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Abstract—Global increase in the use of mobile Internet service
generates interest in mobile network studies to determine and
forecast the QoS provided by mobile operators. This study
proposes different methods to forecast signal strength, one of
the most important mobile Internet QoS indicator, based on
time series analysis and considering external information about
weather conditions as temperature, humidity and precipitations
due to the effect they cause on mobile Internet QoS. This work
shows the feasibility of forecasting mobile signal strength using
crowd data corresponding to mobile devices in Santiago, Chile
and that the inclusion of weather information generates more
accurate forecast models for a given geographic area, obtaining
good performance by all models used at comparing their forecast
error values for weekly predictions. To the best of the authors’
knowledge this is the first attempt of using weather information
together with real data gathered from user devices in order to
forecast mobile signal strength.

I. INTRODUCTION

During the last years, the use of mobile Internet service
has been increasing globally, which is reflected in Chile,
where during the first quarter of 2017, 75.8% of total Internet
access was made through mobile devices [1]. Given the
great magnitude of the current use of mobile Internet, it is
important to carry out studies to determine the quality of this
service provided by mobile phone operators, and it is also
important to develop predictive methods of mobile Internet
QoS, so that both counterparts (companies and customers)
can anticipate possible declines in the quality of mobile
Internet for a given time and place.

Between all mobile Internet QoS indicators, signal strength
is one of the most important, mainly because it directly
influences other important QoS indicators such as latency,
number of lost packets and throughput [2]. Signal strength
data used in this paper, come from a passive Android monitor
of mobile Internet called Adkintun Mobile [3], using a crowd
measurement method.

It is important to take account of weather conditions at
forecasting signal strength due to their effects on mobile
phone network QoS. The weather effect on signal strength
received occurs partly because raindrops and fog absorbs
power from the radio wave and dissipates the power by heat
loss or by scattering [4].

Therefore, this work studies the effect of weather conditions
on mobile Internet QoS forecasting, evaluating the prediction

of the most used mobile network technologies: UMTS
and LTE; using AutoRegressive Integrated Moving Average
(ARIMA), Seasonal ARIMA (SARIMA) and Deep Learning
models. The results obtained show that it is possible to carry
out good performing predictions, since all tested methods
outperformed a Naive model of comparison. It was also
observed that ARIMA and SARIMA solutions obtain better
accuracy measures than Deep Learning based methods, but
describe smoother and less risky time-series.

To the best of the authors’ knowledge this is the first attempt
of using weather information together with real data gathered
from user devices in order to forecast mobile signal strength.

II. RELATED WORK

With the growth of the mobile phone network during the
last two decades, different studies have focused their work on
the analysis of the services delivered, and on the development
of prediction methods for certain measurable parameters in
mobile networks. Some of these works have implemented
predictive models to forecast network congestion in a specific
geographical location through the analysis of time series, such
as the prediction of call traffic using ARIMA models [5], and
through the use of chaotic analysis [6]; and the prediction
of mobile Internet data traffic using SARIMA models [7]
[8] [9]. These studies support the idea of forecasting mobile
Internet QoS since the amount of traffic present in the
cellular telephone network can directly affect QoS in a
specific location, given the high levels of network congestion
that may occur. They also show the impact on the use of
the network (calls and mobile Internet traffic) due to the
occurrence of natural phenomena such as heavy rains or
snowfalls, which also supports the inclusion of weather
conditions to predict QoS indicators.

All these studies use data coming directly from mobile
service provider companies, so they have complete information
about network usage from all devices belonging to those
companies, which is important for having a well detailed data
set and to avoid possible biases. Contrary to the previous, this
work is based on data collected directly from user devices,
due to measuring QoS has more relevance and makes more
sense if the measurements are taken by the devices that are
receiving these mobile services. In the same line, other studies
have also been accomplished with data obtained by a group



of testing mobile devices, which typically have installed
an application developed specifically to perform some tests
and obtain the required data. Among these studies is the
prediction of download speed for 4G LTE network through
the application of active measurements using a variation of
ARIMA model [10] and the prediction of QoE through the
application of passive measurements [11].

In other works it has been studied in depth the correlation
that exists between weather and Internet QoS, measuring the
connectivity of residential Internet during periods of severe
weather, showing the increase of Internet outages during these
events [12] and showing the effect of air temperature and
humidity on signal strength received from Wireless Networks
[13], so that changes in radio signal strength can be explained
by the levels of temperature and humidity measured at that
time. Contrary to these researches that use measurements from
a very controlled space, this paper aims to show the correlation
between mobile network signal strength and weather using
real crowd data from multiple Android devices, and to use this
information to make accurate predictions about signal strength
for a geographic location.

III. DATA SET OVERVIEW

This paper is based on the data collected by chilean
Android app Adkintun Mobile [3], a mobile monitor, that
takes passive measurements about mobile Internet status. The
app informs about all the antennas to which mobile devices
connect, reporting signal strength, type of network (UMTS,
HSPAP, LTE, etc) and antenna identifiers such as Location
Area Code (LAC) and Cell ID, in order to make antenna
geolocation possible. Also, the app reports the amount of
bytes sent and received by each installed application and
monitor the Internet connectivity status, which allows to
know when users were connected to the Internet through
the mobile network and when they suffered a disconnection
event. All this information is stored with a timestamp,
so each measurement is able to be mapped to a specific
time and specific location (due to antenna geolocation).
The data collected by Adkintun Mobile used in this paper
belongs to the city of Santiago, Chile as of October 2016,
from approximately 300 mobile devices in that location.
To forecast signal strength values, only measurements from
users connected to antennas in an area of 15 km? in the
middle of Santiago city, where approximately 100 users move
inside daily, were considered; obtaining near to 20000 signal
strength measurements for each day.

In addition to Adkintun Mobile data, this paper uses data
from a weather station of the Ministry of Public Works of
Chile located in Santiago, Chile [14], in the center of signal
strength measurement area mentioned above, as showed in
Figure 1. This station makes hourly reports about values of
air temperature, humidity and precipitation. Also, values for
change of temperature and humidity (A) were calculated
every hour, as they were included in previous analysis of
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Fig. 1. Geographic position of Weather Station and Base Transceiver Stations
in Measured Area.
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Fig. 2. Signal Strength trend according to relative humidity levels.

signal strength [13]. Like app data, these values are obtained
as of October 2016.

Figure 2 shows the relation observed between signal
strength and humidity after joining both data sets, where the
humidity values are grouped in 9 intervals and, for each
interval, the median of signal strength values is reported.
Additionally, signal strength values are grouped for the three
most used mobile network technologies in the data set (UMTS,
LTE and HSPAP), and their median values are also reported
for humidity intervals. The figure shows a trend for all mobile
network technologies to decrease their signal strength when
the humidity increases. These results serve as validation to
the addition of weather conditions as external regressors to
forecast signal strength in mobile phone network.



IV. FORECAST MODELS

To forecast signal strength values in the mentioned area,
the data was aggregated over two hours and median values
were reported. Since in each interval an user could have
been connected to multiple antennas and received different
signal strength inside the area, median values are calculated
by pondering each signal strength value with the time
(in seconds) in which the user had been receiving that
signal strength. The 2-hours signal strength aggregated data
is represented as a time series and the 2-hours weather
conditions aggregated data are given as external regressors
for the main time series.

In order to follow related work, the use of ARIMA and
SARIMA forecast methods are proposed. As well as the use
of some Neural Network architectures commonly used for
time series analysis.

To evaluate these forecast models, a Naive Persistent
Method is proposed for establishing a comparison on some
forecast errors indicators obtained at predicting signal strength,
which are Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) in logarithmic dBm scale, and Mean
Absolute Percentage Error (MAPE) in normal Watt scale.

A. ARIMA

ARIMA models, also called Box-Jenkins models, are mod-
els that include autoregressive terms, moving average terms,
and differencing operations. An ARIMA (p, d, ¢) model, where
p is the order of the autoregressive part, d is the degree of first
differencing involved and q is the order of the moving average
part, can be written as

(1—¢1B—--—¢,BP)(1-B)%y; = c+(14+6, B+ - -+60,B)e,,
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where (1 — ¢1B —--- — ¢, BP) is the autoregressive part

of order p AR(p), (1 — B)? represents the d differences and

(146,B+---+6,B7) is the moving average part of order
q MA(q).

B. Seasonal ARIMA

Seasonal ARIMA model is formed by including additional
seasonal terms in ARIMA models mentioned above. It is
written as ARIMA(p, d, q)(P, D, Q).,, where (p,d,q) is the
non-seasonal part of the model, (P, D, Q) is the seasonal part
of the model and m is the number of periods in each season.

The seasonal part of the model, consists of terms that are
similar to non-seasonal part, but they use backshifts of the
seasonal period (B™ instead of B). So, the general Seasonal
ARIMA formula is similar to ARIMA formula showed in
equation 1, but the non-seasonal terms are multiplied by
seasonal terms as follows:

o Non-seasonal autoregressive part is multiplied by sea-
sonal autoregressive part (1 — ®;B™ — --- — ®,B"P).

o Non-seasonal difference is multiplied by seasonal differ-
ence (1 — B™)%,

+ Non-seasonal moving average part is multiplied by sea-
sonal moving average part (1 + 6;B™ + --- 4 6,B™1).

C. Neural Networks

1) LSTM: LSTM (Long Short-Term Memory) is a type of
recurrent neural network. That is, a network whose connec-
tions contain loops in order to keep information, passing it
through the steps of the network. An LSTM-layer’s special
feature is that it can retain long-term information and learn
when to get or not get it into account. The implementation of
an LSTM unit consists of three gates: input gate, output gate
and forget gate that are related according to the following
equations:

¢y =g otanh(Wewy + Veyr—1 +be) + froci—1 (2

Yyt = og o tanh(cy),
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where i;, f:, o; are the respective activation functions of
each gate:

gt = sigmoid(Wyxy + Vyye—1 + bg), “)

where g is the corresponding gate, W and V are weight
matrices, b is a bias vector, x; and y; are input and output
vectors of the step ¢, and o corresponds to the entry-wise
product between two matrices.

2) CNN-LSTM: CNN (Convolutional Neural Network) dif-
fers from a normal artificial neural network at its use of kernels
to apply a convolutional operation over the input data in order
to transform it and obtain specific information to focus on. The
equation of a convolutional layer for a 2-dimensional input is
described below:

m—1n—1

Xijx Kij =) Y warX(ra)+n) - Kap +b
a=0 b=0

(&)

where X is the input and K is the m X n kernel. w and b
are weight and bias respectively.

CNN-LSTM would be the combination of the two networks
mentioned above. It will consist of a convolutional layer before
an LSTM layer.

D. Naive Model

The Naive Model is defined as a forecasting model where
the last observation will become the next forecast value, and
it can be written as

Yl = Yt—m, (6)

when the data is seasonal with a period m.



With regard to the experiments of this paper, a Weekly
Naive Model, that repeats the last week of data as the forecast
for the next week, is used as a trivial method to compare
the performance of the other weekly forecast methods. This
method has been chosen since mobile QoS and signal strength
are affected by external factors with strong periodic compo-
nents, such as weather [12] [13] or crowd movement [15] [16]
according to human activities, so repeating previous values as
forecast makes an acceptable model to set as initial baseline.

V. EXPERIMENTAL RESULTS

The goal of the experiments is to forecast an entire week of
data (received signal strength) from user devices in a reduced
area from the center of the capital city of Chile (Santiago),
based on the information given by the eight immediately
previous weeks. The input for the forecast methods are
eight weeks of median values of aggregated data over two
hours of signal strength reported by the users connected to
cellular antennas near the weather station of the Ministry of
Public Works of Chile. The input data also contains eight
weeks of information given by the weather station about air
temperature, humidity and precipitations.

The experiments perform predictions of signal strength
received for 3G UMTS and 4G LTE users separately. These
two (UMTS and LTE) were chosen because, according to the
data set, they are the most used network types by mobile
devices in Santiago, Chile. Each of the forecast models
presented before, perform separate predictions of three
consecutively weeks as of December 12, 2016, in order to
get more generalized results, reporting their forecast errors.

Figures 3 and 4 compare forecast values of 3G UMTS
and 4G LTE signal strength with real data, using the four
selected models. These Figures show the results of forecast
with and without including weather information. Next, results
of forecast considering weather information are described
(red lines).

For 3G UMTS forecasts in Figure 3, ARIMA and SARIMA
models with weather information seems to capture correctly
the general pattern of real signal strength data, but their
smoothed curves fails at forecasting sudden signal strength
changes. In the other hand, Neural Network forecasts with
weather information can also capture real data pattern, but in
a riskier way, giving the chance of predict sudden changes in
signal strength values, getting in the case of LSTM model a
more fitted forecast curve.

4G LTE forecasts in Figure 4 show a similar behavior
to UMTS forecasts described above, in which ARIMA and
SARIMA models with weather conditions seem to forecast
a very similar smoothed pattern, and Neural Networks again
make riskier predictions, which benefits to capture some
patterns better. It is important to say that LTE time series
is more scattered than UMTS time series, what causes that
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ARIMA, SARIMA and CNN-LSTM tend to give most
forecast values near the median value, in order to decrease
forecast errors. However, LSTM model shows a more fitted
curve, capturing in a very good way some abrupt changes in
signal strength.

The forecast errors obtained for all these forecast methods
considering weather information, in addition to Naive Model,
are presented in Tables I and II for information about 3G
UMTS and 4G LTE signal strength forecasts, respectively.

In order to show the benefit of including weather conditions
as external regressors of forecast models, Figures 3 and 4
also compare the results of predicting UMTS and LTE signal
strength using the four selected models between considering
or not considering weather conditions as external regressors.
It is evident that without including weather conditions for
ARIMA models, the forecast do not capture the periodicity in
real data values, and all their forecast values are very close to



TABLE I

UMTS SIGNAL STRENGTH FORECAST ERRORS

15t Week ond Week 37d Week Total
Method RMSE | MAE | Wart MAPE || RMSE | MAE | Wart MAPE || RMSE | MAE | Wart MAPE || RMSE | MAE | Wart MAPE
Naive Model || 8.64 | 6.49 1147.24 1043 | 7.88 803.71 1041 | 7.95 3850.82 986 | 7.44 1933.92
ARIMA 599 | 4.70 235.93 796 | 5.78 152.39 718 | 5.60 319.71 709 | 536 236.01
SARIMA 591 | 4.63 237.31 802 | 5.83 163.61 716 | 546 331.58 7.08 | 531 244.17
LSTM 645 | 4.89 308.17 936 | 7.01 43723 834 | 657 399.82 8.14 | 6.16 381.74
CNN-LSTM || 623 | 4.87 25275 820 | 5.76 295.73 761 | 571 337.38 739 | 545 295.29
TABLE II
LTE SIGNAL STRENGTH FORECAST ERRORS
15t Week 274 Week 374 Week Total
Method RMSE | MAE | Wart MAPE || RMSE | MAE | War MAPE || RMSE | MAE | Warr MAPE || RMSE | MAE | Warr MAPE
Naive Model || 549 | 428 105.93 558 | 4.16 88.16 750 | 5.33 896.19 626 | 4.59 363.43
ARIMA 411 | 3.16 84.77 4.56 | 348 69.27 533 | 418 178.24 468 | 359 109.49
SARIMA 393 | 2.94 88.40 460 | 349 67.57 549 | 429 218.82 472 | 357 124.93
LSTM 386 | 3.14 74.37 543 | 420 66.93 6.08 | 4.96 222.67 521 | 4.10 121.33
CNN-LSTM || 394 | 3.11 80.80 493 | 386 66.07 545 | 422 220.26 482 | 3.73 122.38

median value, reducing in this way forecast errors, but without
capturing real data patterns. This can be explained since
ARIMA models are not good at forecasting periodic data if a
periodic component is not given as an external regressor. So
including weather conditions gives to the model the periodicity
information implicitly, because both temperature and humidity
have a strong periodic component and have a significant effect
on signal strength. With regard to SARIMA model, since
it is a specialized model to forecast periodic time series, it
captures the periodic pattern in UMTS and LTE data anyway
without needing weather conditions, but when including these
as external regressors, the forecast curves gets more fitted to
real data values, being more accurate in UMTS prediction.
LSTM models have a similar behavior to SARIMA models at
forecasting UMTS signal strength data, since the fact of con-
sidering weather conditions in the models makes predictions
more fitted to real data values. However, at forecasting LTE
data values, the difference between considering or not weather
information is not so clear. In the case of CNN LSTM models,
both UMTS and LTE predictions capture real data patterns in
a better way, showing again the benefit of considering weather
conditions to obtain better forecasts.

VI. DISCUSSION

The results obtained show a positive performance for all
forecast methods at predicting signal strength values using
weather conditions as external regressors. All the tested
methods consistently obtained lower prediction errors than
Naive Model at forecasting UMTS and LTE signal strength
for each of the three experimental weeks, as showed in Tables
I and II, achieving a high increase in accuracy, especially
when comparing signal strength in Warts scale. ARIMA and
SARIMA models obtained the lowest forecast errors in most
of the occasions, which supports the fact that in literature,

they are the most used models to forecast similar time series.
However, Neural Network models also obtained satisfactory
results, getting forecast values closely fitted to real data and
sometimes obtaining even better forecast errors than ARIMA
and SARIMA models. This is relevant since the use of
Neural Networks to forecast similar time series has not been
highly exploited and, as this paper showed, they demonstrate
a strong potential to this purpose. This fact leaves open the
possibility of developing new more complex and specialized
Deep Neural Networks architectures to keep improving the
results.

Some ARIMA and SARIMA models’ forecasts that
obtained good results show a more restrained behavior than
solutions generated by Neural Network models, as showed
in Figures 3 and 4, so each forecast value has always a
low forecast error. However, this makes it less capable of
predicting sudden signal strength changes correctly. Instead,
Neural Networks capture periodic pattern of data without
smoothing their values, which enhances forecasting on abrupt
changes, that ARIMA and SARIMA lack. This is especially
important at forecasting LTE signal strength, where LSTM
model is the only one with an easily observable forecast
curve closely adjusted to real data curve (Figure 4).

It is important to mention that even when the decrease of
RMSE and MAE indicators of forecast methods over Naive
Model could seem low, it is mainly because RMSE and MAE
are calculated for signal strength in dBm scale, which is a
logarithmic scale for Watts. That explains that what appears
to be a little or insignificant increase in accuracy is really a
great improvement, as can be confirmed by analyzing Wart
MAPE values.



The fact that, for all forecasts done, the Weekly Naive
Method had worse results than all the other methods, and
especially bad results at comparing Watt scale MAPE, is a
proof that even when consecutive weeks could present similar
signal strength patterns between them, there are another
things to consider at forecasting signal strength values, hence
the forecast task presented is not trivial.

The experimental results show the improvement that
weather information causes to signal strength forecasting,
supporting the fact that weather conditions impact on mobile
phone quality of service, and specifically on mobile phone
signal strength. Since the measurements used in this paper
come from multiple smartphones devices performing a crowd
measurement process and not from specialized hardware as in
other studies, weather conditions can impact signal strength
measured in other ways besides degradation of signal due to
physical events as scattering or absorption by raindrops. For
example, when there is low temperature and high humidity
levels, people usually prefer to be indoors with windows and
doors closed and wear more layers of clothes, generating more
interference in the signal received by their mobile devices,
causing that measured signal strength values to be lower.

VII. CONCLUSION AND FUTURE WORK

This paper shows the feasibility to forecast mobile Internet
QoS in a specific geographic area, performing weekly
forecasts of signal strength received by users and using
weather conditions as external regressors, showing the benefit
of including this external information in forecast models. The
obtained results show that all proposed forecast methods have
good performance, being ARIMA and SARIMA the best
models at comparing their forecast error values, and LSTM
the best model at recognizing sudden changes in the data.

Given the good results at forecasting weekly values, it
is proposed as future work the implementation of daily
forecast using the same methods described for weekly
predictions. Daily forecasts should have lower forecast errors
in comparison with weekly forecast, because it is easier to
predict closer values, in part by cause of when forecasting
signal strength, the models need forecast weather conditions,
and daily weather forecasts have better accuracy than weekly
weather forecasts.

There is a possibility to perform forecast methods to
other QoS indicators. Another QoS indicator to be similarly
forecast is the Internet connectivity status, which refers to
the probability to experience an Internet outage, since the
correlation between Internet outages and weather conditions
have been studied before [12] and connectivity information is
also present in Adkintun Mobile data.

It is important to study carefully the existence of other
external factors that may interfere with mobile Internet QoS.

Recent investigations have taken the first steps to determine
the effect on the performance of the mobile phone network
against mass groupings of people at large events, using both
active measurements as passive measurements [15] [16]. These
studies have left open problems for future work, such as
carrying out a greater analysis to relate large groups of
people with the intensity of the signal received. Consequently,
information about mass grouping in reduced areas as in sport
events, musical concerts or street protests, could be used in
order to perform more accurate signal strength predictions,
using this information as another external regressor in forecast
models.
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