/her
name, current address, civil status etc.); another decision is technically grounded: due
to security issues the activity “announce move” will be performed by a web server
whereas the “check registration” activity will be run on a legacy system. A further
decision is based on organizational reasons (e.g. activity 1 is performed by an
organizational unit A (e.g. registration office) whereas activity 2 is performed by an
organization unit B (e.g. administration office). Yet another decision is taken because
of service-immanent reasons (e.g. activities are spited in order to make them reusable
in other processes).

In case of a change of a law the ONTOGOV system can be queried to retrieve
affected activities. Assume that the change affects all processes related to article
‘142_Niederlassungsrecht’. ONTOGOV searches for all decisions based on this legal
reason. As a result, all affected services and activities are listed and proposed for
modification. In the example, this is the service “Announcement of Move” with its
activity “AnnounceMove”.

6 Conclusions and Outlook

In this article, we highlighted a novel application of semantic technologies in the
eGovernment domain: utilising semantics to drive and support the software
engineering process for the development of eGovernment services. We considered the
eGovernment domain, since eGovernment services are under the continual adaptation
to the political goals of a government and to the needs of the people. Our approach (i)
covers all the phases from definition and design through to deployment and
reconfiguration of eGovernment services); (ii) provides the basis for designing lower-
level domain ontologies specific to the service offerings of participating public
authorities; and (iii) provides the basis for limiting the loss of critical knowledge
during the life cycle of the software engineering process, in which a number of
stakeholders (from policy-makers to developers) is involved.

In the near future, we will work to develop the actual software engineering
environment and test it in three real-life governmental pilots. Future research
directions include addressing adaptivity: extending this approach so that its
implementation is capable of suggesting changes that can improve services. This can
be done (i) by monitoring the execution of EGovernment services (e.g. the activity
that causes the delay is a candidate for optimisation) and/or (ii) by taking into account
the end-users’ complaints (e.g. end-users might not be satisfied with the quality of
services, since they have to supply the same information several times).

Acknowledgement

We would like to thank the European Commission for funding the OntoGov
project through the IST programme.

12 Dimitris Apostolou1, Ljiljana Stojanovic2, Tomas Pariente Lobo3, Barbara Thoenssen4

References

1. M. Endrei, J. Ang, A. Arsanjani, Patterns: Service-oriented Architecture and Web Services,
IBM Redbook, April 2004.

2. A. Paar, W. F. Tichy, “Semantic Software Engineering”, in proceedings of AMS 2003.
3. T. van Engers, J. M. Patries, J. Kordelaar, J. den Hartog, E. Glasséee (2002). Available at

http://lri.jur.uva.nl/~epower/
4. N. Adams, S. Haston, A. Macintosh, J. Fraser, A. McKay-Hubbard, and A. Unsworth,

SmartGov: A Knowledge-Based Design Approach to Online Social Service Creation, in
Bramer, M., Ellis, R., Macintosh, A; (eds.). 'Applications and Innovations in Knowledge-
Based Systems and Applied Artificial Intelligence XI'; Proceedings of AI-2003 the 23rd
Annual International Conference of the British Computer Society's Specialist Group on
Artificial Intelligence ; Peterhouse College, Cambridge, UK, 16th-17th December, 2003

5. E Loukis, S. Kokolakis, Computer supported collaboration in the Public Sector: the ICTE-
PAN Project, in preceedings of eGOV 2003 / DEXA 2003.

6. N. Benamou, “Terregov project overview”, IANOS conference, Budapest, 2004.
7. C. Tatsiopoulos “QUALEG approach to intra-government interoperability”, in Workshop on

Technological and architectural challenges, eGOV04 Conference, Zaragoza Spain, 1st
September 2004.

8. R. S. Pressman, “Software Engineering: A Practitioner’s Approach”, 5th Edition, New York,
McGraw-Hill, 2000.

9. D. Deng, P. C.-Y. Sheu, T. Wang, H. Maezawa, F. Tsunoda and Akira K. Onoma,
“DPSSEE: A Distributed Proactive Semantic Software Engineering Environment”, The
Fifth IEEE International Symposium on Multimedia Software Engineering (MSE 2003),
Taichung, Taiwan, ROC, December 10-12, 2003.

10. L. Stojanovic, A. Abecker, N. Stojanovic, R. Studer, An Approach for the Change
Management in the EGovernment Domain, In Proceedings of Second International
Conference on Knowledge Economy and Development of Science and Technology
(KEST’04), Beijing, China, 2004.

11. L. Stojanovic, A. Abecker, N. Stojanovic, R. Studer, On Managing Changes in the
ontology-based EGovernment, to appear in Proceedings of the 3rd International Conference
on Ontologies, Databases and Application of Semantics (ODBASE 2004), Larnaca, Cyprus,
October 2004.

12. D. Landes, Design KARL – A language for the design of knowledge-based systems, In
Proceedings of the 6th International conference on Software Engineering and Knowledge
Engineering (SEKE’94), Jurmala, Lettland, pp. 78-85, 1994.

13. C. Fellbaum, WordNet - An electronic lexical database, MIT Press, 1998.

http://lri.jur.uva.nl/~epower/

