
Middleboxes in the Internet: a HTTP perspective

Shan Huang

Queen Mary University of London

shan.huang@qmul.ac.uk

Félix Cuadrado

Queen Mary University of London

felix.cuadrado@qmul.ac.uk

Steve Uhlig

Queen Mary University of London

steve.uhlig@qmul.ac.uk

Abstract—Middleboxes are widely used in today’s Internet,
especially for security and performance. Middleboxes classify,
filter and shape traffic, therefore interfering with application
performance and performing new network functions for end
hosts. Recent studies have uncovered and studied middleboxes in
different types of networks. In this paper, we exploit a large-scale
proxy infrastructure, provided by Luminati, to detect HTTP-
interacting middleboxes across the Internet. Our methodology
relies on a client and server side, to be able to observe both
directions of the middlebox interaction. Our results provide
evidence for middleboxes deployed across more than 1000 ASes.
We observe various middlebox interference in both directions of
traffic flows, and across a wide range networks, including mobile
operators and data center networks.

I. INTRODUCTION

Middleboxes such as firewalls, load balancers and deep

packet inspection (DPI) boxes are a major part of today’s

network infrastructure. A middlebox can be defined as any

intermediary network device performing functions other than

standard functions of an IP forwarding between two end

hosts [1]. Currently, the reasons driving the deployment of

middleboxes come in two main categories: (1) security [2], [3],

[4], [5] to enhance the visibility of network traffic and enable

the enforcement of security policies, and (2) performance

enhancements [2], [6], [7] through traffic shaping, caching and

transparent proxying.

Compared to forwarding devices such as switches and

routers, middleboxes are complex. Indeed, they operate on

flows of packets at multiple layers of the network stack, from

the network layer to the application layer, and do so at line

rate. Middleboxes interfere with end-to-end packet transmis-

sion, application functionality, and restricting or preventing

end host applications from functioning properly [1]. Middle-

box interference can be categorized into three types. First,

middleboxes intentionally drop or filter packets according to

policies [8], [9]. For example, network administrators filter

P2P file sharing traffic to avoid the legal implications of

copyrighted content [10]. Second, middleboxes modify the

content of packets [11], [8], [5]. Some web proxies modify

HTTP headers to control meta information between client

and server (e.g., cache preferences). Finally, middleboxes

also inject forged packets, e.g., for blocking purposes. A

notorious example is the Great Firewall of China (GFC) that

blocks specific sites by injecting spoofed DNS responses, with

obvious consequences in terms of Internet censorship [12].

Middleboxes are widely used in various types of networks.

From a survey of 57 enterprise network administrators, it

was concluded that there are probably as many middleboxes

as routers inside the network [2]. Also, the survey of edge-

network behavior [13] showed evidence of middlebox traffic

manipulation in common ISPs. As much as it is widely

expected that middleboxes are widely present across today’s

networks, there is still relatively limited evidence regarding

how widely middleboxes are deployed, and how much they

interfere with traffic flows.

At the same time, Internet traffic is changing, e.g., HTTPS

represents a significant fraction of Internet traffic [14]. Con-

sidering the complexity of middleboxes, today’s applications

and network traffic, we argue that better methodologies must

be developed to detect and analyse middlebox interference on

traffic flows.

In this work, we develop such a methodology, and exploit

the Luminati proxy network to launch HTTP requests from

vantage points distributed in nearly 10,000 ASes across 196

countries. Our methodology relies on crafted probes and con-

trolled client-server interactions. All traffic traces we produced

will be made publicly available.

Our contributions are twofold. First, we introduce our

methodology to detect middlebox interference based on a

client-server architecture. We also explain how to use the

Luminati platform to run large-scale measurements. Second,

based on our methodology, we find evidence for a significant

amount of middlebox interference on both directions of the

traffic flows in different networks. We observe a wide variety

of injected HTTP headers in HTTP requests, some known and

some never reported before. Surprisingly, we even observe

new headers that are only added by mobile networks and

cloud platforms. Overall, we find that injected headers expose

the presence of multiple types of middleboxes across diverse

networks. Further, the interference on HTTP responses often

reveals the corresponding functions of the middleboxes, such

as proxying, caching, URL filtering, and WAN optimization.

The reminder of this paper is structured as follows. We

discuss the prior middlebox detection methodologies in related

work (Section II). In Section III, we introduce the Luminati

platform and our own methodology. We examine middlebox

interference on HTTP requests in Section IV-A and describe

response manipulation in Section IV-B. Finally, Section V

summarizes our paper and discusses further work.

II. RELATED WORK

A number of recent studies have explored middleboxes,

especially the behavior and impact of middleboxes on traffic

flows.

Back in 2011, Honda et al. [11] developed a tool made of a

client and a server, and examined middlebox interference on

TCP across diverse networks. Their idea of controlling both

end hosts provided the ability to generate, capture and analyse

TCP segments freely. However, the considered middlebox

interference was focused on TCP SYN/SYNACK segments.

Also in 2011, Wang et al. [8] did large-scale measurements

in more than 100 cellular ISPs, unveiling NAT and firewall

policies of carriers. Their methodology relied on probes run-

ning on smartphones and a dedicated server. The results from

this work demonstrated the importance of understanding the

interference from these policies, affecting the performance

of applications and mobile devices. This work attracted the

attention of cellular network carriers and mobile application

developers, making them reflect on the impact of middleboxes.

Despite the achievements of this work, middleboxes are much

more complex and diverse, and therefore require considering

wider interactions.

Tracebox [5] is a traceroute-like tool to identify packet

modifications performed by upstream middleboxes, and help

locate the involved middleboxes hop-by-hop. Similar to tracer-

oute, Tracebox sends probes with increasing TTL values and

waits for ICMP time-exceeded replies. Comparing the crafted

packets with the ICMP time-exceeded replies, Tracebox finds

out the modifications in the packet header or the payload, infer-

ring the presence of some middleboxes. However, the absence

of a server-side prevents Tracebox from detecting middlebox

interference in both directions of the traffic. Tracebox is a

seminal work in the area of middlebox interference. However,

to better understand middlebox interference, especially at the

application layer, a different methodology is necessary.

Netalyzr is a network measurement service, which provides

different types of network functionality tests, thanks to a

large number of volunteers [13]. Using this service, Weaver

et al. found that 14% of the clients from their collected

measurements passed via web proxies [6]. Further, this service

has also been used in cellular networks [15], [16]. It was

shown that 58% of 6918 sessions from 119 countries were

going through HTTP proxies, and 18% of the sessions were

using a DNS proxy [16]. Moreover, 13% of 299 mobile

operators were observed to manipulate HTTP headers for user

privacy, security and network operations. In this paper, we

confirm the prevalence of middleboxes across the Internet, and

different from Netalyzr-based works, we expose the extent to

which they specifically interact with HTTP headers.

Meanwhile, the Open Observatory of Network Interfer-

ence (OONI) [17] has processed some network measurements

which aim to detect internet censorship, traffic manipulation

and other signs of surveillance since 2012. The OONI project

is under the Tor project, collecting millions of network tests

across more than 90 countries. The researchers published the

testing methodology to identify HTTP Header Field Manipu-

lation and the collected HTTP headers on the website.

Recently, [18] used peer-to-peer network Hola to explore

HTTP headers in-the-wide, revealing that 25% of measured

ASes modify HTTP headers. Part of this work has confirmed

the presence of some middleboxes. While, the focus of this

work was not on detecting middleboxes, it shed insight on the

types of headers, expose network and regional trends. Indeed,

our dataset covers nearly 10,000 ASes, which is wider than the

dataset of [18], illustrating much more middleboxes in various

of networks.

These studies attempt to explain the mechanisms of detect-

ing and locating particular middleboxes in networks, inves-

tigating the header manipulation in the wild. On the other

hand, our work aims at detecting any behaviors or effects

of middleboxes on HTTP application traffic flows in diverse

networks, and discuss the networks where the middlebox

interference occurs.

III. METHODOLOGY AND DATASET

In this section, we describe our methodology, aimed at

detecting the presence of middleboxes through their interaction

with HTTP requests and answers. To do this, we adopt a client-

server architecture, with control on both sides of the end-to-

end flow. Our client-side generates crafted probe packets and

matches the sent probes with the responses. The server-side

responds to the crafted probes, potentially modified on the way

by middleboxes, and compares the received probe with the

original one sent. The server also sends crafted responses back

to the client-side. All probes sent and received are collected

and kept for further analysis. Note that an earlier description

of our methodology can be found in [19].

To sample middlebox interference across the Internet, we

want the probes to be sent through a physical infrastruc-

ture distributed across the Internet. However, the infrastruc-

ture used to send the probes should provide significant and

as representative as possible vantage points, i.e., beyond a

purely academic one such as PlanetLab. Indeed, PlanetLab

is not suitable for our middlebox study. We have used our

methodology on the PlanetLab infrastructure as well, but

hardly found any middlebox deployement this way, only a

few non-representative instances of middleboxes. Therefore,

in this paper, we use the commercial Peer-to-Peer (P2P)-based

HTTP/S proxy service, Luminati, based on the Hola network,

to launch HTTP requests across the Internet.

A. Hola and Luminati

Hola is a P2P VPN service, which allows users to route

traffic over a large number of country peers, from nearly

280 countries. These country peers run on users’ machines,

therefore based on a variety of devices, e.g., laptops, mobile

devices, and distributed across various types of networks.

In practice however, Hola forwards traffic via super proxies

located in a few countries (e.g., the UK or the USA), instead

of going though each country peer.

To get full advantage of the vantage points from the Hola

proxy network, one needs to rely on Luminati. Luminati is

a paid HTTP/S service that is based on the Hola network.

Luminati forwards users’ traffic via Hola country peers, not

the specific super proxy, therefore providing a much larger

TABLE IV: Injected Request Headers Related to Proxy or Cache Functions.

Injected header # of ASes # of countries Note

Proxy-Related

Via 695 117 Via: 1.1 rcdn9-cd1-dmz-wsa-1.cisco.com:80 (Cisco-WSA/9.0.1-162)

X-Forwarded-For 535 106 X-Forwarded-For: 192.168.2.157

X-Proxy-ID 178 58 X-Proxy-ID: 2004304525

X-IMForwards 30 20 X-IMForwards: 20

Max-Forwards 5 4 Max-Forwards: 10

Client-IP 5 7 Client-IP: 10.224.164.34

Client-ip 3 2 Client-ip: 192.168.23.5

X-BlueCoat-Via 49 9 X-BlueCoat-Via: fb09b83d12ade53b

CUDA CLIIP 19 11 CUDA CLIIP: 172.16.20.138

X-IWS-Via 7 6 X-IWS-Via: 1.1 51066FAS (IWSS)

X-IWSaaS-Via 1 1 X-IWSaaS-Via: 1.1 scannerdy-an-20-3012-a-pro-18293387:8080 (IWSaaS)

X-RBT-Optimized-By 2 2 X-RBT-Optimized-By: LGEPS-PC-ACC-3070M-A (RiOS 8.6.2c) SC

RVBD-CSH 1 1 RVBD-CSH: ::ffff:172.25.80.199

RVBD-SSH 1 1 RVBD-SSH: ::ffff:172.17.12.199

Surrogate-Capability 8 5 Surrogate-Capability:srv015.guape.zigdigital.com.br=”Surrogate/1.0 ESI/1.0”

X-Tinyproxy 1 1 X-Tinyproxy: 10.192.9.79

X-If-Via 1 1 X-If-Via: 1.1 i-FILTER84982

Cache-Related

Cache-Control 750 106 Cache-Control: max-stale=0

Pragma 4 3 Pragma: no-cache

X-Loop-Control 35 2 X-Loop-Control: 151.233.132.133 151D44BFA8F6E036603564C1B622E01C

If-Modified-Since 24 13 If-Modified-Since: Thu, 24 Mar 2016 15:07:56 GMT

If-None-Match 21 11 If-None-Match: ”90-52ecccfbb0285”

headers from the requests with those from responses, we

see a wider diversity of different headers being manipulated

in responses. We also observe that most of the manipulated

response headers relate to proxies or caches that inject new

headers into requests. Though the sheer numbers do not con-

stitute conclusive evidence, this may indicate that middleboxes

affecting the upstream direction (requests) are actually a subset

of those affecting the downstream direction (responses). Given

that middleboxes are stateful devices that see both directions

of the traffic flows, it is natural to expect a significant overlap

between manipulations done in both directions of the traffic.

1) Proxies/Caches request header injection: In Table IV,

we list all instances of injected headers corresponding to

proxies and caches. For each header instance, we also provide

the number of ASes and countries of the possible location of

the injection. As previously mentioned in our methodology,

we infer the AS and country of the source IP address of

the received requests. This IP address will either be the one

from the Luminati country peer or from a middlebox located

between the country peer and our server. Therefore, even

though it is not the definitive location of the middlebox, it

will be typically at the edge of the Internet given the vantage

points provided by Luminati. From how often these headers

are observed in different networks, we get a measure of the

popularity of these two important network functions overall.

Meanwhile, we check the values of the injected headers (see

examples provided in the last column of Table IV). We find

that the values of the headers are consistent with the names

of the headers, reflecting the related network functions played

by the corresponding middlebox.

The most frequently injected request header in our dataset

is Cache-Control. This header sets specific directives for

cached copies, and is seen in about 7.5% of all ASes we

sample in our measurements. The next most popular injected

header is Via, injected by proxies to inform end points of

its presence, sometimes also adding information about the

name and version of the middlebox. We observed the Via

header across 695 ASes in 117 countries. Middleboxes do

more than tell their function. They also add private information

about the end-point originating the HTTP request, as from the

X-Forwarded-For header that carries the IP address of the

original client. Doing this is surprising, if the intended usage

of proxy is to provide anonymity for end users, since adding

the IP address of the original client defeats the very purpose of

proxying, by revealing to the server the originator of the query.

The next most popular injected header is X-Proxy-ID, seen

in 178 ASes across 58 countries, which carries the identifiers

of the proxies.

Injected HTTP headers also reveal a significant number of

vendor-specific middleboxes. For example, X-IWS-Via and X-

IWSaaS-Via are headers added by Trend Micro middleboxes,

running the InterScan Web Security service. InterScan Web

Security (IWS) is a software appliance that dynamically pro-

tects traffic flows on Internet gateway [21]. Another expected

header is X-IWSaaS-Via, from the Amazon cloud instance

inside a Japanese data center. Beside the typical functions of

proxying and caching, we find headers related to services such

as private IP mapping (X-Tinyproxy), traffic flows filtering

(X-If-Via) and WAN optimization (RVBD-CSH and RVBD-

SSH). Although not very common, these instances provide

evidence of the diversity of roles played by middleboxes

in today’s Internet, way beyond the usual functions such as

caching and proxying.

As shown in Figure 5, most of involved ASes are Tier-

2 or customer networks, supporting our expectation that the

middleboxes are generally located at the edge of networks.

2) Mobile devices/networks request header injection: So

far, we have studied injected headers for which the function

of the middlebox is straightforward, because the header is well

known or the name strongly suggests its function. This is not

always the case unfortunately. When the header does not tell

us its purpose, we try to guess its function based on its name

TABLE VI: Remaining Injected Request Headers.

Injected Header AS Num/ISP Country Note

x-up-vfza-id 1 (VODACOM-AS) 1 (ZA) x-up-vfza-id: 65501

x-subscriber-info x-subscriber-info: 10.139.195.196

cli 1 (QA-ISP) 1 (QA) cli: 97433872509

imsi imsi: 427012926009698

X-TMCE-GUID X-TMCE-GUID: 48c1b6b0-4a2f-11e6-9c7d-0a44fff0175

X-TMCE-Token 1 (Amazon.com, Inc) 1 (JP) X-TMCE-Token:48c1b6b0-4a2f-11e6-9c7d-

0a4fff0175fc0faa422e1e04e......

X-TMCE-User X-TMCE-User: %40ce-ac7caab8-74df-4bc4-ae2d-e71a515dc0d

FFIClient FFIClient: True

FFI-Authenticate 1 (NL-SOLCON) 1 (NL) FFI-Authenticate: e78d964b-99db-4c70-88c5-3c927bb888a3

FFI-AuthenticateUser FFI-AuthenticateUser: enno

FFI-UrlToFilter FFI-UrlToFilter: http://shanluminati.com/?TYPE1 nl 21408

HCFVer 1 (TTNET) 1 (TR) HCFVer: 3.7.18

HCFType HCFType: server

X-FCCKV2 2 (ENERGOTEL,TTSLMEIS) 2 (SK,IN) X-FCCKV2: GAJ3kZcRPNFiiMihhS2K+3EH0ofDY3+IbjlTCQ=

X-Bloxx-Result 1 (DATAWEB B.V) 1 (NL) X-Bloxx-Result: [201, 203, 250, 251, 254, 255, 260, 261, 266, 267,

401, 425, 3009]

Server-Slot 1 (OVH) 1 (FR) Server-Slot:ovh01FR.openvpn.wifiprotector.com 0

Referer 2 (NHN-AS,CHINA-UNICOM) 2 (KR,CN) Referer: http://www.baidu.com/s?wd=www

X-delete-header 1 (CHINANET-BACKBONE) 1 (CN) X-delete-header: gzip

Accept-Xncoding 1 (Bezeqint Internet Backbone) 1 (IL) Accept-Xncoding: gzip

NCLIENT50 2 (VIA-NUMERICA,Hanyang Uni-

versity)

2 (FR,KR) NCLIENT50: NCLIENT50

serialnumber 1 (INFOCLIP-AS) 1 (FR) serialnumber: V2401625

response headers relate to proxying and caching, such as the

cache hit record, the age for the cached copies and proxy

connection status.

As shown in Table VII, X-Cache is the most frequently

added response header, observed from 519 ASes across 105

countries4. The next most popular, X-Cache-Lookup is ob-

served in 401 ASes, nearly 4% of all ASes we observe. Both

of them are used to handle cache implementation details.

Surprisingly, we find the header Set-Cookie injected in

some of our responses, while the server should be adding it,

not a middlebox. Although we could not identify the host that

actually sets these cookies, the injection implies the existence

of a third-party server (or a middlebox) responsible for such

an injection. Though we do not see the third-party actually

tracking the browsing behavior of the client, the existence of

such a third-party constitutes a privacy risk for end-users who

are unlikely to be aware of its presence.

Compared to the injected request headers, we see less

information about the unique user or gateway is injected in the

response headers by the middleboxes. We observe 12 injected

request headers that carry the information about the original

user (private IP address) and the name or identification of

proxies. Only two injected response headers record the cache

hit results, carrying information about caches on the path.

Although upstream and downstream traffic flows are likely

to cross the same middleboxes, the middlebox interference

we observe in both directions of the traffic is different.

More private information about subnets or clients is added

to requests compared to responses.

4Different from the case of requests, for responses we rely on the IP
address of the country peer to infer the AS number and country of this header
modification.

2) Unidentified Response Header: Similar to the request

header situation, Table VIII shows the non-standard injected

response headers. Again, in such cases we need to guess the

purpose of the header. From our inference, it appears that

most of these injected headers carry information related to

content filtering and identification of middleboxes in different

networks. However, we did not find any specific network

function that would generally apply in these cases. For in-

stance, X-IS-ELAPSED and X-IS-FILTER are injected in

the same request, but from the values of these two headers

we could not infer their function. From their name, we guess

they are likely to be injected for filtering. Headers such as

those with the X-Nokia prefix, or X-Android, are injected

by the Android operating system, and therefore related to

middleboxes located in wireless or mobile networks. The

Client-Date, Client-Peer and Client-Response-Num headers

are injected by SmarTone, the mobile network operator in

Hong Kong. This shows that consistently with the upstream

case, we see evidence of middleboxes in mobile networks from

the downstream direction of the traffic.

3) Response Header Modification and Removal: For re-

sponse headers, we also observe header removals (Table X)

and value modifications (Table IX). Though we do not have

explicit evidence about the type of middlebox in these cases, a

large portion of the ASes for these headers overlap with those

involved in the Via, Cache-Control and X-Forwarded-For

headers in the requests. For example, as shown in Table IX,

77% of ASes for which Accept-Range modifications occur

overlap with the ASes involved in request header injection.

This suggests that these modifications and removals are actu-

ally done by the same middleboxes in both directions.

Overlapping ASes also give us the opportunity to look at

TABLE VII: Response Header Injection.

Injected Header # of ASes # of coun-

tries

Note

Cache-Related

X-Cache 519 105 X-Cache: MISS from localhost

X-Cache-Lookup 401 99 X-Cache-Lookup: MISS from localhost:3128

Age 216 53 Age: 0

Cache-Control 206 76 Cache-Control: max-age=0,must-revalidate,no-cache,no-store

X-CFLO-Cache-Result 48 5 X-CFLO-Cache-Result: TCP MISS

X-Loop-Control 22 2 X-Loop-Control: 5.202.228.198 179F973C1B7F69B3B4D758538F3616B8

X-Cache-Full 11 1 X-Cache-Full: MISS from myauth.pirai.rj.gov.br

Vary 7 6 Vary: *

X-Cache-Debug 1 1 X-Cache-Debug: TCP MISS/NODNS-IIP/-

SPINE-CACHE 1 1 SPINE-CACHE: MISS

ANIS-CACHE 1 1 ANIS-CACHE: MISS

Proxy-Related

Proxy-Connection: 128 52 Proxy-Connection: Keep-Alive

X-Cnection 23 7 X-Cnection: close

X-OSSProxy 19 16 X-OSSProxy: OSSProxy 1.3.337.376 (Build 337.376 Win32 en-

us)(Apr 22 2016 15:45:25)

X-Squid-Error 9 6 X-Squid-Error: ERR-READ-ERROR 104

Third Party Server Set-Cookie 2 2 Set-Cookie: xodbpb=; Path=/; HttpOnly

TABLE VIII: Injected Response Headers Requiring Inference.

Injected Header # of ASes # of coun-

tries

X-IS-ELAPSED 2 1

X-IS-FILTER 2 1

X-Android-Selected-Protocol 1 1

X-Android-Response-Source 1 1

Client-Date 1 1

Client-Peer 1 1

Client-Response-Num 1 1

X-Bst-Request-Id 3 4

X-Bst-Info 3 4

X-WS-PAC 3 4

Warning 14 11

Mime-Version 11 8

Location 10 9

Content-Language 6 5

X-Vitruvian 6 5

X-TurboPage 4 5

Refresh 2 1

cases where the ASes from the requests and responses differ.

Indeed, when the IP address seen in the request received by

the server differs from the IP address seen in the response

(identifying the country peer), this means that the former IP

address belongs to a TCP-terminating middlebox. We therefore

count such IP addresses (1025), ASes (168), and countries

(55) where these are located. Unfortunately, these statistics

provide us only with a very poor lower bound on the number

of middleboxes and networks observed, compared to the

evidence from the HTTP header manipulation. Indeed, from

the sheer HTTP manipulation we observed, we found evidence

of middleboxes in 1011 ASes from the requests, and in 1023

ASes for responses.

Some response header modifications and removals may

affect the end-to-end performance. For example, some proxies

modify or remove the value of the Accept-Ranges header,

to disable byte serving. As byte serving allows the server to

partially deliver the content, modifying the value of Accept-

Ranges can very well affect the content transfer. Also, the

removal of the Last-Modified and Etag headers may affect

the updating of cached copies.

TABLE IX: Modified Response Headers (with AS overlap).

Modified

Header

of ASes # of over-

lap ASes

of countries

Content-Length 191 108 (57%) 75

Accept-Ranges 61 47 (77%) 38

Content-Type 37 20 (54%) 24

Server 26 15 (58%) 17

TABLE X: Removed Response Headers (with AS overlap).

Removed

Header

of ASes # of over-

lap ASes

of countries

Last-Modified 143 84 (59%) 65

Accept-Ranges 107 64 (71%) 50

Content-Length 85 52 (51%) 36

Etag 73 42 (58%) 39

Server 33 21 (64%) 20

4) Summary: All in all, the manipulations of HTTP re-

sponses confirms the diversity of network functions played by

today’s middleboxes. Similar to the case of request headers,

most of the injected response headers are added by proxies

and caches. As shown in Figure 6, the classification of ASes

which inject new headers inside responses is quite similar

to those that do so on the requests. Although the types of

injected headers are different between requests and responses,

the consistency in the trends in both directions of the traffic

possibly indicate that the same middleboxes indeed affect

both directions of the traffic. From the downstream part

of the traffic, we observed header manipulations that may

potentially negatively impact end-to-end performance. Finally,

