A Zero Knowledge proof for Subset Selection
from a Family of Sets with applications to
Multiparty /Multicandidate Electronic Elections

Tassos Dimitriou! and Dimitris Foteinakis?

! Athens Information Technology
Markopoulo Ave., 19002, Athens, Greece
tdim@ait.gr
http://wuw.ait.gr
2 Intracom S.A.
Markopoulo Ave., 19002, Athens, Greece
fotd@intracom.gr
http://www.intracom.gr

Abstract. We present a methodology for proving in Zero Knowledge
the validity of selecting a subset of a set belonging to predefined family
of sets. We apply this methodology in electronic voting to provide for
extended ballot options. Our proposed voting scheme supports multiple
parties and the selection of a number of candidates from one and only one
of these parties. We have implemented this system and provide measures
of its computational and communication complexity. We prove that the
complexity is linear with respect to the total number of candidates and
the number of parties participating in the election.

1 Introduction

With the explosion of growth of the World Wide Web, the increase of compu-
tational power, computer memory and the storage capacity, we have the ability
to communicate more information faster, cheaper and more reliably. The gen-
eral trend towards a paperless society has affected the area of voting. Many
attempts have been made to create systems that would allow modern computer-
based technology to emulate the secure desirable properties valued in centuries
of public voting.

Remote electronic voting refers to an election process whereby people can
cast their votes over the Internet, from the comfort of their home, or possibly
any other location where they can get Internet access. There are many aspects
of elections besides security that bring this type of voting into question. The
primary ones are:

— Coercibility: The danger that outside of a public polling place, a voter could
be coerced into voting for a particular candidate.
— Vote selling: The opportunity for voters to sell their vote.

— Vote solicitation: The danger that outside of a public polling place, it is
much more difficult to control vote solicitation by political parties at the
time of voting.

— Invalid Registration: The issue of whether or not to allow online registration,
and if so, how to control the level of fraud.

The possibility of widely distributed locations where votes can be cast changes
many aspects of our carefully controlled elections as we know them. The relevant
issues are of great importance and could very well influence whether or not such
election processes are desirable. However, in this paper we do not discuss issues
like the vulnerability of the Internet to denial of service attacks, the unreliability
of the Domain Name Service or the various threats the supporting hosts are liable
to, but we focus instead on the security considerations of the voting process.
Thanks to the advances in the fields of cryptography an electronic voting
system can satisfy the requirements that are considered self-evident for paper
based systems and at the same time be efficient and reduce the cost of large scale
elections. In [10] Fujioka et al. define the properties of a secure, secret election:

— Completeness: All valid votes must be counted correctly.

— Soundness: The dishonest voter cannot disrupt the voting process.

— Privacy and Integrity: All votes must be and remain secret and cannot be
altered in transit. Hence effective encryption must be used to protect the
votes from being disclosed to third parties during transmission.

— Anonymity: The voting system must support the voters’ right to secrecy
of their vote. Hence the vote recording mechanism must not identify the
individual voter.

— Unreusability and Eligibility: No voter can vote twice and no one who isn’t
allowed to vote can vote.

— Fairness: Nothing must affect the voting process. Voters must not be able to
affect the system if the supply invalid ballots, colluding or fault authorities
must not alter the voting process’s results.

— Verifiability: Any external party can verify that the result of the election is
correct. In particular, this means that votes are recorded as captured and
cannot be manipulated when transferred from vote collection to tabulation.

Many voting schemes have been proposed so far that satisfy the above set of
requirements, but they are limited by the ballot options they can support. Initial
voting systems [1] allowed the voter to select one of two candidates (“yes/no”
paradigm) and later systems can accommodate the selection of “t out of n”
candidates [3], [4], [6], [8]. Such electoral systems are encountered in the United
States and electronic voting systems have already been applied in various State
elections. These systems however, cannot be used for elections whose structure is
more complicated than a selection of “t out of n” candidates like many electoral
systems throughout Europe.

In this work we will present an election system that will accommodate multi-
ple parties which in turn consist of multiple candidates and will allow a voter to
select “t out of n” candidates within a single party and prove in zero knowledge
manner that this selection is valid.

2 Related Work

An electronic voting scheme consists of a set of protocols which allow voters to
cast ballots while a group of authorities collect the votes and output the final
tally. Election schemes in [1], [2], [3], [4] were first described by Benaloh [1]. All
these schemes mainly discuss the “yes/no” vote scenario. Such schemes utilize
a cryptosystem that has the homomorphic property (Section 4.1) which allows
the computation of the tally without the decryption of individual ballots. Two
different election models have been proposed so far.

In Benaloh schemes, a voter shares his vote between n authorities so that ¢
of them can recover it. Each authority computes its encrypted share of the tally
and finally ¢ of them need to collaborate to compute the actual tally.

In schemes like [4], the voters send their encrypted votes to a single combiner.
Using the homomorphic property of the cryptosystems the combiner computes
the encrypted tally in a public verifiable way. Then ¢ authorities need to collab-
orate in order to recover the tally by running a threshold cryptosystem.

Systems described in [3], [4], which are implemented in commercial electronic
voting applications, use a variant of the El Gamal cryptosystem exhibiting the
homomorphic property and having a threshold version [11]. This cryptosystem
requires exponent search in order to compute the final tally from the ballot
product, an operation that is computationally ezpensive and may render the
system inefficient when the number of voters increases.

Our system uses the Paillier Cryptosystem [5] which exhibits the homomor-
phic properties needed by the election scheme and more importantly provides
an efficient decryption algorithm as well as the largest bandwidth among all
cryptosystems using a trapdoor to compute the discrete logarithm. A threshold
version of the cryptosystem that appeared in [6], [7] allows its usage in the case
of multiple authorities to jointly run a threshold cryptosystem and collaborate
in order to decrypt the final tally.

3 Our Contribution

In this paper we present a methodology for proving in a Zero Knowledge man-
ner the validity of selecting a subset of a set belonging to a predefined family
of sets. More specifically we show how to prove in Zero Knowledge that the
voter’s selection consists of ¢ elements (candidates) all belonging to the same set
(party) out of k sets of at most n elements each. We apply this methodology
in order to construct an election scheme that will accommodate multiple par-
ties and the selection of ¢ candidates from one and only one of those parties.
Such election systems are common throughout the world, like in many European
countries. Electoral systems with the above mentioned structure are referred to
“open party list” systems and are used in many countries, among which are the
Netherlands, Norway, Greece, Spain and Slovenia. Electronic voting schemes
proposed up to now were limited to the selection of “t out of n” candidates and
could not accommodate such a complex system. Our proposal extends existing
voting schemes and can be applied to elections which have those requirements.

Furthermore we have implemented a voting system that uses our proposed
protocol in order to run an election. Our scheme guarantees the necessary re-
quirements of a voting system mentioned in the introduction: privacy of voters,
public verifiability, fairness and soundness, eligibility and unreusability. Privacy
of voters guarantees that a vote will be kept secret from any collusion of ¢ or less
authorities, where ¢ is a system parameter. Public verifiability ensures that any
external party can verify that the election is fair and that the published tally
was computed correctly from the ballots that were correctly cast, through the
bulletin board. Fairness and Soundness ensure that the system can tolerate up
to t faulty or colluding authorities without its operation being affected. The ex-
istence of the bulletin board and of secure channels via public key cryptography
ensures eligibility and unreusability.

Finally we performed a set of experiments to measure the time taken for cre-
ation and verification of the Zero Knowledge proofs, the size of produced ballots
as well as the total time needed for a voter to cast a vote in our system, including
user and server authentication, ballot creation, transmission and verification, for
various system parameters. We prove and validate experimentally that the run-
ning time of the algorithm for the creation of the ballot and the Zero Knowledge
proofs is linear with respect to the total number of candidates in the elections.
Hence our system not only fulfills the basic security requirements but it is also
user friendly and practical, an essential characteristic of any voting system that
is to be used for public elections.

The outline of the paper is as follows: The next section describes the crypto-
graphic tools that our system uses. We briefly describe the Paillier Cryptosystem
and its properties as well as two Zero Knowledge proofs that are used as build-
ing blocks for the creation of more complex ones. Section 5 describes the voting
protocol, the ballot creation procedure and the Zero Knowledge proofs creation.
In Section 6 we describe how the voting system is implemented, the steps needed
to cast a ballot as well as the steps for calculating the final result. Furthermore
we provide a complexity analysis of the proposed system and measurements of
its operation. Finally, we conclude in Section 7.

4 Cryptographic Tools

4.1 The Paillier Cryptosystem

In [5], Paillier proposes a new probabilistic encryption scheme based on compu-
tations in the group Zj.., where N is an RSA modulus. This scheme has some
very attractive properties: It is homomorphic, allows encryption of many bits in
one operation with a constant expansion factor and allows efficient decryption.
This cryptosystem is based on the Decisional Composite Residuosity Assumption

(DCRA).

Description of Paillier Scheme

— Key Generation: Let N' be an RSA modulus N/ = pq, where p and g are
prime integers. Let g be an integer of order a multiple of N" modulo N'2. The
public key is PK = (N, g) and the secret key is SK = A(N') where A(N) is
defined as A(N) = lem[(p — 1)(¢ — 1)]. We should note that in [6] Damgraad
and Jurik propose that ¢ = N + 1 can be used without degrading security.
Then the public key will only consist of A.

— Encryption: To encrypt a message M € Zp choose a random r € Z3, and
compute the ciphertext ¢ = ¢™r" mod N2.

— Decryption: To decrypt a ciphertext ¢, compute:

L(™) mod N?)

_ 2
= L™ mod A7) mod N?, (1)

where the L-function receives input from the set Sy = {u < N?|u = 1

mod N} and
Lw =" 2

Homomorphic Property

The encryption function has an “algebraic property” which allows com-
putations with the encrypted values without knowing the contents of the ci-
phertexts. More precisely the encryption function has the following property:
E(M; + My) = E(M;) - E(M3) and consequently E(k - M) = E(M)*.

This property is necessary to achieve anonymity as well as universal veri-
fiability since the tally can be computed without the decryption of individual
votes by all interested parties. The decryption is performed on the final tally,
guaranteeing the privacy of the voters.

In [3] as well as in other voting schemes a variant of the El Gamal encryption
scheme is used. In this variant in order to encrypt a message m we compute
(¢* mod p and g™y* mod p) instead of (¢¥ mod p and my* mod p). In this
manner the scheme gains the homomorphic property needed for the election
schemes. The negative side of this encryption scheme is that no trapdoor exists
to compute m given g™ mod p. Therefore this scheme is only used in “yes/no”
schemes, where the message m is either 0 or 1 and therefore ¢” lies in limited
subset of messages and can be computed using exhaustive search. However, this
scheme has been used in several voting systems including some commercial ones.
In the case of elections with many candidates and a large number of voters the
modified El Gamal scheme becomes inapplicable since exhaustive search or more
efficient methods like index calculus cannot efficiently compute the tally.

Threshold version of Paillier Cryptosystem

A (t,n) threshold scheme does not reveal a secret S unless any ¢ out of the n
participants work together. In order to prevent authorities to learn the contents
of the votes submitted and to ensure the privacy of the voters a threshold version

of the Paillier Cryptosystem can be used. In this case, instead of having a single
authority decrypt the encrypted tally, n authorities share the secret, so that
at least ¢t are needed to perform the decryption operation. Such versions of the
cryptosystem are presented in [6] and [7]. A general description of a threshold
decryption model follows:

The scheme includes the following participants: a combiner, a set of n au-
thorities A; and users.

— In the initialization phase, the authorities run a distributed key generation
protocol to create the public key PK and the secret shares SK; of the private
key SK with or without a trusted dealer [12], [13]. Next the authorities
publish the verification keys VK, VK.

— The user encrypts a message using the private key PK.

— To decrypt a ciphertext ¢, the combiner forwards ¢ to all the authorities.
Using the shares of the secret key SK; and the verification keys VK and
V K; each authority runs the decryption algorithm and produces a partial
decryption ¢;, providing a proof of validity for the partial decryption. The
combiner can then produce the decryption of ciphertext ¢, if enough partial
decryptions (¢t or more) are valid.

4.2 Zero Knowledge Proofs

Central to our results is the way to achieve an efficient proof of validity for ballots.
The proof of validity shows to any interested party including the tabulation
authorities that a ballot actually represents a valid vote. To maintain the privacy
of the voters this proof of validity will be a zero knowledge proof. In general,
a Zero Knowledge proof allows an all powerful prover to convince a verifier
about the validity of statement without leaking any information other than its
correctness.

The efficiency of the entire voting scheme depends greatly on the efficiency
of the zero knowledge proofs in terms of computational effort and in terms of
the required bandwidth. Our goal is to create a zero knowledge proof that the
submitted ballot is a selection of ¢ candidates from a single party. Since this a
complex proof we will use as building blocks the zero knowledge proofs presented
in [6] which we include here for completeness. We note that the following proto-
cols are not zero knowledge as they stand; only honest verifier zero knowledge.
However, zero knowledge protocols for the same problems can be constructed us-
ing standard methods and secondly in our applications we will always use them
in a non interactive variant based on the Fiat-Shamir heuristic [9].

In the following protocols, P denotes the prover and V denotes the verifier.

Proof for Power of N/

This protocol proves, given:

Input: A and u
Private input for P: v such that v = vV mod A2

that u is a power of A" modulo N2. The sequence of steps is:

1. P chooses a random r mod N2 and sends to V a = ¥ mod N2.

2. V chooses a random k bit number e and sends e to P.

3. P sends z = rv¢ mod N2 to V and V checks that zV = au® mod N2 and
accepts only if and only if this is the case.

Proof for 1-out-of-2 power of N

This protocol proves, given:

Input: N, uy, ug
Private input for P: vy such that u; = v{v mod N2

that either u; or us is a power of N' modulo N2. The sequence of steps is:

1. P chooses a random r; mod A?2. He invokes M on input N, us to get a
conversation as, e, zo. He sends a1 = r{v mod N2, ay to V.

2. V chooses s, a random t bit number and sends s to P.

3. P computes e; = s — ey mod 2%, 21 = r1v{* mod N? and sends ey, 21, €2, 22
to V.

4. V checks that s = e; + €3 mod 2, z)¥ = a1uf* mod N? and, z)¥ = ayuf?
mod N2, and accepts if and only if this is the case.

In the above protocol M denotes the honest-verifier simulator for proof for
power of N protocol above. Using these proofs as building blocks, we present our
construction for selecting in Zero Knowledge a subset of candidates belonging
to one and only one party.

5 Voting Protocol

The purpose of the vote is to select ¢ candidates from a single party. Suppose
there are K parties participating in the election and let each party have L
candidates. The purpose of such an election would be to select a governing party
as well as the members of the parliament, or elect a mayor of a municipality and
the members of the council. The voter has to prove that the vote is valid, which
means that it contains at most t positive selections and that all those selections
are from the same party since one should not be able to vote for candidates
belonging to deferent parties.

Since the total number of candidates is K x L we will hold K x L parallel
“yes/no” votes. In this sense the voter will select “yes” for ¢ candidates and
“no” for the rest. If we represent “yes” with “1” and “no” with “0”, then the
encrypted selection for candidate i will be E; = ¢ x N = g x rV if the selection
is “yes” or E; = ¢" x N = N is the selection is “no”, for some random r € Zx

Along with the encryptions of the “yes/no” selections for the K x L candi-
dates, the voter needs to send proof of the validity of those encryptions. For this
purpose the protocol for 1-out-of-2 power of N is utilized. Using this protocol,
the user proves that either E; or E;/g is a power of N' modulo N2, essentially
proving that the vote is either an encryption of “0” or “1”. Most importantly,

however, the voter has to prove that the ¢ selected candidates come from the
same party. For this purpose the voter needs to generate K proofs, one for each
party, proving that either E,, or E,, /g’ is a power of N' modulo N'? using the
protocol for 1-out-of-2 power of . E,, is the product of the encrypted selections
for party i:

Ep,=][] B (3)

Party 1

In this manner the voter proves that he has either selected 0 or ¢ candidates
from this party. This is due to the homomorphic property of the cryptosystem,
since E,, will either be an encryption of 0 or ¢. Notice that the voter reveals no
information about the party she has voted for, since she proves for each party
that she has either selected 0 or ¢ candidates from it, which is essential for the
validity of the submitted ballot.

Finally the voter needs to prove that she has selected exactly t candidates.
In order to do that, the voter uses the protocol of N power in order to prove
that IT;E;/g' is a power of A’ modulo A2, where IT;F; is the product of all
the encrypted selections. Due to the homomorphic property of the cryptosystem
II; E; will be an encryption of "t” and II; E;/g* will be a power of \.

Having proven the above properties for the submitted encrypted selections
the user successfully shows that she has selected exactly t candidates from a
single party and no candidates from the rest of the parties. This is the case since
she proves that for every party she has selected ¢ or 0 candidates and that she
has selected ¢ candidates in total.

It is easy to generalize the above protocol to allow up to t selections from
a single party by adding ¢ “dummy candidates” to the L candidates of each
party. The voter will then place the selections she does not wish to use on the
“dummy candidates”. In the same manner we can accommodate for blank votes
be creating a dummy party with ¢t candidates on which the selection will be
placed.

6 Voting System Implementation

We will use a hash function A in order to make the proofs used by the above
protocol non-interactive according to the Fiat-Shamir [9] heuristic. We will also
assume that an instance of threshold version of Paillier’s scheme with public
key (N, g) has been set up, with A;’s being the decryption servers. We will also
assume that N2 > M, where M is the number of voters, since N can always be
chosen large enough to satisfy this inequality.

As we have mentioned in the introduction, we will use a general model for
election described in [4], which we describe briefly: We have a set of voters
Vi, Vo ..., Vi, abulletin board B and a set of tallying authorities Ay, As ..., Apy.
The bulletin board operates as follows: Every voter can write to B and no
message can be deleted from B once it has been written there. Everyone can
access the messages in B and can identify the origin of each message. This can

be implemented in a secure way using existing public key infrastructure. Also
assume that we have K parties Py, Ps ..., Pgk.

6.1 Voting Procedure
The voting procedure can be summarized with the following steps:

1. Each voter V; decides on his votes 0 for “no” 1 for “yes” for the K x L
candidates, calculates E;; = E(v;;) and creates proofs:
— Proof that E;; or E;;/g is an N power modulo N for all j € {1... Kx L}
and
— Proof that [];cp, Eij or [1;cp, Eij/g" is an N power modulo N?) for
allk e {1...K}
— Proof that (HJKZXlL E;;/gt is an N power modulo N/?)
She writes the encrypted votes E;; and all the proofs in B.
2. Each authority Ay, sets [[E; = 1forall j € {1...K x L}. Then for all voters
i
— Checks the proofs in B for voter V; and if they are valid sets [[E; =
(H E]) X Eij mod N2.
— Finally Ay executes its part of the threshold decryption protocol, using
[1 E;’s as input ciphertext and writes its result to the bulletin board B.
3. From the messages written by the tabulation authorities in B one can now
reconstruct the final tally [[E; for j € {1...K x L}. Clearly [[E; =
[L; E(vij) = E(3_, vij). Therefore the decryption results will be). v;; mod
N? for candidates j € {1...K x L} which is >, v;j since N2 > M. One can
also easily calculate the votes for each party by summing the votes that the
candidates of each party have received and divide them by t¢:

VOteSPartyk = Z Uij/t . (4)

jEPartyy

The security of this protocol follows from the security of the sub-protocols used
and the semantic security of Paillier’s Cryptosystem.

6.2 Complexity Analysis

In the analysis that follows we will denote with C' the total number of candidates
that participate in the election. Without loss of generality we examine the case
of K parties with L candidates each and an election that allows up to t selections
within a party, so C will be equal to K x (L +t).

The voter generates C proofs of 1 — out — of — 2 power of N, one for each
candidate and K proofs of 1 —out —of —2 power of N, one for each party. Thus
the voter needs to generate C'+ K proofs in total which is clearly O(C). If k is the
bitlength of A/ then evidently the size of a vote in this voting protocol is O(C x k).
The same holds for the time needed for the computation and verification of the
proofs.

10

Total Number of Candidates vs. Ballot Creation Time

90
80 |
70
60 1
50
40 -
30
20
10 |
0 ; ; ; ;
0 20 40 60 80 100
Total Number of Candidates

Time (sec)

Fig. 1. Proof Creation Time versus Total Number of Candidates participating in the
election

We have implemented a system using the above protocol and made measure-
ments of the running time on a Pentium 4, 2.53GHz machine. In Figure 1 the
time needed to create the Zero Knowledge proofs is displayed versus the total
number of candidates in the elections. The system behaves linearly to the number
of candidates and the computation time is acceptable even when a much larger
number of candidates (> 100) is used. For the implementation Java was used,
which means that native code will reduce the computation time even further. For
the tally computation O(C' x M) verifications of proofs need to be performed,
where M is the number of voters as well as O(C') decryption operations on the
products of the individual votes. The time to verify the proofs for a single voter
is less than that of the proofs’ creation time. These operations, as well as the
decryption operation can be done offline after the end of the elections without
increasing the voter’s waiting time.

The size of the ballots created, as we mentioned above, increases linearly to
the number of candidates in the elections. In Figure 2 we show how the ballot
size varies with respect to the total number of candidates in our system. As we
expected the ballot size doubles when the number of candidates doubles.

We should note that our proposal is not limited to parties that have the
same number of candidates each. We have used this model so far to simplify
the description of the system and not to complicate the notations used in the
Zero Knowledge proofs. Our proposal can be applied to elections with parties
that have an arbitrary number of candidates each and the analysis of the system
complexity we made above still holds.

Finally, we provide a formula for the ballot size in our system. In what
follows, C' is the number of candidates in the system which are distributed (in
any manner) in K parties. Let |H| denote the size of the hashed commitments

11

Ballot Size vs. Total Number of Candidates

140

100 A
80 1
60 1
40

Ballot Size (Kbytes)

20 +

0 T T T T
0 20 40 60 80 100

Total Number of Candidates

Fig. 2. Ballot Size (in Kbytes) versus Total Number of Candidates participating in the
election

and |[NV?| the size of the modulus used in the Paillier cryptosystem. The size of
a vote is then

(5IN?| 4 2|H|) x C + (4N?| 4+ 2|H|) x (K +1) . (5)

Evidently the ballot length is O(C + K) and since in most cases C >> K
we can say that our system behaves linearly to the number of candidates. In
practical applications we may choose |H| = 80 and |JA2| = 2048. For an election
with 20 candidates and 3 parties the size of a vote is about 30Kbytes.

7 Conclusions and Future Research

In this paper we have presented a methodology for proving in Zero Knowledge
the validity of a selection of ¢ elements from one out of k sets of n elements
each. We have used this methodology in order to construct an election scheme
that can provide more complex ballot options than current existing ones. In
particular, our implementation can host elections involving a number of parties
each consisting of an arbitrary number of candidates with the voter having to
select a subset of the candidates from a single party, without degrading security
or efficiency. Furthermore, the computational and communication complexity is
linear with respect to the number of candidates and the proposed voting system
satisfies all necessary security requirements.

In our current research, we are examining the possibility to make the com-
plexity of our system (ballot size and computations) proportional to the number
of parties plus the number of selections the voter is requested to make. This may
be achieved possibly by representing a selection as in [8] and coming up with a

12

new set of Zero Knowledge proofs which can correlate the selection with a single
party.

References

1.
2.

3.

10.

11.

12.

13.

J. Benaloh. Verifiable Secret Ballot Elections. PhD thesis, Yale University 1997
J. Benaloh and D. Tuinstra. Receipt-free secret ballot elections. In Proc. 26th
Symposium on the Theory of Computing (STOC), pages 544-553 ACM 1994

R. Cramer, Y. Frankel, B. Schoenmakers and M. Yung. Multi-Authority Secret-
Ballot Elections with Linear Work. In Eurocrypt 96, LNCS 1070, pages 72-83.
Springer-Verlag, 1996

R. Crammer, R. Gennaro and B. Schoenmakers. A Secure and Optimally Efficient
Multi-Authority Election Scheme. In Eurocrypt 97, LNCS 1233, pages 113-118.
Springer-Verlag, 1997

P. Paillier. Public-Key Cryptosystems Based on Discrete Logarithm Residues. In
Eurocrypt 99, LNCS 1592, Springer-Verlag, 1999

I. Damgraad and M. Jurik. A Generalization, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-Key System. In PKC 01, LNCS 1992, pages
119-136, Springer-Verlag, 2001

P. A. Fouque, G. Poupard and J. Stern. Sharing Decryption in the Context of
Voting or Lotteries. In Financial Crypto '00, LNCS, Springer-Verlag, 2000

O. Baudron, P.-A. Fouque, D. Pointcheval, G. Pouparde, and J. Stern. Practical
Multi-Candidate Election System. Proceedings of the ACM Conference on Princi-
ples on Distributed Computing, August 2001, Philadelphia, USA

A. Fiat and A. Shamir. How to Prove Yourself: practical solutions of identification
and signature problems. In Crypto '86, LNCS 263, pages 186-194, Springer-Verlag,
1987

A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for Large
Scale Elections, Advances in Cryptology - AUSCRYPT ’92

T. P. Pedersen. Non-Interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology - Crypto ’91, volume 576 of Lecture Notes in
Computer Science, pages 129-140, Springer-Verlag, 1992

I. Damgard and M. Koprowski. Practical Threshold RSA Signatures Without a
Trusted Dealer. In Eurocrypt 01, LNCS, Springer - Verlag, 2001

P. Fouque and J. Stern. Fully Distributed RSA Signatures under Standard As-
sumptions. 2001

