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Abstract—The application of Machine Learning (ML) models
to the analysis of network measurement problems has largely
increased in the last decade; however, there is still no clear best-
practice or silver bullet approach to address these problems in
a general context, and only adhoc and very tailored approaches
have been evaluated so far. While deep-learning models have
provided a major breakthrough in highly-dimensional problems
such as image processing, it is difficult to say today which is
the best model or most fitted category of models to address the
analysis of large volumes of highly-dimensional data collected in
operational networks. In this paper we evaluate and benchmark
different ML models applied to the analysis of three different and
assorted network measurement problems, including detection of
network attacks, detection of smartphone-apps anomalies and
QoE prediction in cellular networks. We consider an extensive
battery of ML models, including both supervised and semi-
supervised techniques, as well as ML ensembles such as bagging,
boosting and stacking. Proposed models are evaluated using real
network measurements coming from operational networks. Re-
sults suggest that both neural networks and decision-tree-based
models provide in general better results in terms of accuracy
and prediction, with a much smaller computation overhead for
decision trees as compared to models based on neural networks
or support vector machines. In addition, collaborative models
taking advantage of multiple machine learning algorithms, and in
particular stacking models, are more robust and perform better
than single ML models, pointing out the benefits of a crowd as
compared to individual models.

I. INTRODUCTION

Data-driven networking, i.e., the design and management

of network systems by the analysis of network measurements,

represents a key component for future network management.

The high-volume and high-dimensionality of network data pro-

vided by current network measurement systems opens the door

to the massive application of machine learning approaches to

improve data-driven networking problems.

There is however a major challenge in applying machine

learning models at large-scale for handling network measure-

ments; selecting the best machine learning model for a specific

problem is a complex task - it is commonly accepted that

there is no silver bullet for addressing different problems

simultaneously. Indeed, even if multiple models could be

very well suited to a particular problem, it may be very

difficult to find one which performs optimally for different

data distributions and statistical mixes.

Deep-learning models are today widely used in multiple

signal processing problems, particularly in image processing,

where they have shown an outstanding performance. However,

neural-networks based models, and particularly deep-learning

models, have an inherent problem linked to model visibility

and interpretation: a deep-learning model is a black-box which

can automatically perform feature selection from input raw

data and provide highly accurate predictions, but it is very

difficult to understand their functioning. Indeed, it becomes

very challenging to understand the reasons of a particular

classification result, and in particular to understand the input

features leading to such a result, as input features derived

directly from a deep neural network architecture can be in

general meaningless to a domain expert. This is one of the

reasons why their application to networking problems is so

far quite limited. In addition, deep-learning models are highly

data-eager and training them is extremely costly in terms of

computational power, which might term them unsuitable for

different networking problems which require periodical re-

training or where labeled data are difficult to get.

In this paper we pose ourselves a simple question: which

type of machine learning model should be generally used in

the analysis of network measurements? Intuition suggests that

rule-based models could be in principle a good match for

network analytics, as network protocols are highly structured

and operate in a rule basis. We therefore present a comparative

analysis of different machine learning models, applied to

three specific network analytics problems: the detection of

network attacks, the detection of network anomalies and the

prediction of network performance in terms of end-use Quality

of Experience (QoE).

We consider standard and well known machine learning

models, which shall ease the interpretation of results and make

them more applicable to common networking practitioners.

These include decision-trees - single trees and random forests,

naı̈ve bayes models, neural networks, support vector machines

and nearest neighbors models. We additionally consider col-

laborative or ensemble learning models, covering the three

basic approaches to ensemble-learning: bagging, boosting and

stacking. Rather than finding the best model to explain the

data, ensemble learning methods build a set of models and

then decide between them with some combinatorial approach,

seeking model complementarity. Ensemble methods use multi-

ple learning algorithms to obtain better predictive performance

than could be obtained from any of the constituent learning

algorithms alone. In principle, if no single model covers the

true prediction behind the data, an ensemble can give a better

approximation of that oracle, true prediction model. An en-



semble of models also exhibits higher robustness with respect

to uncertainties in training data, which is highly beneficial

for generalization of results. We believe that this study would

enable a broader application of machine learning to data-driven

networking problems, opening the doors to better and more

cost-effective network analytics.

This paper builds on top of our previous work on ma-

chine learning for anomaly detection in cellular measurements

[4], where we benchmark simple models for anomaly de-

tection, ensemble-learning models for network analytics [5],

[22], where we explore the application of ensemble-learning

techniques to network security and network measurements

analysis, and on machine learning for QoE prediction [21]. The

innovative aspects of current paper rely on the comparison of

multiple single and ensemble-based machine learning models

applied to three different measurement problems, putting also

special emphasis on the performance evaluation of the best

single models for both detection and classification of network

measurements.

The reminder of the paper is organized as follows. Sec. II

presents a brief overview on the related work. In Sec. III we

briefly describe the evaluated machine learning models. Sec.

IV describes the evaluated network measurement and analytics

problems and corresponding datasets. Sec. V presents the

experimental results of the study, benchmarking the accuracy

of the proposed models in the analysis of these problems.

Finally, Sec. VI concludes the paper.

II. STATE OF THE ART

The application of machine learning models to network

measurement problems is largely extended in the literature.

Traffic prediction and classification are two of the earliest

machine learning applications in the networking field. In [2],

authors provide a survey on different networking problems

which have been addressed by machine learning approaches in

the past, including objectives such as traffic prediction, traffic

classification, network management, self-configuration, as well

as performance analysis and prediction.

There are a couple of extensive surveys and papers on net-

work measurement problems such as network anomaly detec-

tion [14], [15] - including machine learning-based approaches

[12], machine learning for network traffic classification [19]

and network security [16], as well as machine learning models

for QoE modeling [20] and prediction [21].

The specific application of ensemble learning approaches is

by far more limited. Even if it is generally observed in the

practice that ensembles tend to yield better results than single

models, only few papers have applied them to problems such

as anomaly detection [17] and network security [18]. There

is a recent surge on the application of deep learning models

for network measurement problems, for example for network

anomaly detection [11].

III. MACHINE LEARNING MODELS

In the context of supervised learning there are several

approaches for predictive model training based on labeled

data. The performance of a particular algorithm or predictor

depends on how well it can assimilate the existing information

to approximate the oracle predictor, i.e. the ideal optimal pre-

dictor defined by the true data distribution. However, knowing

a priori which algorithm will be the best suited for a given

problem is almost impossible in practice. One could say that

each algorithm learns a different set of aspects of reality

from the training datasets, and then their respective prediction

capability also differs between problems.

In this paper we consider six standard machine learning

models previously used in the literature for the analysis of

network measurements, including: (i) decision-trees (CART),

(ii) Naı̈ve Bayes (NB), (iii) Multi-Layer Perceptron (MLP)

Neural Networks, (iv) Support Vector Machines (SVM), (v)

Random Forest (RF) and (vi) Nearest Neighbors (k-NN). We

additionally compare three different approaches to ensemble-

learning, including bagging, boosting (AdaBoost) and stack-

ing (Stacking MV and GML). We briefly describe all these

approaches next.

A. Decision Trees

Classification And Regression Trees (CART) [19] define a

classification technique based on a tree graph, where inner

nodes correspond to a condition on a feature and leaves

are the outcome (i.e., the class). A CART represents a very

popular classification algorithm due to its simplicity (it can be

easily converted into a rule-based classification system) and

readability (it can be graphically represented). The training

follows a top-down greedy algorithm that works by iteratively

splitting the nodes, using normally an information gain based

metric as optimization criterion.

B. Naı̈ve Bayes

Naı̈ve Bayes (NB) is a very simple classifier based on

Bayesian statistics [19]. Despite its simplicity, it is widely used

as it is very efficient in a number of scenarios, especially in

high-dimensional datasets. It works by assuming that features

are mutually independent, which is not true in most cases,

hence the adjective naı̈ve. This assumption allows for an

easy calculation of the class-conditional probabilities, using

maximum likelihood estimation.

C. Neural Networks

Multi-Layer Perceptron (MLP) is an artificial neural net-

work composed of multiple layers of neurons, each of them

generally represented by a non-linear function [19]. The layers

are fully connected in a feed-forward scheme. Each neuron

employs an activation function that maps the weighted inputs

to the output that is passed to the following layer. The weights,

originally set to random values, are iteratively adjusted during

the training phase, using back-propagation.

D. Support Vector Machines

Support Vector Machines (SVM) are non-probabilistic bi-

nary classifiers [19]. SVM is considered one of the most

powerful supervised classification algorithm. It works by rep-

resenting each feature vector in a multidimensional space and



trying to find a linear separation (i.e., an hyperplane) for the

classes. In some cases, however, a linear separation of the

space is not possible, hence it uses the so-called kernel trick,

which implicitly increases the dimensionality of the space,

resulting in an easier separation in a much higher dimensional

space, due to the increased sparsity.

E. Random Forrest

Random Forrest (RF) is an ensemble technique based on

multiple instances of decision trees, each one based on a

different part of the training set, randomly selected. These

instances are called bootstrapped samples. The final outcome

is generally decided by majority voting among all the boot-

strapped samples.

F. k Nearest Neighbors

The k-Nearest Neighbors algorithm (k-NN) is a non-

parametric approach used for either classification or regres-

sion. In both cases, the input consists of the k closest training

examples in the feature space. In k-NN classification, the

output is a class membership. An object is classified by a

majority vote of its neighbors, with the object being assigned

to the class most common among its k nearest neighbors.

G. Bagging and Boosting Algorithms

Bagging [7] decreases the variance of the prediction model

by generating additional training data from the original dataset.

Bagging trains each model in the ensemble using a randomly

drawn subset of the training set, and each model in the

ensemble is then combined in an equal-weight majority voting

scheme. Increasing the training data size using a single input

dataset does not improve the prediction accuracy, but narrows

the prediction variance by strongly tuning the outcome.

Boosting [8] involves incrementally building an ensemble

by training each new model instance based on the performance

of the previous model. Boosting is a two-steps approach, where

one first uses subsets of the original data to produce multiple

models, and then boosts their performance by combining

them, also using majority voting. Different from bagging,

boosting subset creation is not random but depends upon the

performance of the previous models, and every new subsets

contain the misclassified instances by previous models.

We take decision-tree based models for both bagging and

boosting, which is a very common approach. In the case of

bagging, we consider a Bagging Tree model. We take an

AdaBoost [9] Tree model for boosting, which uses decision

trees as first level learners. AdaBoost (short for Adaptive

Boosting) trains subsequent models in favor of those instances

misclassified by previous ones. AdaBoost is sensitive to noisy

data and outliers, but in general, it can be less susceptible to

over-fitting.

H. Stacking

While bagging and boosting generally use the same type of

model in all the different training steps (e.g., decision trees),

stacking [10] aims at exploring the input data space through

base models of different type. Stacking is the ensemble learn-

ing model that really makes use of a meta learner, which uses

the output of the base learners as input for prediction. The

point of stacking is to explore a space through the different

properties of different models, each of them capable to learn

some part of the problem, but not the whole space. The meta

leaner is said to be stacked on the top of the other based

models, hence the name.

General ensemble learning approaches might be prone

to over-fitting the data. In [1] a simple stacking learning

algorithm named Super Learner is proposed as a possible

solution for this over-fitting limitation. It proposes a method to

minimize the over-fitting likelihood using a variant of cross-

validation. In addition, the Super Learner provides perfor-

mance bounds, as it performs asymptotically as good as the

best available single hypothesis predictor, for each predicted

pattern.

In the study, we consider two flavors of Super Learner

for stacking, using the aforementioned single models as base

learners: a simple majority voting based algorithm (Stacking

MV), where the output of the base learners are equally

weighted to decide on the final output, and GML (Generic

Machine Learning), which basically computes weights in an

exponential fashion, using the classification accuracy of each

base learner. This approach permits to reduce the influence of

low accuracy base predictors.

IV. SCENARIOS AND DATASETS

In this section we overview the three network measurement

problems we consider for evaluation. These include: (i) detec-

tion of network attacks [3], (ii) detection of smartphone-apps

anomalies [4] and (iii) QoE prediction in cellular networks

[21].

A. Detection of Network Attacks

The first problem consists of the analysis of diverse types

of network attacks in real network traffic measurements col-

lected at the WIDE backbone network, using the well-known

MAWILab dataset for attacks labeling [13]. MAWILab is a

public collection of 15-minute network traffic traces captured

every day on a backbone link between Japan and the US since

2001. Building on this repository, the MAWILab project uses a

combination of four traditional anomaly detectors (PCA, KL,

Hough, and Gamma, see [13]) to partially label the collected

traffic.

The traffic studied in this paper spans two months of packet

traces collected in late 2015. From the labeled anomalies and

attacks, we focus on a specific group which are detected simul-

taneously by the four MAWILab detectors, using in particular

those events which are labeled as “anomalous” by MAWILab.

We consider in particular 5 types of attacks/anomalies: (i)

DDoS attacks (DDoS), (2) HTTP flashcrowds (mptp-la), (3)

Flooding attacks (Ping flood), and two different flavors of

distributed network scans (netscan) using (4) UDP and (5)

TCP-ACK probing traffic. We train ML models to detect each

of these attack types separately, thus each detection approach



TABLE I: Input features for detection of attacks.

Field Feature Description

Tot. volume
# pkts num. packets

# bytes num. bytes

PKT size

pkt h H(PKT)

pkt {min,avg,max,std} min/max/std, PKT

pkt p{1,2,5,...95,97,99} percentiles

IP Proto

# ip protocols num. diff. IP protocols

ipp h H(IPP)

ipp {min,avg,max,std} min/max/std, IPP

ipp p{1,2,5,...95,97,99} percentiles

% icmp/tcp/udp share of IP protocols

IP TTL

pkt h H(TTL)

ttl {min,avg,max,std} min/max/std, TTL

ttl p{1,2,5,...95,97,99} percentiles

IPv4/IPv6

% IPv4/IPv6 share of IPv4/IPv6 pkts.

# IP src/dst num. unique IPs

top ip src/dst most used IPs

TCP/UDP ports

# port src/dst num. unique ports

top port src/dst most used ports

port h H(PORT)

port {min,avg,max,std} min/max/std, PORT

port p{1,2,5,...95,97,99} percentiles

TCP flags (byte)

flags h H(TCPF)

flags {min,avg,max,std} min/max/std, TCPF

flags p{1,2,5,...95,97,99} percentiles

% SYN/ACK/PSH/... share of TCP flags

TCP WIN size

win h H(WIN)

win {min,avg,max,std} min/max/std, TCPF

win p{1,2,5,...95,97,99} percentiles

consists of five different detectors which run in parallel on top

of the data, each of them specialized in detecting one of the

five aforementioned attacks types. As a result, each detection

approach can not only detect the occurrence of an attack, but

also classify its nature.

To detect different attacks, we consider a slotted, time-

based evaluation. For doing so, we split the traffic traces in

consecutive time slots of one second each, and compute a

set of features describing the traffic in each of these slots.

In addition, each slot i is assigned a label li, consisting of

a binary vector li ∈ R5×1 which indicates at each position if

anomaly of type j = 1..5 is present or not in current time slot.
We compute a large number n of features describing a time

slot, using traditional packet measurements including traffic

throughput, packet sizes, IP addresses and ports, transport

protocols, flags, etc. Tab. II describes the set of n=245 features,

which are computed for every time slot i = 1..m. Note that

besides using traditional features such as min/avg/max values

of some of the input measurements, we also consider the

empirical distribution of some of them, sampling the empirical

distribution at many different percentiles. This provides as

input much richer information, as the complete distribution

is taken into account. We also compute the empirical entropy

H(·) of these distributions, reflecting the dispersion of the

samples in the corresponding time slot.

TABLE II: Input features for anomaly detection.

Field Feature Description

DNS query querycnt # DNS requests

APN

apn h H(APN)

apn avg APN

apn p{99,75,50,25,05} percentiles

Error flag

error code h H(Error flag)

error code avg Error flag

error code p{99,75,50,25,05} percentiles

Manufacturer

manufacturer h H(Manufacturer)

manufacturer avg Manufacturer

manufacturer p{99,75,50,25,05} percentiles

OS

os h H(OS)

os avg OS

os p{99,75,50,25,05} percentiles

FQDN

req fqdn h H(FQDN)

req fqdn avg FQDN

req fqdn p{99,75,50,25,05} percentiles

B. Detection of Apps Anomalies

In [4] we conceived a semi-synthetic dataset for traffic

anomalies in cellular networks by using real DNS traffic

measurements. After collecting DNS traces for longer than six

months in 2014 at a cellular network of a large-scale European

operator, we devised a technique to generate new traffic traces

by carefully recombining real traffic traces. Basically, we take

samples of manually labeled one-minute intervals from the

original data, characterized by a vector of features containing

the distribution of DNS query counts by device Manufacturer,

device OS, APN, domain name (FQDN) and DNS transaction

flag. With the anomaly-free intervals we generate new syn-

thetic background traffic, simply by shuffling the data samples

of the same time of the day and same day class (working

or festivity). Then, three different types of anomalies are

introduced into the synthetic data, derived from real anomalies

observed in this operational network. These anomalies mimic

different types of service outages, and are represented by

impacting a different number of end-users requesting particular

services on specific domain names. The different anomalies

considered are E1: short lived (hours) high intensity anomalies

(e.g., 10% of devices repeating a request every few seconds),

where the involved devices share the same manufacturer and

OS; E2: several days lasting low intensity anomalies (e.g.,

2% of devices repeating requests every few minutes) and E3:

short-lived variable intensity anomalies affecting all devices

of a specific APN. The used dataset consists of a full month

of synthetically generated measurements, reported with a time

granularity of 10 minutes time bins. Each time bin is assigned

a class, either normal (label 0) or anomalous (label 1, 2 or 3

for the three anomaly types respectively). The dataset includes

16 different variations of E1, E2 and E3 anomalies, impacting

a different fraction of end-users - going from 0.5% to 20%.

Full details on the synthetic dataset are available in [4].

We take as main traffic feature the total number of DNS re-

quests issued within a time bin. As we saw in [4], perturbations

in this feature indicate that a device sub-population deviates

from the usual DNS traffic patterns, thus pointing to potential



TABLE III: Input features for QoE prediction.

KPI Name KPI Description (U – reported by user)

MOS overall user experience (U)

ISP cellular network operator

RAT radio access technology

SIG avg. signal strength

THmax max. session downlink flow throughput

THavg avg. session downlink flow throughput

DUR session duration

VOL session volume

FLOWratio ratio (# flows up)/(# flows down)

CELL cell id

LOC user location context (U)

anomalies. To better detect and diagnose the anomalies, we

additionally take the distributions of DNS query counts across

the aforementioned fields (Manufacturer, OS, APN, FQDN

and DNS flag). From these distributions, we compute a set of

features describing their shape and carried information, such

as various percentiles and entropy values. Tab. II describes

the specific set of n=36 features, which are computed for

every time bin. The set includes the number of observed

DNS requests, as well as multiple percentiles of fields such

as associated APN, device OS and manufacturer, requested

FQDN and number of DNS error messages. We also take as

input the average values of these fields, as well as their entropy,

the latter reflecting the dispersion of the observed samples.

C. Cellular QoE Prediction

For the sake of QoE prediction in cellular traffic, we use

network and QoE measurements collected in a user field

trial taking place in 2015 and detailed in [21], where 30

users equipped with their own devices connected to their

preferred cellular operators evaluated three apps as part of

their normal daily Internet activity during two weeks: YouTube

(watching short videos); Facebook (timeline and photo-album

browsing), and Gmaps (satellite maps browsing). QoE feed-

back was reported for each session through a customized

QoE crowdsourcing app, according to a discrete, 5-levels

ACR Mean Opinion Score (MOS) scale, ranging from “bad”

(i.e., MOS = 1) to “excellent” (i.e., MOS = 5). In addition,

each device has a passive flow-level traffic monitor which

records flow-level network traffic statistics, associating flows

to apps generating them. The 10 different session-based KPIs

in Tab. III are derived from the flow-based measurements,

which are then synchronized to the QoE feedbacks (MOS

scores) using time stamps. The KPIs include features such

as average and maximum flow throughput per session, flow

size, duration, average signal strength, RAT, ISP, locations,

etc. The prediction problem consists in predicting the correct

MOS score value (5-classes classification problem), using the

session-based KPIs as input. Full details on the dataset are

available in [21].

V. EVALUATION AND DISCUSSION

We now evaluate and compare the performance achieved by

the presented ML models. To limit biased results, presented

results correspond to 10-fold cross validation. All models are

tested using scikit-learn python implementations. Parameters

on each different algorithm are calibrated based on standard

grid-based search tests. In addition, classes in each classifica-

tion problem are balanced by statistical bootstrapping [21] to

avoid unbalanced training issues. We start by comparing the

performance achieved by the base learning models, and then

present a full comparison including also the ensemble-learning

approaches.

A. Single Base Learning Models

We start the analysis for the case of network attacks de-

tection. Detection performance is measured by computing the

True and False Positive Rates (TPR/FPR) for each model and

for each of the attack types, using as input the full set of 245

features. Fig. 1 depicts the Receiver Operating Characteristic

(ROC) curves obtained with each model, for the proposed

attack classes. Besides the NB and the k-NN models, the tested

approaches provide all highly accurate results for the five

types of attacks. In general, detection performance is worse

for DDoS attacks for all the evaluated models, suggesting that

its fingerprint in the considered set of features is less marked

than for the other attacks. Both the MLP and the RF models

achieve the best performance, detecting around 80% of the

attacks without false alarms.

Figs. 2 and 3 report the detection (prediction) performance

achieved by the six base learning models for the case of

anomaly detection and QoE prediction respectively. In both

cases, detection is done along with classification (i.e., multi-

class problems), thus we study the performance of each

detector considering all the classes together. Performance

is measured in terms of global classification accuracy (i.e.,

correctly classified instances), as well as per class recall and

precision. Similar to the network attacks problem, Fig. 2 shows

that both MLP and RF models are the most accurate ones for

the sake of anomaly detection, even if some of the anomalies

are more challenging to be correctly detected, for all the

models. Indeed, anomalies of type E2 are harder to detect,

basically due to their long-lasting, low intensity nature. In

terms of QoE prediction, Fig. 3 clearly shows that decision-

tree based models, and in particular RF ones, represent by far

the most accurate approach, for all the different quality levels.

We focus now on the specific performance of the RF model

for the three studied problems. To dig deeper into the RF out-

performance, Fig. 4 depicts the ROC curves obtained with the

RF model. We include in Fig. 4(a) the performance achieved

by the RF model in the detection of network attacks for

the sake of comparison to the other two problems. The first

observation one could draw is that the RF model is much better

for the anomaly detection and QoE prediction problems, but

has a comparatively quite poor performance for detection of

network attacks, i.e., when comparing at the problems/use-

cases level. This point out to the first hypothesis we did in the
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(a) CART model. (b) MLP model. (c) NB model.
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(d) RF model. (e) SVM model. (f) k-NN model.

Fig. 1: Detection performance (ROC curves) achieved by the base ML models for detection of network attacks.
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Fig. 2: Global accuracy, recall and precision achieved by the base ML models for anomaly detection.

introduction, suggesting that it is challenging to find a single

model to properly tackle different problems simultaneously.

In the specific case of anomaly detection, Fig. 4(b) confirms

that while anomalies of type E1 and E3 are perfectly detected

by the RF model, anomalies of type E2 are quite often

mis-classified as normal operation traffic. Fig. 4(c) shows

that the RF model is very accurate to correctly spot out

bad quality sessions (i.e., MOS = 1, 2 and 3), but is less

accurate to correctly predict higher quality ones. To better

understand these mis-classification issues, Fig. 5 reports the

corresponding confusion matrices obtained with the RF model

in both problems. As reported in Fig. 5(a), about one third of

the E2 anomalies go completely undetected within the normal

traffic. In addition, as depicted in Fig. 5(b), excellent quality

sessions (i.e., MOS = 5) are often misclassified as good ones

(MOS = 4), and as average ones (i.e., MOS = 3) to a lesser

extent.

B. Including Ensemble Learning Models

To conclude with the study, we now include the ensemble

learning models within the analysis. Tabs. IV, V and VI report

the results obtained with all the models in the three problems,

using the Area Under the ROC Curve (AUC) as performance

metric. The machine learning community most often uses the

ROC AUC statistic for model comparison [6], which is simple

and informative.

Tab. IV depicts the results obtained in the detection of the

network attacks. The performance achieved by the ensemble

learning models is generally higher than that of the single
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Fig. 3: Global accuracy, recall and precision achieved by the base ML models for QoE prediction.
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Fig. 4: Performance of RF models - comparative ROC curves.
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Fig. 5: Performance of RF models - Confusion matrices.

base learners alone. However, given that the single models

performance is already quite high, improvements are not

that much significant. Boosting and bagging provide similar

performance for all types of attacks, but it is stacking, and

in particular the GML model, which provide the best results.

Indeed, GML achieves the highest performance for all the five

considered attack categories.

In the case of anomaly detection, as previously observed

in Fig. 2, almost every predictor achieves an AUC over 99%

for E1 anomalies. Thus, there is little room for improvement,

which leads to only very subtle differences between the

performances of base and ensemble-learners. Still, stacking

TABLE IV: ROC AUC for network attacks detection.

DDoS mptp-la ping flood scan-UDP scan-ACK

CART 0.922 0.972 0.952 0.972 0.918

NB 0.828 0.952 0.963 0.944 0.929

MLP 0.982 0.995 0.997 0.997 0.989

SVM 0.935 0.982 0.980 0.982 0.968

RF 0.978 0.996 0.997 0.997 0.992

k-NN 0.762 0.964 0.890 0.936 0.843

Bagging Tree 0.985 0.995 0.995 0.996 0.988

AdaBoost Tree 0.940 0.997 0.996 0.995 0.983

Stacking MV 0.923 0.991 0.990 0.992 0.991

GML 0.985 0.998 0.998 0.997 0.993

learning models tends to outperform both first level learners,

as well as the bagging and boosting trees. Similar observations

can be drawn from the detection of E3 anomalies. Note that the

GML model systematically achieves the best results. For E2

anomalies, not only all predictors performed relatively poor,

but also many of them achieve very low performance; e.g. the

bagging models achieve an AUC below 90%, clearly worse

than any other ensemble technique. This scenario highlights

the advantages of the stacking models, and in particular, the

GML model.

Finally, in the case of QoE prediction, Tab. VI reveals again

that predicting excellent QoE sessions (i.e., MOS = 5) is more

challenging than for the rest of the quality levels. The CART



TABLE V: ROC AUC for anomaly detection.

E1 E2 E3

CART 0.993 0.873 0.978

NB 0.956 0.861 0.959

MLP 0.997 0.944 0.996

SVM 0.996 0.944 0.995

RF 0.999 0.876 0.993

k-NN 0.995 0.859 0.963

Bagging Tree 0.996 0.885 0.983

AdaBoost Tree 0.998 0.945 0.995

Stacking MV 0.999 0.945 0.996

GML 0.999 0.963 0.997

and random forest models alone provide already very good

results, as also shown in Fig. 3. Still, similar to the anomaly

detection scenario, the GML model is capable to boost the

prediction of excellent QoE w.r.t. both CART and random

forest by at least 5% to 10%, suggesting again a better fit

for this scenario.

While it is true that in some cases there is not enough

room for improvement with respect to bagging, boosting and

base learning models, the GML stacking model systematically

outperforms these models for most of the tests and in all

the problems, which opens the door for generalization of a

technique for network measurement analysis. Indeed, stacking

is less widely used than bagging and boosting, but has recently

shown outstanding performance in model competitions such

as the Netflix Prize [23] and Kaggle competitions (https:

//www.kaggle.com/). The performance increase as compared

to other ensemble learners is small, but in this case the

computational overhead is similar, thus the GML model looks

more appealing.

VI. CONCLUDING REMARKS

In this paper we have demonstrated the outstanding perfor-

mance of neural networks and decision trees for the analysis

of network measurements coming from multiple and assorted

networking problems. Based on the performance benchmark-

ing, we can observe that both neural networks and decision-

tree-based models provide in general better results in terms

of accuracy and prediction than other single models, with a

much smaller computational overhead for decision trees as

compared to models based on neural networks or support vec-

tor machines. Decision-tree based models represent therefore a

very appealing machine learning model for network analytics,

not only because of their high accuracy and low computational

cost, but also due to a series of embedded properties, such as

model visibility, robustness to input noise, etc.

When looking at more complex models based on ensembles,

we have shown the advantages of a crowd of models to

improve detection and prediction accuracy, and particularly of

the stacking GML approach. We found that not only the GML

based model has the ability to perform as well as the best input

single base level learner, but often achieve better results. This

includes also the case of both bagging and boosting models,

which are also generally outperformed by the stacking models.

TABLE VI: ROC AUC for QoE prediction.

MOS 1 2 3 4 5

CART 0.972 0.974 0.963 0.972 0.900

NB 0.766 0.874 0.714 0.707 0.703

MLP 0.916 0.951 0.918 0.852 0.798

SVM 0.812 0.928 0.742 0.717 0.734

RF 0.992 0.989 0.987 0.988 0.960

k-NN 0.849 0.917 0.765 0.756 0.657

Bagging Tree 0.971 0.977 0.996 0.982 0.955

AdaBoost Tree 0.972 0.978 0.997 0.992 0.973

Stacking MV 0.992 0.965 0.984 0.990 0.971

GML 0.992 0.996 0.997 0.995 0.985

Performance improvements are higher in scenarios where the

performance of the base predictors is relatively low; when

first learners performance is already high, there is little room

for improvement. We believe that this study would enable a

broader application of machine learning models to network

analytics problems, with very promising results.
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