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Abstract—Precise detection and identification of anomalous
events in IP traffic are crucial in many applications. This
paper intends to address this task by adopting the link stream
formalism which properly captures temporal and structural
features of the data. Within this framework we focus on finding
anomalous behaviours with the degree of IP addresses over
time. Due to diversity in IP profiles, this feature is typically
distributed heterogeneously, preventing us to find anomalies. To
deal with this challenge, we design a method to detect outliers
as well as precisely identify their cause in a sequence of similar
heterogeneous distributions. We apply it to a MAWI capture of
IP traffic and we show that it succeeds at detecting relevant
patterns in terms of anomalous network activity.

I. INTRODUCTION

Temporal and structural features of IP traffic are and have
been for several years the subject of multiple studies in
various fields. A significant part of this research is devoted
to detecting statistically anomalous traffic subsets referred to
as anomalies, events or outliers. Their detection is particularly
important since, in addition to a better understanding of IP
traffic characteristics, it could prevent attacks against on-line
services, networks and information systems. Methods used in
this branch are very broad and depend on both the way in
which IP traffic data is modelled and in the statistical analysis
used.
Most previous works focus either on the temporal [3], [4] or
structural features of traffic [17], [27], with few attempts to
combine them [12], [2]. In this paper, we model IP traffic
as a link stream which fully captures the both temporal and
structural nature of traffic [18], [25]. More specifically, a link
stream L is defined as a set of instants T , a set of nodes V (IP
addresses) and a set of interaction E (communication between
IP addresses over time). Within this framework, we focus on
one key property: the degree of nodes. We show that this
feature is highly heterogeneous, which raises challenges for its
use in outlier detection, but it is stable over time. Our method
takes advantage of this temporal homogeneity: it divides the
link stream into time slices and then performs outlier detection
to find time slices which exhibit unusual number of nodes
having a degree within specific degree classes. Then, in order
to isolate responsible IP addresses and instants on which they
behave unexpectedly, we design an identification method based
on an iterative removal of previously detected events. Finally,
we validate our method by showing that these events removals
do not significantly alter the underlying normal traffic.

The paper is organised as follows. First, we overview the
related work in Section II. We introduce IP traffic modelling as
a link stream and the degree notion in Section III. In Section
IV, we describe our goals and the challenges they raise. This
leads to the development of our method to detect events in
Section V and to identify them in Section VI. Finally, we
discuss our results and conclude in Section VII.

II. RELATED WORK

Techniques of anomaly detection in IP traffic are extremely
diverse. Among those, methods using principal component
analysis [16], [22], machine learning [26], data mining
[19], signal analysis and graph-based techniques have been
proposed. Concerning signal analysis and graph-based
techniques, an important difference lies in data modelling. On
one hand, anomaly detection using signal analysis consists
in modelling the data as a temporal signal and then spotting
anomalies in the Fourier domain at characteristic frequencies.
Even if this approach gives powerful results, some structural
aspects of the data are lost [3], [4]. The graph approach on
the other hand consists in choosing an observation window
of a given size and aggregating the links and nodes appearing
during this period to form a static graph. The evolution and
the structure of exchanges are then observed and studied via
a sequence of static graphs obtained either by translation of
the observation window or by aggregation on consecutive
windows [17], [27]. Thus, it is assumed that all interactions
over the same period of time are comparable, which
destroys many temporal aspects. Iliofotou et al. [12] use
this representation. They introduce several metrics to study
similarities between structural features of two consecutive
snapshots. They are able to detect changes of behaviours but
not specific sub-graphs. Asai et al. [2] use a different graph
approach. They include the temporal information directly
into the graph: a node is an interaction and two nodes are
linked together if they have a causal relationship. In this way,
authors manage to detect abnormal temporal and structural
sequences. However, this method is limited by the definition
of causal relationships that can not take into account all
interactions’properties.

A strength of our work is to preserve both temporal and
structural aspects by using the link stream formalism [18],
more suited to the data coming from IP traffic. Besides data



modelling, much work has been devoted to the study of
anomalies as deviations of the overall traffic volume, like for
instance the number of exchanged packets or bytes during
a certain amount of time [3], [15]. Link stream formalism
allows on the contrary to use more sophisticated features
combining both time and structure [18], [25]. The degree
for example quantifies the neighbourhood of each node at
each moment. Hence, in addition to large events that disrupt
traffic volume like flash crowd or alpha flows attacks, it
would enable us to detect more subtle and more structurally
complex anomalies.

A significant part of our work in this paper is devoted
to finding outliers in the degree distribution which is het-
erogeneous. Up to our knowledge, there is no work dealing
exclusively with outliers detection in heterogeneous distribu-
tions. Nevertheless, many papers study dissimilarities between
different distributions in a way similar to what we do in this
paper. Anceaume et al. [1] and Tajer et al. [24] summarize
data streams into sketches and apply a distance metric to
quantify the similarity between two sketches. Here again, the
data used is aggregated and there is a loss of information.
Schieber et al. [23] quantify topological difference between
two graphs through Jensen-Shannon divergence and a measure
of the heterogeneity of each graphs in terms of connectivity
distance between nodes. In both cases, methods used only
give a similarity score between two different distributions. Our
method, besides quantifying a dissimilarity, gives us additional
information: where is the dissimilarity located within the
distribution, which then makes it possible to identify its origin.
Other studies point to this direction, La Fond et al. [14]
propose various measurements allowing the comparison of
distributions from one time step to the next, but only recover
anomalous time slices. Harshaw et al. [10] achieve to find
anomalous IP addresses and time slices in series of graphs by
comparing, for each graph, the count of specific sub-graphs
describing their topology. However, they are still subject to
information loss coming from data modelling.

III. TRAFFIC MODELLING AS A LINK STREAM AND
DEGREE DEFINITION

IP traffic consists of packet exchanges between IP
addresses. We use here one hour of IP traffic capture from the
MAWI archive1 on June 25th, 2013, from 00:00 to 01:00. We
denote this trace by a set D of triplets such that (t, u, v) ∈ D
indicates that IP addresses u and v exchanged at least a
packet at time t. The set D contains 83, 386, 538 triplets
involving 1, 157, 540 different IP addresses.

We model this traffic as a link stream L in order to
capture its structure and dynamics [18]. In this link stream,
nodes are IP addresses involved in D and two nodes are
linked together from time t1 to time t2 if they exchanged
at least one packet every second within this time interval.

1http://mawi.wide.ad.jp/mawi/ditl/ditl2013/ [13]
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Fig. 1: Link stream for the modelling of IP traffic -
(a) Example of a link stream L = (T, V,E) formed from the
set of triplets D = {(1, a, b), (1.5, a, b), (3.5, a, c), (4.3, b, c),
(4.4, b, c), (4.6, b, c), (4.9, b, c), (5.3, b, c), (6.1, a, b)}:
T = [0, 7[, V = {a, b, c}, E = ( [0.5, 2[ ∪ [5.5, 6.5[ ) × {ab}
∪ [3, 4[ × {ac} ∪ [3.8, 5.8[ × {bc}. In the example, a interacts
with b from t1 = 0.5 to t2 = 2. (b) Time evolution of the degree of
node b.

Formally, L = (T, V,E) is defined by a time interval T ⊂ R,
a set of nodes V and a set of links E ⊆ T × V ⊗ V
where V ⊗ V denotes the set of unordered pairs of distinct
elements of V , denoted by uv for any u and v in V (thus,
uv ∈ V ⊗ V if and only if u, v ∈ V and u 6= v, and we
make no distinction between uv and vu). If (t, uv) ∈ E
then u and v are linked together at time t. In our case,
E = ∪(t,u,v)∈D [t − 1

2 , t +
1
2 [×{uv}. See Figure 1.a for an

illustration.

In L, the degree of (t, v) ∈ T ×V , denoted by dt(v), is the
number of distinct nodes with which v interacts at time t:

dt(v) = |{u, (t, uv) ∈ E}|.

Figure 1.b shows the degree of node b over time.

IV. HETEROGENEITY OF DEGREES

In this paper, we consider an event to be a couple (t, v)
statistically deviating from others. Hence, in order to find
events in a link stream using the degree, we first need to
characterize the normal behaviour of couples (t, v) with
respect to this feature. Then, a couple (t, v) ∈ T × V having
a significantly different degree from the one of others would
indicate an event: v interacts with an unusually high number
of nodes at time t.

For this purpose, we call degree distribution of L the
fraction f(k) of couples (t, v) ∈ T × V for which dt(v) = k,
for all k:

f(k) =
|{(t, v) ∈ T × V : dt(v) = k}|

|T × V |
.

Figure 2 shows that the degree distribution is very
heterogeneous, which discards the hypothesis of a normal



behaviour. In this situation, one may hardly identify values
of degree that could be considered anomalous. Indeed, in
such heterogeneous distributions, the mean and the standard
deviation, which characterize the statistical normal behaviour,
are not good estimators.
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Fig. 2: Degree distribution and complementary cumulative de-
gree distribution over L. For all (t, v) ∈ T × V , we compute the
degree dt(v) and plot the distribution of obtained values. The fraction
expresses the probability to draw a time instant t ∈ T and a node
v ∈ V such that dt(v) = k.

In order to circumvent this global heterogeneity, we observe
degrees on sub-streams corresponding to IP traffic during time
slices of two seconds. Formally, we call Ti = [2i, 2i+ 2[ the
ith time slice, for all i ∈ {0, . . . , 1799} such that T0 = [0, 2]
and T1799 = [3598, 3600[, and we define

fi(k) =
|{(t, v) ∈ Ti × V : dt(v) = k}|

|Ti × V |
,

the degree distribution of the ith time slice. Figure 3 shows
that these distributions also are heterogeneous.

However, Figure 3 also shows that degree distributions fi
have similar shapes. To quantify this similarity, we fit them
with a power law model, y ∝ xa, where we estimate the
power law exponents by using linear fits of the distributions
in which both coordinates are log-transformed. Other more
complex and accurate techniques to fit power laws exist, see
for instance [7]. Note that, in our context, the goodness of the
fit is not the outcome of greatest interest. We are interested
in knowing whether the parameters are similar on all time
slices or not, not in values taken by parameters. We see on
Figure 4 that linear model parameters are homogeneously
distributed, suggesting that even if nodes have behaviours that
are not comparable with each other, their overall behaviour
is comparable from one time slice to another. We also see
outlier values, distant from the mean, which in turn indicate
changes in the overall behaviour on particular sub-streams.
Using these observations, we design an outlier detection
method based on temporal homogeneity of heterogeneous
degree distributions.
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Fig. 3: Degree distribution and complementary cumulative
degree distribution over 2-seconds time slices. For T0 = [0, 2[,
T1 = [2, 4[, T2 = [4, 6[ and T3 = [6, 8[, we compute the degree dt(v)
for all (t, v) in the corresponding sub-stream and plot the distribution
of obtained values. The fraction expresses the probability to draw a
time instant t ∈ Ti and a node v ∈ V such that dt(v) = k.
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Fig. 4: Similarity of degree distributions on different time slices.
For each Ti, we fit the degree distribution fi after taking the log of
both coordinates using a linear model of the form y = ax + b. On
the left is the distribution of parameter a on all time slices. On the
right, the one of parameter b.

V. LEVERAGING TEMPORAL HOMOGENEITY TO DETECT
EVENTS

The above observations lead to the following conclusion:
degree distributions are heterogeneous in the same way on
most, if not all, time slices. In other words, in each time
slice, the fraction of couples (t, v) that have a given degree is
similar to this fraction in other time slices. This is what we
will consider as normal. Anomalies, instead, correspond to
significant deviation from the usual fraction of nodes having
a given degree. In this section we describe our method to
compare degree distributions on all time slices and its use for
outlier detection in our dataset.

First, notice that it makes little sense to consider the fraction
of couples (t, v) having a degree exactly k when k is large:
having degree k− 1 or k+1 makes no significant difference.
Therefore, we define degree classes Cj and consider the
fraction of couples (t, v) having degrees in Cj , for all j:

fi(Cj) =
|{(t, v) ∈ Ti × V : dt(v) ∈ Cj}|

|Ti × V |
.
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Fig. 5: Distributions of fractions fi(C) on all time slices Ti for degree class C in {C1, C2, C19, C22, C31, C41} - Distributions on C1,
C2 and C19 are homogeneous with outliers. Distributions on C22, C31 and C41 are peaked on zero since in most time slices there are no
couple (t, v) in the corresponding class.

Many options regarding the definition of Cj may make
sense. It seems crucial, however, to isolate low degrees
into separate classes, as well as to take into account
the heterogeneity of degrees. Therefore, we choose to
make 3 distinct classes for the degrees 1, 2 and 3 and
then to group higher degrees into classes of logarithmic
scale. From j = 4, we define here the jth degree class,
Cj = {dkje, . . . , bkj+1c} such that kj = 100.1×(j+2).
It finally leads to C1 = {1}, C2 = {2}, C3 = {3},
C4 = {4, 5}, etc., until C41 = {19953, . . . , 25118}. We leave
the exploration of other class constructions for future works.

In order to compare degree distributions, we plot for a
given degree class C, the distribution on all time slices Ti
of the fraction fi(C). In other words, we study how the
fraction of couples (t, v) having degrees within C during
Ti is distributed among all time slices. Figure 5 shows the
distributions for classes C1, C2, C19, C22, C31 and C41.
In accordance with temporal homogeneity, we can see that
most fractions are distributed around the mean and that a
few only are distant from it. As expected according to the
heterogeneity of degrees, the higher the degree class, the
lower the fraction of couples (t, v) within the class. We see
on C1 that the average fraction over all time intervals is
2.1 · 10−3. When switching to C2, it drops to 1.15 · 10−4 and
gradually decreases to reach 0 in classes of degrees above
252. In these high degree classes, there is a peak on fraction 0,
indicating that in most time slices the normality is that there
is no couple (t, v) which have a degree reaching these classes.
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Fig. 6: Fit of the fractions distribution on C2 after removing
outliers with Grubbs’ test - The KS distance between the fit and
the empirical distribution is below the critical value. Hence, according
to our method, this distribution is flagged as an homogeneous
distribution with outliers.

In order to validate fractions fi homogeneity over time
slices within each degree class, we fit their distributions with
a normal distribution model P (x) = 1√

2πσ2
e−

1
2 (
x−µ
σ )2 where

values are normally distributed around a mean µ with a
standard deviation σ. Deciding whether a given distribution
is homogeneous with outliers or not may then be done
as follows [17]: (1) iteratively remove outliers from the
distribution with Grubbs’ test [8]; (2) fitting the resulting
distribution with the normal model; (3) evaluate the goodness
of the fit. We use Maximum Likelihood Estimation (MLE) to
determine which model parameters fit the best the empirical
distribution [6] and evaluate the goodness of the fit with the
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of couples (t, v) involved is low which makes its contribution to
the fraction f657(C31) very low. On the right, the degree of node
b fluctuates within class C22 making its contribution to the fraction
f421(C31) maximal.

Kolmogorov-Smirnov (KS) distance between the empirical
and the reference distributions [21]. In this framework, we
find 37 distributions homogeneous with outliers among the
41 corresponding to each degree class (see Fig. 6). The
remaining 4 are discarded from the study. One may use
more complex and accurate techniques to automatically
perform this decision, see for instance the work performed
by Motulsky et al. [20].

Unlike heterogeneous distributions, homogeneous
distributions with outliers clearly exhibit statistical anomalies:
most values are similar to a mean value (normality) but
some significantly deviate from it (abnormality). Given an
homogeneous distribution with outliers, we use here the
classical assumption that a value is anomalous if its distance
to the mean exceeds three times the standard deviation [5],
[9]. For the first class containing degree 1 only, we obtain
151 time slices flagged as anomalous. Outliers are also found
in the following degree classes: 5 anomalous slices in C2 and
12 in C19. In higher degree classes, peaked on 0, anomalous
values correspond to all values greater than 0. Among these,
we can distinguish two groups of anomalous fractions fi(C):
the ones that are close to 0 and the others, as we can see on
classes 22 and 31 in Figure 5. These two groups of fractions
often reflect the behaviour of single nodes. Indeed, while the
transition of a node u through a given class, from a lower
to a higher degree class, implies a small number of couples
(t, u) and thus is often responsible of a low fraction, the
stabilization of a node u in a class implies a lot of couples
(t, u) which in turn is often responsible of a high fraction
(see Fig. 7).

Finally, our method for event detection from degrees
distribution is the following: we group degree values into
degree classes of logarithmic width. For a given degree class
C, we look at the distribution on all time slices of the fraction
fi(C). This distribution indicates anomalous values which
mean that there are anomalous high numbers of couples
(t, v) having degree within C during specific time slices.
We then call an anomalous value of this kind a detected event.
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Fig. 8: Distributions of the fractions on all time intervals over
C2 before and after the removal - The removal of all interactions
(t, uv) such that couples (t, v) have degree in C2 during the detected
time slice T1080 causes the appearance of a negative outlier.

A detected event gives two pieces of information: the time
slice Ti on which the anomalous value has been observed
and the degree class C in which the couple(s) responsible for
the high fraction is or are located. At this stage, we detected
1,358 such events. We now address the goal of identifying the
couples (t, v) in T × V responsible for these detected events.

VI. ITERATIVE REMOVAL TO IDENTIFY EVENTS

A detected event is a degree class C and a time slice Ti
such that the fraction fi(C) is unusually high compared to
the ones in other time slices. Identifying this event means
recovering the set of couples (t, v) responsible for this
anomaly. In this section, we introduce an iterative removal
method and show that it leads to such identification.

Let’s take time slice T1080 detected in degree class C2

as an example. We have access to the set of couples (t, v)
which have a degree in C2 during T1080. However, we cannot
directly identify the event by this set. Indeed, let’s consider
the new link stream L′ such that L′ = (T, V,E′) with
E′ = E \ {(t, uv) : t ∈ T1080 and dt(v) ∈ C2}. We see on
Figure 8 that the removal of this set of interactions from the
link stream causes the appearance of a negative outlier2 in
the distribution of the fractions on C2. Thus, by removing all
interactions (t, uv) such that couples (t, v) have degree in C2

during T1080, we removed anomalous traffic but also normal
traffic. Therefore, identifying the detected event as the set
{(t, v) : t ∈ T1080 and dt(v) ∈ C2} is not accurate enough.

This suggest that one cannot directly identify couples
acting abnormally in low degree classes. Indeed, in these
classes, the normal fraction is greater than zero. Hence, an
anomalous fraction consists in anomalous couples but also
normal ones, which prevents us from identifying responsible
couples only. On the contrary, in high degree classes the
expected fraction is zero. Thus, couples (t, v) contributing to
non-zero fractions are clearly anomalous. Events detected in
such degree class C can therefore be correctly identified with
the set {(t, v) : t ∈ Ti and dt(v) ∈ C}.

2We call negative outlier an outlier which is lower than the mean.
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Fig. 9: Event identification in high degree classes - The removal
of an identified event in the high degree class C41 allows the
identification of an event detected in the lower degree class C1.

Consequently, we now consider degree class C41 on
which the normal fraction is 0. Its larger anomalous fraction
corresponds to time slice T315. Hence, this event can be
identified by the set {(t, v) : t ∈ T315 and dt(v) ∈ C41}.
Figure 9 shows the consequences of its removal. As
expected, the anomalous fraction in C41 vanishes without
creating a negative outlier. Additionally, one may notice the
disappearance of an outlier in C1. By looking into the data,
we can see that the removed set corresponds to a single node,
u, whose neighbours all have degree 1. Thus, the outlier that
disappears in C1 was, in fact, caused by the high number
of neighbours of u. The removal of u and the one of its
interactions then lead to the identification of the event in C1

by the set {(t, v) : t ∈ T315 and v ∈ Nt(u)}.

Finally, our approach for event identification consists in
removing one by one correctly identified events in high
degree classes. We repeat this operation until we reach classes
of degree in which outliers contain anomalous traffic as
well as normal traffic. This iterative process, in addition to
removing anomalous traffic identified in high degree classes,
allows to identify related events in lower classes as well. If a
given removal creates a negative outlier in a degree class, this
means that we removed too much. The removal that caused it
is then cancelled and the corresponding event stays detected
but unidentified.

In our dataset, none of the removals generated negative
outliers. Altogether, we directly identified and removed 205
events in high degree classes. These removals allowed us to
identify a total of 1, 163 outliers on the 1, 358 previously
detected ones, hence more than 85% of detected outliers. We
can see in Figure 10 the final shape of classes C1 and C2

in which almost all outliers disappeared. Figure 11 shows
the degree profiles of 4 nodes which have been removed for
time periods during which they were acting abnormally. In
particular, node v1, for which the degree fluctuates within
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Fig. 10: Distributions of the fractions on all time slices for degree
classes C1 and C2 after events removals - Before events removals
there were 151 anomalous values in C1 and 5 in C2. After the
removals, it only remains 10 unidentified anomalous values in C1

and 2 in C2.
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Fig. 11: Degree profiles of 4 identified nodes - v1 is responsible
for the high probability on the largest fraction on C22. The set
{(t, v1) : t ∈ [712, 940[ and dt(v) ∈ C22} has been identified
and removed. v2 has a normal activity with a degree around 160
and a sharp variation on T223 = [446, 448[. The set {(t, v2) : t ∈
T223 and dt(v) ∈ C32} has been identified and removed. However,
normal interactions of v2 during this time interval were also removed.
The degree of v3 reaches several powers of two which indicates that
this node is running network scans [11]. The sets {(t, v3)} where v3
is active have all been identified and removed. For the node v4, the
four peaks corresponding to degree values higher than 300 has been
identified and removed.

C22, contributes identically and maximally to the fractions x
of couples (t, v) within this class during the corresponding
interval. This makes it responsible for the peak on fraction
8.5 · 10−7 observed in C22 on Figure 5. As expected, we
notice the disappearance of this outlier after the removal of v1.

VII. DISCUSSION AND CONCLUSION

In this paper, we introduced a method to detect outliers in
IP traffic modelled as a link stream by studying the degree
of each node over time. To deal with degrees heterogeneity
we designed a method in two steps. First, we introduced a
procedure to compare heterogeneous degree distributions over
different time slices. From there we detected events during
anomalous time slices and in specific degree classes. Thanks
to these temporal and structural informations about the event,
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Fig. 12: Consequences of events removals on the number of packets per second and the number of distinct nodes per second - In
both cases, our method succeeds in removing identified anomalies with no significant impact on the underlying normal traffic. Peaks in the
number of packets per second are less affected than those of the number of distinct IP per second since the first feature is less correlated
with the degree.

we were then able to identify couples (t, v) responsible for
this anomaly but only in high degree classes. Hence, we then
introduced an event identification procedure relying on an
iterative removal of events identified in these high degree
classes. This last steps allowed us to trace back responsible
IP addresses and instants in low degree classes as well.

The results we obtained show that our method allows to
find interesting anomalous activities in IP traffic. In particular,
we found point to multipoint anomalies and network scans as
for instance node v3 in Figure 11. More generally, our method
succeeds in finding anomalous couples (t, v) independently
of their degree’s order of magnitude. Hence, a node having
a constant degree will not be identified as anomalous on
any time slice even if its degree is much larger than other
nodes. It will however detect couples (t, v) acting abnormally
compared to what others do on other time slices. These results
could not have been obtained by studying degree variations
for all couples (t, v) ∈ T × V . Indeed, studying this feature
leads to the same heterogeneity problem: there are nodes
that suddenly interact with twice more neighbours, as well
as 5 or 100, etc., times more. Hence, we are still confronted
with different orders of magnitude and consequently to
heterogeneous distributions.

Figure 12 shows the number of packets per second and the
number of distinct nodes per second before and after applying
our method. These two features are distributed homogeneously
with outliers on all seconds within T . However an outlier
only tells us that there are seconds during which the number
of packets, or the number of distinct nodes, respectively,
is larger than usual. Hence, the event is detected but not
identified since we cannot trace back responsible nodes nor
instants with these distributions only.3 After removing the
events identified with our method, we see that peaks as well
as sudden changes in the trends disappear without altering
the underlying normal traffic. This means that our method
enables us to identify events in other measurements where
anomalies had been detected but not identified. In particular
for the number of distinct nodes per second, for each outliers
in the distribution we know which couples (t, v) caused it.
This last result is particularly promising: it shows that by
using more complex metrics, it is possible to identify events
previously detected but unidentified with simpler metrics.
The 195 events that we have not been able to identify with

3Nodes cannot be identified by newly appeared nodes of degree 1 after
the detection of an anomaly. Indeed, the number of new nodes of degree 1
appearing in each sub-stream is much larger than the number of nodes causing
the anomaly.



the degree could therefore be identified in future works by
using other features of the link streams.

This work however only is a first step towards anomaly
detection in link streams and may be improved on several
aspects. In particular, some removals delete anomalous traffic
as well as normal traffic without creating a negative outlier.
This is the case, for instance, when a node u has a normal
activity with a non-zero degree and a sudden change on a
time slice as for node v2 in Figure 11. Degree allows to
detect couples (t, u) but not specific links (t, uv). Hence,
by removing the set of identified couples (t, u) during the
detected time slice, we remove u’s anomalous interactions
as well as u’s normal interactions. This last point could be
improved by considering more complex features than the
degree, defined on the set of interactions E instead of the
set of couples T × V . Many details may also be improved,
especially the choice of parameters and modelling hypothesis,
like for instance: the fact that we linked nodes together if
they exchanged packets at least every second; the fact that
we considered undirected links; or the effects of classes
sizes on the results. One may also explore other choices for
the duration of time intervals on which we compare degree
distributions.

The next logical step of this work would be to extend
our method with more complex features than the degree in
order to find more complex anomalies as well and identify
the remaining events unidentified with the degree. This task
would be simplified by the fact that largest anomalies have
already been removed from the remaining traffic, allowing
a more detailed and finer analysis. At broader scale, our
work could be useful in the field of IP traffic modelling
as we would be able to generate normal traffic according
to a specific feature. Likewise, thanks to their individual
extraction, anomalies could also be studied separately.
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