
An Artificial Arms Race: Could it Improve Mobile
Malware Detectors?

Rapahel Bronfman-Nadas
Computer Science

Dalhousie University
Halifax, Canada
raphael@dal.ca

Nur Zincir-Heywood
Computer Science

Dalhousie University
Halifax, Canada
zincir@cs.dal.ca

John T. Jacobs
Raytheon Space and Airborne Systems

California, USA
john t jacobs@raytheon.com

Abstract—On the Internet today, mobile malware is one of
the most common attack methods. These attacks are usually
established via malicious mobile apps. To combat this threat, one
technique used is the deployment of mobile malware detectors.
As the mobile threats evolve, designing and developing mobile
malware detectors remains a challenging task. In this paper, we
aim to explore whether creating an artificial arms race between
mobile malware and detectors could improve the ability of the
detector to adapt to the evolving threats. To better model this
interaction, we present a co-evolution of both sides of the arms
race using genetic algorithms. The experimental evaluations on
publicly available malicious and non-malicious mobile apps and
their variants generated by the artificial arms race show that this
approach improves the detectors understanding of the problem.

Index Terms—Malware detection, Android, Artificial Arms
race, Co-evolution, Genetic Algorithms

I. INTRODUCTION

Malware detection remains a challenging task as malware
is created specifically to avoid alerting malware detectors.
Likewise, detectors are designed to overcome this malicious
opponent and retaliate by improving the methods with which
they can detect malware. From this vantage point, there exists
an arms race between those attempting to manufacture mal-
ware and those attempting to detect it. As one’s performance
improves, the other’s is reduced. Malware strength is partly
based on how detectable it is. Detectors performance is entirely
based on how well it correctly classifies malware and benign
files.

Thus, in this research, our primary goal is to explore
whether creating a simulated competition between mobile
malware and detectors could improve the ability of the detector
to adapt to the evolving threats / malware. Furthermore, such
a competitive training process also provides us with datasets
that could be shared and used among the researchers working
in this area. To achieve this, we aim to create the artificial arms
race framework by using a bio-inspired malware generator
and a bio-inspired malware detector under a co-evolutionary
paradigm. In this framework, the malware detection module
could function in conjunction with the malware generation
module, or it could be an independent module. To better
simulate this direct adversarial intent of malware, this paper
presents a method of training a malware detector using a
malware generator as a co-evolved genetic algorithm. The

methodology used in this work defines two populations with
competitive goals. Each is individually striving towards its
own goal and will be awarded based on how well it performs.
Given that the parts of the populations that survive are those
that outperformed or were closest to outperforming the other
population, this grows the knowledge of the population beyond
the static sets used in other algorithms. The first population
consists of a genetic program deployed to detect malware
using feature-based analysis. This serves as the detector which
can be evolved to classify as either malware or benign. The
second being a population of malware which attempts to
become as strong a sample as possible, given that it must
remain simultaneously undetectable. This is the population
representing the changing malware arms race. The malware
begins simple and is rewarded for both achieving greater levels
of control of the target system, and by being misclassified by
the detector population. The premise is based on the logic
that the generated malware is used to show what the detectors
are lacking and inform what future changes are required.
Simultaneously, the malware will learn from the results of the
the detectors what kind of malware is classified incorrectly,
providing a dataset comprised of new malware that is more
difficult to classify.

With this approach, not only we aim to improve the detec-
tors understanding of the problem, but also provide meaningful
datasets to represent real life situations for further analysis and
measurements. Our results show that the signatures / solutions
obtained for malware detectors are simpler, and require less
data from each malware sample to be detected / classified
accurately. The rest of the paper is organized as follows:
Literature review and background work are summarized in
section II. The methodology used to generate malware and the
detector side of the artificial arms race as well as co-evolve
them are introduced in section III. While experimental set up
is given in section IV, the results are presented in section V.
Finally, conclusions are drawn and the future work is discussed
in section VI.

II. LITERATURE REVIEW

In this section, we summarize the background works in
malware detection on mobile systems by considering (A) the

detector, (B) the artificial arms race between the detector and
malware, and (C) the Android mobile system as the platform.

A. Detector

The mobile malware detector needs to be able to classify
malware and benign software in some meaningful way. The
state of mobile malware, such as malware on the Android
platform, is changing as new malware is developed creating
a moving target for malware detectors. The performance of
feature based detectors is better when new malware is able to
be processed. By building a more scalable deeper understand-
ing of the apps process, the application itself is better able
to predict future trends [1]. Previous work on using machine
learning has produced results showing that, indeed, malware
may be classified through machine learning approaches. For a
Bayesian classifier, it was found that 15 to 20 features were
optimal for increased performance [2]. The mobile malware
detection space has expanded research on using external app
resources to help detect malware. Some detectors have been
built to use Battery Life and App Permission for heuristically
predicting what may be malware. Skovoroda et. al. discussed
that external values such as these could be combined with both
static and dynamic analysis, and machine learning to create
more robust detectors [3]. Permission based detection with
Android malware has proven to be very successful [4]. A large
amount of malware can be classified using only permissions.
This method functions because the permissions decide what
actions the app is able to perform. Permission evaluation
also becomes an issue as apps may request more permissions
then they actually need [5]. Even if an app is not malicious,
requesting additional permissions is considered a security risk.

B. Malware

Malware, in the mobile space, is focused on apps. These
apps are often from different malware families with their own
goals and malicious intents. Due to the structure of Android
systems, most malware are modified versions of existing apps
that contain malicious functions. Many apps of the same fam-
ily have similar feature combinations as some are required for
the exploits or actions they intend to use [6]. Earlier research
in this field include vulnerability analysis tools which aim to
evolve new variants of known malicious behaviour such as
buffer flow attacks [7], [8], where Kayacik et. al. evolved using
genetic programming against open source anomaly detectors
(Stide, Ph) [9] and intrusion detection systems (Snort) [10].
Fraser et al. employed a similar approach to demonstrate
a proof of concept for evolving ROP-chain payloads [11].
Noreen et al. and Meng et al. researched similar approaches
for evolving mobile malware in [12] and [13], respectively.
However, all the aforementioned works depend on stand alone
malware detectors, where these detectors do not change over
the course of the evolutionary system. The detectors can take
many forms. For example, some pre-trained machine learning
methods were used in Mystique [13] or non-machine learning
systems such as [9]. In summary, the above previous works
demonstrate that by using existing malware, a form of abstract

representations and an evolutionary algorithm, new malware
can be evolved beyond the capacity of the static detectors.
Evolved malware is given the opportunity to find the flaws in
the detectors. In doing so, the researchers aim to improve the
detectors before such malware is introduced into the intended
marketplace, such as Android.

C. Android

Android has a key place in the mobile market that made
it ideal for this experiment. Firstly, Android is the most
widely used mobile operating system since 2011 [3]. Secondly,
Android’s app system requires most external actions to be
noted statically in a manifest file, categorized into small groups
of actions called permissions. These permissions alone are
an effective way to determine what exploits and potential
harm an app could accomplish [14]. Finally, there has been
direct research in the automatic evolution of Android malware
[13]. Thus, in our research we also make use of the Android
platform and available apps to be able to evaluate our proposed
system and present it in conjunction to the previous work in
this area.

III. METHODOLOGY

As discussed earlier, the primary goal of this research is
to explore whether creating a simulated competition between
mobile malware and detectors could improve the ability of the
detector to adapt to evolving threats / malware. The following
details the components of the proposed framework to achieve
this goal.

A. Malware Detector

The detector of the proposed artificial arms race framework
is implemented using an evolutionary computation technique
with the goal of evolving to correctly classify an Android app
as malware or benign. This implementation takes the form
of a Linear Genetic Programming (GP). This is a supervised
learning algorithm, which is a variant of GP where programs
in a population are represented in linear form, as a sequence of
instructions from an imperative programming language [15].

This approach was chosen because we aim to co-evolve the
detectors along with the malware using an approach similar
to that of Mystique [13]. The co-evolution will require a
population of varying individuals that can provide a gradient of
feedback, instead of a simple binary response. Moreover, the
evolved solution must be able to classify and build behaviors
based on the given inputs. Given these requirements, GP
becomes the natural fit as the learning technique since it has
the ability to evolve and generate code automatically. These are
the main reasons why GP is chosen to test this methodology.

In linear GP, each instruction executes an operation over
the operands, which can be registers, constants, or input value.
Then, the result of each instruction is stored in a register. The
final result of the program is taken as the values of the regis-
ters, which are designated as the output registers at the end of
the program. There are two properties that differentiate Linear
GP from other representations of GP. First, the imperative

representation allows the data to be processed as in a directed
graph, thus facilitating reuse of register content by multiple
instructions. This in turn allows the reuse of subprograms for
evolving compact solutions. Second, structurally noneffective
code (introns) - instructions that have no impact on the output
registers - support neutral variation and skipping of intron
code during fitness evaluation, where noneffective code can be
tuned effective by variation operators. In this case, a population
of variable length strings represent byte-code of a virtual
programmable machine. The byte-code is designed to perform
the following actions:

• Read from fixed number of input locations
• Read and write to a fixed number of working memory

locations
• Perform simple mathematical functions

In this research, we implemented a linear GP based detector
within the artificial arms race framework to be able to co-
evolve the attack and detector side simultaneously. However,
we also implemented a linear GP and a decision tree (C5.0)
based malware detector outside of the artificial arms race
framework. In doing so, we aim to evaluate the performance
of the framework against standalone machine learning based
detectors. To this end, we choose C5.0 to represent the state
of the art supervised learning algorithms that are not based on
evolutionary computation as GP. C5.0 is a more effective and
efficient decision tree algorithm than C4.5 [16]. It is designed
to maximize interpretability, and takes the form of if-then
rules, which are generally easy to understand for the human
expert.

All the malware detectors discussed above analyze mobile
apps to identify whether they are malicious or not. In this
work, the detector analyzes the features of an app that are
extracted from an .apk file. APK stands for Android Package
Kit. This is the package file format used by the Android
operating system for distribution and installation of mobile
apps. There are multiple feature sets that could be used to
analyze a mobile app. In general, these include in some shape
and form: (i) Permissions, and (ii) Code attributes.

Android permissions that an app uses are declared in a
metadata file known as the Android manifest. Permissions
can enable hardware access, operating system features, or
access to other apps. There are over 100 officially supported
permissions. Either the full list of official permissions or a
subset can be employed. In the first phase of this research,
we employed the full list of official permissions on 600 of
the apps we had, 300 malware and 300 benign, and evaluated
two classifiers on these permissions to test which classifier
would identify a malicious apps more accurately. To this end,
we use the C5.0 decision tree classifier as a representative of
the state of the art classifiers and the Linear GP classifier,
which we aim to use in our artificial arms race framework.
The results of these tests are displayed in Tables I and II.
These results show that C5.0 classifier reaches up to 91%
using all permissions whereas the Linear GP classifier reaches
in average 76% accuracy using all the permissions. To improve

TABLE I
RESULTS OF GP WITH 149 PERMISSIONS

True class
Malware Benign Total

Predicted class Malware 167 12 93%
Benign 133 288 68%

Total 56% 96% 76%

TABLE II
RESULTS OF C5.0 WITH 149 PERMISSIONS

True class
Malware Benign Total

Predicted class Malware 272 28 91%
Benign 27 273 91%

Total 91% 91% 91%

this, we focus on a smaller set of permission list features based
on previous research [2], [4] and further empirical evaluations.
At the end of these evaluations, we choose the most relevant 15
permissions that are likely to be used for malware detection.
These 15 permissions are listed in Table III, and results of
the evaluations are shown in Tables VI and VII. Given both
classifiers are very comparable in their accuracy, we conclude
that these 15 permissions are more consistent representing the
normal and benign behaviours of the apps.

On the other hand, Android code features are associated
with the creation of the code of an app. In most cases, these
are frequencies of different code components. These include
(but are not limited to): the number of classes, the number
of interfaces, and the number of instanced variables. In the
literature, these features are considered to be representative of
the structure and the use of the code [17]. The chosen internal
features are listed in Table IV

Using the aforementioned Android permission and code
based features, the linear GP based detector is trained on a
subset of Android app samples to set up the artificial arms
race framework. In this case, the method of evaluation for this
malware detector is defined by a single goal: performance –
the number of correctly classified malware samples.

In should be noted here that the performance value is

TABLE III
THE SELECTED 15 PERMISSIONS

INTERNET
READ SMS
SEND SMS
READ CONTACTS
READ EXTERNAL STORAGE
WRITE EXTERNAL STORAGE
INSTALL PACKAGES
BIND DEVICE ADMIN
BIND ACCESSIBILITY SERVICE
RECEIVE BOOT COMPLETED
READ PHONE STATE
CAMERA
RECORD AUDIO
READ CALENDAR
ACCESS FINE LOCATION

TABLE IV
ANDROID CODE FEATURES

Number of Classes
Number of Classes using interfaces
Number of Classes containing annotations
Number of Direct methods
Number of Virtual methods
Number of Abstract methods
Number of Static Member variables
Number of Instanced Member variables

measured evenly, so that the in-balances in the dataset will
not affect the overall accuracy.

B. Malware Generator

The goal of the malware generator in the proposed artificial
arms race framework is to build a population of malware
samples that can evade the malware detector while performing
malicious actions. In this case, the method of evaluation for
the malware generator is defined by three goals:

• Aggressiveness: The number of potential actions able to
be taken. The more actions taken by the malware, the
closer it is to complete its goal. Therefore, aggressiveness
is a trait to maximize.

• Evasion: The number of non-vital actions required to
avoid detection. Using a minimum viable set of evasion
tactics is preferable, as it adds to the complexity of
construction, helping to reduce detection while not adding
other benefits. While evasion does not directly affect
the goal, the least actions required to reach a successful
malware sample is preferable.

• Detection: This is a measure of how well the malware
can go undetected by the detector. In practice, this means
blending in with benign software to such a degree that
there is no meaningful way of distinguishing it.

The malware generation module used in this work is based
on the Mystique method introduced by Meng et. al. [13].
More specifically, a malware template was built to fill the
requirements of privacy leaking malware. In this case, the goal
of privacy leaking malware is to collect information from the
target, and send it to another device. Aggressive actions are
considered to be any method of collecting or sending data.

Each malware sample is given the genotypic representation
of a list of features to be generated. The features represent
either an aggressive or evasive action. Each list is ensured to
represent a malicious application because of restrictive rules
that enforces the selection of features to complete the goal of
the malware. If a feature list cannot be considered as malware,
it is rejected [13].

To evolve the population from an initial random state, the
evaluation of the three measures are used: aggressiveness, eva-
sion, and the detection ability. Due to this multiple objective
nature of evaluating malware, the evolutionary method used is
the IBEA algorithm [13]. IBEA allows for multiple objectives
to be targeted, and builds a diverse array of solutions. Pareto
optimality is used for comparing the malware samples. Given

evaluate Modify
detectors

Detector cycle

Detector
Population

Random
detectors

Modify
malware

Malware
Population

Aggression
and Evasion
calculation

Malware cycle

Initial malware

Fig. 1. Evolution diagram

the three scalar values (aggressiveness, evasion, and detection)
associated with the performance, this method measures the rel-
ative performance in all values, instead of measuring absolute
performance at a fixed combination of the three. IBEA builds
on dominant elements of each generation, so that each non-
dominant sample from each generation is added to a list of
bases. Then, each future generation uses these bases to build
a modified list of features, either via crossover with another
base, or random mutation.

It should be noted here that each aggressive feature is
weighted evenly, so that the total number of aggressive features
becomes the direct aggressive value for the sample. Similarly,
each evasive feature is also weighted evenly, so that the total
number of evasive features becomes the direct evasive value
of the sample. Finally, the detection measure is computed
with the malware detection module of the artificial arms
race framework that is used to evaluate the malware for
detectability.

C. Competitive Co-evolution

The competitive co-evolution is the technique we employ
to implement the artificial arms race between the malware
detector and the malware generator. Again, this is a GP based
system. The structure of the system takes the form of a
feedback loop as seen in Figure 1. In this framework, the
natural tension between the goals of the malware generator
module and the malware detector module are used to increase
the performance of each module.

• The malware detector attempts to classify malware, while
avoiding classifying safe software as malware. Naturally,
the classifier is only considered to be successful, if it can
detect the malware.

• The malware generator creates malware. Malware is only
considered to be successful, if it can evade the detection
of the malware detector.

Due to the malware specific goal of avoiding classifica-
tion, the classifier is a direct adversary. Likewise, malware
attempting to be unclassifiable becomes an adversary of any

detector. Detectability can swing between the malware and the
detectors, but both cannot be optimal at once.

Algorithm 1 Co-evolution main loop
Input: input dataset
Output: malware detector population

Initialisation :
1: pop d ← random population GP()
2: pop m ← random population Malware()
3: archive ← []

LOOP for each generation
4: for i = 0 to max generations do
5: malware dataset = input dataset ∪ pop m ∪ archive
6: eval ← Evaluate(pop d, malware dataset)
7: Sort pop m by eval
8: Append first archive amount of pop m to archive
9: Append last archive amount of pop m to archive

10: pop d ← GP Evolve(pop d, eval d)
11: pop m ← IBEA Evolve(pop m, eval ∩ pop m)
12: end for
13: return pop d

Algorithm 1 summarizes the co-evolution process. Starting
with random initialization populations, to perform a gen-
eration, the malware detector population is evaluated using
both a constant dataset and the malware population. In this
framework, the detection rate of the malware is the evaluation
performed by the detector during the co-evolution process.
Aggressiveness and evasion are computed using only the
population, as those measures only use the samples genotype.
With the population evaluations done, both are evolved using
their respective evolutionary procedures.

To better adapt to the changes in the apps / malware, and
to ensure that the final result is robust, as the populations
change, an archive is used to select features of the malware
population to preserve and to use for detection (evaluations)
over generations.

IV. EXPERIMENT SETUP

The dataset used in this work for the input malware samples
is a random subset, 1000 malware apps, of the DREBIN
dataset [6]. Along with this, we also use 1000 benign apps to
train a malware detector. Selecting these apps was performed
randomly. In total, we have 2000 apps where half of them are
malware and half of them are benign. We then use 70% of this
dataset for training and 30% for testing. Therefore, there are
1400 samples in the training and 600 samples in the testing
datasets. We have employed two machine learning algorithms
- namely C5.0 and GP - to generate a malware detector. Thus,
we aim to perform the following sets of evaluations in order
to explore how far we could push the proposed framework:

1) The C5.0 based detector uses just the DREBIN dataset
without the addition of generated malware. This creates
a decision tree to classify the apps into malware and
benign. The complexity of the generated decision tree

is the number of nodes present in the tree. Addition-
ally, because C5.0 algorithm uses information gain, the
decision tree is capable of choosing the most important
features among all the features given. This enabled us to
choose the most relevant 15 permissions from the set of
all available permissions (149) that represents an app.

2) The GP based detector uses the DREBIN dataset without
the addition of generated malware. In this case, we
can also measure the complexity of the classifier using
the number of instructions in the chosen solution’s
program. Again, GP classifier is able to identify the most
important features from the set of all features given.
This enabled us to choose the most relevant 15 features
agreed on by all used classifiers.

3) Finally, the experimental Co-evolved method. The GP
based detector, chosen because of its co-evolution ca-
pability, is used in the artificial arms race framework.
The same measurements of complexity can be directly
compared to other GP evolved detectors, giving us a
good comparative benchmark between the static and the
co-evolved classifiers.

It should also be noted here that C5.0 classifier was used
to verify that the selected apps were comparable to the full
version of the dataset. We achieved this by splitting the dataset
into the intended size of a training set using random apps from
the full dataset. Building a tree using this dataset, we measured
the accuracy and calculated the number of features most used
in the tree. Randomly selecting the number of apps for the
training set, and comparing the trees built with the subset and
the full dataset enables the verification of the selected apps. It
is important to choose the training set to be as small as possible
to decrease the training time. However, at the same time, it is
important not to loose accuracy for detection. In the end, the
selected training dataset has 0.4% difference in accuracy and
include the top 10 features which were also present in the tree
generated by the full dataset.

V. RESULTS

In the test phase of this work, ten runs are performed for
each technique to get an idea of the performance differences.
The measures used for these evaluations are: (i) the number
of apps (samples) correctly classified, (ii) the minimization of
the number of features used, and (iii) the simplification of the
solutions generated.

The goal of detecting malware accurately is the only guiding
principal in the artificial arms race framework. Features used
and the complexity of the solution were selected during
the training phase of the classifiers. While there is no bias
for simple solutions or minimal features, creating simpler
solutions is a bi-product of this method.

Table V shows the results of a set of experiments we
conducted to observe the sensitivity of the training data size on
the performance of stand alone detectors. In these experiments,
we varied the training set size for each category of apps from
300 to 1000, and observe the precision and recall rates to
determine the most suitable training dataset size. Based on

Legend : ’ c ’ i s Clean or Benign c l a s s
’m’ i s Malware c l a s s

READ PHONE STATE = f :
: . SEND SMS = t :
: : . c l a s s e s w i t h a n n o t a t i o n <= 3 7 : m
: : c l a s s e s w i t h a n n o t a t i o n > 3 7 : c
: SEND SMS = f :
: : . a b s t r a c t c o u n t > 562 : c
: a b s t r a c t c o u n t <= 562 :
: : . INTERNET = f : c
: INTERNET = t :
: : . s t a t i c c o u n t <= 7 0 : m
: s t a t i c c o u n t > 7 0 :
: : . c l a s s e s w i t h a n n o t a t i o n <= 2 : c
: c l a s s e s w i t h a n n o t a t i o n > 2 :
: : . c l a s s e s w i t h a n n o t a t i o n <= 2 3 : m
: c l a s s e s w i t h a n n o t a t i o n > 2 3 : c
READ PHONE STATE = t :
: . c l a s s e s w i t h i n t e r f a c e > 558 :

: . ACCESS FINE LOCATION = t : m
: ACCESS FINE LOCATION = f : c
c l a s s e s w i t h i n t e r f a c e <= 558 :
: . BIND ACCESSIBILITY SERVICE = t : c

BIND ACCESSIBILITY SERVICE = f :
: . INTERNET = f :

: . SEND SMS = t : m
: SEND SMS = f : c
INTERNET = t :
: . READ CALENDAR = t :

: . WRITE EXTERNAL STORAGE = t : m
: WRITE EXTERNAL STORAGE = f : c
READ CALENDAR = f :
: . a b s t r a c t c o u n t <= 5 1 : m

a b s t r a c t c o u n t > 5 1 :
: . d i r e c t c o u n t > 418 : m

d i r e c t c o u n t <= 418 :
: . c l a s s e s w i t h i n t e r f a c e <= 3 7 : m

c l a s s e s w i t h i n t e r f a c e > 3 7 : c

Fig. 2. C5.0 tree using 15 permissions and 8 code features

these results, we chose the training dataset size to be 700
benign and 700 malware apps.

Tables I, II, VI and VII show the performance results
of the GP and C5.0 classifiers trained on the training dataset
and tested the on the unseen test dataset. The first two tables
show the performance of these classifiers when the apps were
represented by using all the official permissions list. The latter
two tables show the performance of these classifiers when only
15 permissions are used to represent an app. All these results
were obtained when these classifiers were used outside of the
artificial arms race framework as stand alone (static) malware
detectors.

As the next step, we employed the aforementioned eight
code features together with the 15 permission features to
represent an app using 23 features to the detector. Table VIII
shows the performance of the GP based standalone malware
detector under this representation. Table IX and Figure 2 show
the performance of the C5.0 based detector and the resulting

TABLE V
PRECISION AND RECALL OF DIFFERENT DATA SIZES

Test Precision Recall
GP 300 97% 88%
GP 500 96% 89%
GP 700 97% 89%
GP 1000 96% 89%
C5.0 300 99% 96%
C5.0 500 86% 96%
C5.0 700 96% 97%
C5.0 1000 96% 97%

Fig. 3. Accuracy vs. Complexity

tree rules using 23 features on the same data. By adding
the code features to the representation of an app, we get a
5% increase in the performance of GP and 8% increase in
the performance of the C5.0. When we analyzed what the
detectors learned in these experiments, we observed that GP
used only 12 of the 23 features whereas C5.0 used only 11.

Then, using the same training and test data, we implement
the artificial arms race framework and add in the co-evolution
system. Table X shows the performance of one of the GP based
malware detectors evolved via this arms race. The results of
the evolved detectors are comparable with the results of the
C5.0 and GP based detectors that are trained stand alone, i.e.
outside of the artificial arms race framework. Moreover, the
co-evolved malware detector uses fewer features compared to
the stand alone ones. In summary, the addition of co-evolution
seems to reduce the overall complexity of the detectors evolved
without impacting their performance.

While there is no significant difference in accuracy with this
kind of approach, the quality of solutions appears to improve.
Figure 3 shows that the average number of instructions, which

TABLE VI
RESULTS OF GP WITH 15 PERMISSIONS ONLY

True class
Malware Benign Total

Predicted class Malware 272 28 90%
Benign 56 244 81%

Total 83% 90% 86%

Fig. 4. Accuracy vs. Number of Features

TABLE VII
RESULTS OF C5.0 WITH 15 PERMISSIONS ONLY

True class
Malware Benign Total

Predicted class Malware 260 29 90%
Benign 40 271 87%

Total 87% 90% 88%

TABLE VIII
RESULTS OF GP WITH 15 PERMISSIONS AND 8 CODE FEATURES

True class
Malware Benign Total

Predicted class Malware 295 5 98%
Benign 27 273 91%

Total 92% 98% 95%

TABLE IX
RESULTS OF C5.0 WITH 15 PERMISSIONS AND 8 CODE FEATURES

True class
Malware Benign Total

Predicted class Malware 289 12 96%
Benign 11 288 96%

Total 96% 96% 96%

TABLE X
A SAMPLE RESULT OF GP WITH 15 PERMISSIONS AND 8 CODE FEATURES

WITH CO-EVOLUTION

True class
Malware Benign Total

Predicted class Malware 294 6 98%
Benign 39 261 87%

Total 88% 98% 92%

TABLE XI
A SAMPLE RESULT OF GP WITH 15 PERMISSIONS AND 8 CODE FEATURES

WITHOUT CO-EVOLUTION

True class
Malware Benign Total

Predicted class Malware 278 15 95%
Benign 22 285 93%

Total 93% 95% 94%

is used to measure complexity, is reduced without significantly
alternating the accuracy of the process. The same holds true
regarding the average number of features selected by the
learning algorithm from the given set of features, as is seen
in Figure 4.

Below is an example of a co-evolved solution to detect a
malware using the proposed artificial arms race framework. As
discussed earlier, in this framework, the detector is co-evolved
against the malware generator to detect the generated malware.
The resulting detector solution is in the form of a program:

r [6] = exp (i n [READ PHONE STATE])
Bid Malware = r [6] − 200
Bid Clean = exp (i n [d i r e c t method c o u n t])

This particular solution focuses on two values:
1) READ PHONE STATE
2) Number of Direct methods

The resulting rules followed by this program amount to: If
app has READ PHONE STATE and allow values for Direct
methods, then it is malware. The performance of this solution
program’s rules is presented in Table X.

On the other hand, if we analyze a solution of a GP based
detector that was trained stand alone, outside of the artificial
arms race framework, the solution program appears as the
following:

i f (r [5] <= 62)
i f (r [0] > r [1])
r [4] = r [1] / i n [INSTALL PACKAGES]
i f (r [0] > i n [SEND SMS])
r [0] = r [4] − 31
r [4] = l o g (r [0])
i f (r [4] > i n [READ PHONE STATE])
r [1] = s i n (i n [RECEIVE BOOT COMPLETED])

The performance of the above program is given in Table XI.
The resulting rules followed by this program are: If the
program has READ PHONE STATE and SEND SMS, then
it is malware.

To better understand how the evolved solutions - the pop-
ulation - under the artificial arms race framework compares
with the single best solution, we analyze the diversity of the
solutions in Figure 5. The population’s combined coverage
of knowledge reaches a very high accuracy (100%) given
the collaboration of the top 20 solutions (programs) out of
the 100 solutions evolved. This indicates that the solutions
evolved have enough diversity to be able to recognize different
malicious behaviours in the apps. From a co-evolutionary
perspective, this ensures the survival of useful programs even
if they are not the single best solution. In other words, this
diversity enables us to generate (evolve) different rules that
have the potential of detecting different variants of malware.

VI. CONCLUSION AND FUTURE WORK

Exploring whether an emulated artificial arms race between
mobile malware and detectors could improve the ability of
the detector was the primary goal of this research. The first

Fig. 5. Accuracy vs. Populations accumulated knowledge

step in studying this goal commenced with the analysis of the
population’s shared knowledge, and how it might be affected
by the co-evolution process. Initial findings indicate that the
building of teams from the detectors may lead to a more
robust solution compared to building teams from stand alone
detectors. The performance of the framework demonstrate that
it is possible to generate new rules with high accuracy against
the new variants of malware using a co-evolution process to
automatically emulate an artificial arms race between malware
and detectors. Moreover, the proposed artificial arms race
framework shows an increase in knowledge about the task.
This observation is also supported by the previous work [1],
which demonstrates that the more knowledge the detector has,
the better it can adapt to future malware behaviours. Last
but not the least, the proposed framework could be used to
generate realistic and different malware / app behaviours.

In this work, the proposed framework was evaluated using
Android apps. However, given that the approach is not using
features dependent of the platform and / or architecture, it
could be applied to other mobile platforms, apps and malware.
Furthermore, other features could be added and extracted
based on the information provided by the mobile platform
employed. Using one or more malware generators and replac-
ing the malware detectors with other methods of classification
/ detection is also possible and may be used in the future to
improve the performance.

ACKNOWLEDGMENTS

This research is supported by Raytheon SAS. The research
is conducted as part of the Dalhousie NIMS Lab at: https:
//projects.cs.dal.ca/projectx/.

REFERENCES

[1] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “Context-
aware, adaptive, and scalable android malware detection through online
learning,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 1, no. 3, pp. 157–175, June 2017.

[2] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new android
malware detection approach using bayesian classification,” in 2013 IEEE
27th International Conference on Advanced Information Networking and
Applications (AINA), March 2013, pp. 121–128.

[3] A. Skovoroda and D. Gamayunov, “Review of the mobile malware
detection approaches,” in 2015 23rd Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, March 2015,
pp. 600–603.

[4] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring
permission-induced risk in android applications for malicious application
detection,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 11, pp. 1869–1882, Nov 2014.

[5] P. Chester, C. Jones, M. W. Mkaouer, and D. E. Krutz, “M-perm: A
lightweight detector for android permission gaps,” in 2017 IEEE/ACM
4th International Conference on Mobile Software Engineering and
Systems (MOBILESoft), May 2017, pp. 217–218.

[6] D. Arp, M. Spreitzenbarth, H. Gascon, K. Rieck, and C. Siemens,
“Drebin: Effective and explainable detection of android malware
in your pocket.” 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, pp.
1–12, ISBN 1–891 562–35–5, Febuary 2014. [Online]. Available:
https://www.sec.cs.tu-bs.de/∼danarp/drebin/

[7] H. G. Kayacık, A. N. Zincir-Heywood, and M. I. Heywood,
“Evolutionary computation as an artificial attacker: generating evasion
attacks for detector vulnerability testing,” Evolutionary Intelligence,
vol. 4, no. 4, pp. 243–266, Dec 2011. [Online]. Available:
https://doi.org/10.1007/s12065-011-0065-0

[8] G. Kayack, A. Zincir-Heywood, and M. I. Heywood, “Can a good
offense be a good defense? vulnerability testing of anomaly detectors
through an artificial arms race,” vol. 11, pp. 4366–4383, 10 2011.

[9] P. Fogla and W. Lee, “Evading network anomaly detection systems:
formal reasoning and practical techniques,” in Proceedings of the 13th
ACM conference on Computer and communications security. ACM,
2006, pp. 59–68.

[10] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.”
in Lisa, vol. 99, no. 1, 1999, pp. 229–238.

[11] O. L. Fraser, N. Zincir-Heywood, M. Heywood, and J. T. Jacobs,
“Return-oriented programme evolution with roper: A proof of
concept,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, ser. GECCO ’17. New York, NY, USA:
ACM, 2017, pp. 1447–1454. [Online]. Available: http://doi.acm.org/10.
1145/3067695.3082508

[12] S. Noreen, S. Murtaza, M. Z. Shafiq, and M. Farooq, “Evolvable
malware,” in Proceedings of the 11th Annual conference on Genetic
and evolutionary computation. ACM, 2009, pp. 1569–1576.

[13] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang,
and T. Chen, “Mystique: Evolving android malware for auditing anti-
malware tools,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security. ACM, 2016, pp. 365–376.

[14] J. Sahs and L. Khan, “A machine learning approach to android malware
detection,” in Intelligence and security informatics conference (eisic),
2012 european. IEEE, 2012, pp. 141–147.

[15] M. Brameier and W. Banzhaf, “Effective linear genetic programming,”
Neural Networks in Medical Data Mining IEEE Transactions on Evo-
lutionary Computation, Tech. Rep., 2001.

[16] R. Quinlan, “Data mining tools see5 and c5.0,” 2018. [Online].
Available: https://www.rulequest.com/see5-info.html

[17] L. Sun, X. Wei, J. Zhang, L. He, P. S. Yu, and W. Srisa-an, “Contam-
inant removal for android malware detection systems,” arXiv preprint
arXiv:1711.02715, 2017.

