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Abstract—Recent reports show that BGP hijacking has in-
creased substantially. BGP hijacking allows malicious ASes to
obtain IP prefixes for spamming as well as intercepting or
blackholing traffic. While systems to prevent hijacks are hard to
deploy and require the cooperation of many other organizations,
techniques to detect hijacks have been a popular area of study.
In this paper, we classify detected hijack events in order to
document BGP detectors output and understand the nature of
reported events. We introduce four categories of BGP hijack:
typos, prepending mistakes, origin changes, and forged AS paths.
We leverage AS hegemony – a measure of dependency in AS
relationship – to identify forged AS paths in a fast and efficient
way. Besides, we utilize heuristic approaches to find common
operators’ mistakes such as typos and AS prepending mistakes.
The proposed approach classifies our collected ground truth into
four categories with 95.71% accuracy. We characterize publicly
reported alarms (e.g. BGPMon) with our trained classifier and
find 4%, 1%, and 2% of typos, prepend mistakes, and BGP
hijacking with a forged AS path, respectively.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is the Internet’s de

facto inter-domain routing protocol [1]. It allows an Au-

tonomous System (AS) to advertise the set of IP prefixes it

manages as well as routes to destinations that its neighbors

can reach by routing traffic towards it. BGP is based on trust,

where an AS is supposed to announce only IP prefixes it owns

and legitimate paths to destinations. However, malicious ASes

can take advantage of this trust model by announcing others’

IP prefixes or by forging AS paths [2]. These techniques

are generally referred to as BGP hijacking [3]. BGP hijacks

have been a problem on the Internet for over 20 years [4],

with routing incidents regularly occurring. In 2018, 4,739

routing incidents have been disclosed by BGPmon, a popular

monitoring service [5]. Once an AS hijacks a prefix, the AS

can blackhole or intercept the hijacked traffic, or impersonate

the legitimate receiver of the traffic [6]. Moreover, the hijacker

AS can use the hijacked IP prefixes for spamming [7], [8].

While work on path validation [9] and RPKI [10] is actively

underway in the IETF [11], deployment of these solutions that

would prevent hijacking remains at an impasse. Since systems

to prevent hijacks are difficult to deploy [12] and require

the cooperation of many ASes, techniques to detect hijacks

after they occur have been a popular area of study [13]–[26].

Existing works [13], [17] detect BGP hijacking by tracking

whether any new pairs of neighboring ASes suddenly appear,

or by searching for the violation of a BGP policy (e.g. a valley-

free violation). However, the former approach may falsely

capture enormous unrelated events, and the latter approach

often relies on AS relationships that are difficult to infer

accurately. Alternatively, ARTEMIS [25] accurately detects

all attack configurations but only towards prefixes owned by

the network running it, making it not applicable to detect

attacks towards other prefixes or to global monitoring Besides,

other BGP anomalies (e.g. link failure, misconfiguration) can

make detection techniques less accurate or the interpretation

of the detected event more difficult. More recently, some

approaches aim to differentiate between different types of BGP

anomalies, such as misconfiguration, link failure, or worm

attacks [14], [15], [24], [27]–[29]. However, they do not aim

to classify BGP hijack events. To our best knowledge, only

Argus [13], [30] takes BGP hijacking into account in their

classification of anomalies. Argus classifies BGP anomalies

into four groups: link failure, hijacking, route migration, and

traffic engineering. However, Argus only classifies hijacking

that causes blackholes (not interceptions), and their system re-

quires access to real-time data plane measurements to perform

such classification.

In this work, we focus on distinguishing four types of BGP

hijack events: typos, prepending mistakes, origin changes, and

forged AS paths. We conjecture that these first two event types

may be more indicative of a misconfiguration or human error,

while the latter two may be more indicative of a malicious

hijacking event. Note that route migration is not our focus in

this paper. To classify events, we use supervised learning, a

random forest (RF) classifier, with five features (Section IV-B).

In our features, we leverage AS hegemony [31] to identify

forged AS paths in a fast and efficient way without relying on

inferred AS relationships. AS hegemony represents a score

of dependency in AS relationships and we can obtain the

scores of all ASes from IIJ’s Internet Health Report (IHR)

API [32]. For other classification features, we use heuristics

that identify typos and prepending mistakes. To verify our

approaches, we run our classifier on our collected ground-

truth data that is manually verified, we then use the trained

classifier to characterize candidate BGP hijacking events (e.g.
BGPMon [33]). We expect that our classifier can help network

operators to prioritize the handling of malicious BGP hijack

attacks as opposed to the events by human error. In this paper,

we make the following contributions:

Utilization of AS hegemony to detect forged AS path. We

demonstrate that we can utilize AS hegemony to detect forged

AS paths (Section IV-B). In addition, by using both definitions

of AS hegemony (local and global AS hegemony) we improve
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Fig. 1. EXAMPLE OF MULTIPLE ORIGIN ASES.

Fig. 2. EXAMPLE OF PATH MANIPULATION.

our detection accuracy.

Classifying different types of BGP hijacking events. We

show that we can classify the four aforementioned BGP

hijacking events: typos, prepending mistakes, origin changes,

and forged AS paths using our features. Our approach carries

over to other measurement databases such as those generated

by BGPMon [33] and BGPStream [34]. With BGPMon’s

datasets, we find 4%, 1%, and 2% of typos, prepend mistakes,

and BGP hijacking with a forged AS path, respectively.

II. BACKGROUND: ANOMALOUS BGP ANNOUNCEMENTS

AND CAUSES

In this section, we overview the types of anomalous BGP

events that we look for in traces of BGP control-plane mes-

sages. We first overview two suspicious events that may be

observed in the control-plane and how they may be used

by a malicious entity to perform prefix hijacking. We then

overview two types of human error that may cause these types

of anomalies. Our goal in this work is to distinguish cases of

the first two anomalies that can be explained by the latter two

sources of error.

Route origin change. A hijacker advertises to neighboring

ASes a prefix that it does not own, illustrated in Figure 1.

Since the BGP path selection process favors shorter paths

(among paths where the next hop AS has the same LocalPref

value or business relationship), other ASes may choose the

illegitimate path announced by the hijacker if it is shorter than

their paths to the legitimate AS. For example, AS5 may choose

the illegitimate path announced by the hijacker (AS6) since the

path is shorter.

In other cases, a hijacker announces a more specific version

of the prefix announced by the legitimate AS. This type of

BGP hijack is particularly problematic because routers using

the longest prefix match will select and advertise this route.

Thus, packets are forwarded to the hijacker rather than to the

legitimate AS.

Fig. 3. EXAMPLE OF AS PATH PREPENDING.

AS-Path manipulation. Since an origin change or an origin

legitimacy may be detected (e.g. via RPKI [10]), a hijacker

may announce a forged path with its ASN on the path, but

not as the route origin AS. The hijacker may place either the

legitimate route origin AS or an unrelated AS as the route

origin. For instance, Figure 2 shows that AS6 announces a

fake path, [AS6, AS1], as if it is neighboring to the legitimate

origin, AS1. By doing this, a hijacker can evade an origin

authentication.

Typos in ASN or prefixes. When setting up routers, network

operators have to type their ASNs and prefixes to the router

configuration. In the process, there is a high chance for them

to mistype ASN or prefixes. For instance, in May 2016,

AS203959 announced prefix 191.86.129.0/24, which was a

more specific prefix that another AS had announced. This inci-

dent was noticed because multiple origin ASes had announced

the same prefix at the same time. Later on, it turned out that

this was not an intended BGP hijack but just a typo. The

reported hijacker, a network operator, mistyped the number 9

to 8 when typing its own prefix 191.96.129.0/24 [35].

Wrong AS path prepend. Another common error happens

when network operators try to prepend their ASNs to an-

nounced paths. AS path prepending is a traffic engineering

technique that consists in adding multiple times an ASN to a

path so that the advertised path becomes less desirable due to

its inflated path length. As shown in Figure 3, AS prepending

mistakes can happen when an operator writes the number, ”3”,

of repetitions of the ASN, ”47868”, instead of writing the ASN

multiple times, ”47868 47868 47868”, or when an operator

mistypes a sequence of the ASN such as ”48768” instead of

”47868”. The former case results in an origin change and the

latter case results in a forged AS path.

III. DATASETS

A challenge in a study of BGP hijacking is the limited

number of sources of ground truth data - specifically, which

events are intended (i.e. planned traffic engineering) versus

those that are not (i.e. human error and potential hijacking

attacks). In this section, we overview the ground truth data1

we use to train our machine learning classifier as well as the

longitudinal datasets we use to study the four routing event

types described in Section II. A summary of the datasets that

we use in our work is summarized in Table I.

A. Ground truth

We leverage two sources of unintended BGP routing events:

potentially malicious hijacks and human error.

1https://github.com/grace71/bgp-hijacks-classifier
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Potentially malicious hijacks. It is difficult to infer intent

from BGP routing announcements. However, we can use

the articles about the unexpected and occasionally impactful

BGP events from the Dyn blog [36] as a source of routing

announcements that are manually checked by experts and

reported as suspicious.

Likely typos. As a second set of anomalous BGP events,

we again use the articles on typos from the Dyn blog [35].

However, this type of report is rare so we also use data from

the BGPMon [33] platform. BGPMon reports possible BGP

hijacking events on a daily basis, and all reported events are

the cases where an illegitimate AS announces a prefix or

more specific prefix owned by another AS (e.g. multiple origin

ASes). BGPMon reports only events that are highly possible

to be BGP hijacking after excluding the obvious non-hijacking

events. We use these events to find possible events caused by

human error, for example, if the hijacked prefix (or ASN) is

similar to the hijacker’s legitimate prefixes (or ASN) and the

routing announcement is withdrawn in a short time after the

original announcement.

We also look for cases where the origin AS is a number, n,

less than ten and when we observe a rapid withdrawal followed

by the origin prepended n times. We consider such events as

prepending mistakes by network operators (see Figure 2 for a

specific example of this).

BGP data for ground truth events. After retrieving the

details of each event from Dyn [36] and BGPMon [33], we col-

lect historical BGP data using CAIDA’s BGPStream [34], [37],

which is an open source software framework for the analysis of

both historical and real-time BGP data. To retrieve BGP data

from CAIDA’s BGPStream we need to know the prefix and

likely time of the anomalous announcement/event. For events

from Dyn we are able to retrieve relevant announcements

for 35 events. Similarly, for BGPMon, we also retrieve the

BGP data for 35 events, all labelled as typos and prepending

mistakes (see Table I).

B. Additional datasets

In addition to our ground truth data, we gather addi-

tional data from BGPMon [33] and BGPStream [34], [37]

and characterize announcements and events in these datasets

with the features described in the following section. While

BGPMon gives a pre-filtered sample of highly likely BGP

hijacks, BGPStream, in contrast, allows us to observe all

anomalous BGP messages (e.g. multiple origin-AS prefixes)

without filtering to perform our analysis. We perform our own

filtering on data from BGPStream to avoid the cases that are

likely traffic engineering (e.g. by avoiding incidents involving

sibling ASes). We describe this in more detail in Section V-D

IV. METHODOLOGY

Our goal is to identify a set of features that can not only

identify instances of multiple origin-AS prefix announcements

and forged paths but also distinguish those instances from the

cases likely caused by human error (e.g. typos or misconfigur-

ing prepending). To accomplish this, we use machine learning

TABLE I
DATASET CHARACTERISTICS.

Dataset Ground truth BGPMon BGPStream
Period 2008-02

∼2018-07a
2018-05
∼2019-02

2019-01-01
∼2019-01-31

Total events 70 2,418 566
– w/MOAS 16 2,418 526
– w/New edges 18 - 40
– w/Typos 21 - -
– w/Prepending 15 - -

Avg # of pathsb 669 795 157

aOur ground truth includes only the events reported by and manually
checked, not all events that occurred during this period.

bThe average number of AS paths per event.

to build a model of these events based on five main features

using our ground truth dataset as input. A key metric used

in two of our features is AS hegemony, which is a proxy for

measuring the importance of an AS in the Internet graph [31].

These two features allow us to identify potential forged paths,

which are difficult to infer accurately without knowing AS

relationships. In this section, we first review the principles of

AS hegemony then we introduce all the features we use for

our classification.

A. AS hegemony

AS hegemony [31] is a metric that quantifies the likelihood

of an AS to lie on paths toward certain destination IP prefixes.

We distinguish two variants of this metric, global and local AS

hegemony. The global AS hegemony is computed with paths to

all IP prefixes globally reported by the BGP viewpoints. In this

case, ASes with a large value stand for large transit networks

that are commonly used to reach any host on the Internet. For

instance, tier-1 ASes, like Level 3 (AS3356), have the highest

scores, and stub ASes have the lowest scores.

The local AS hegemony is computed with paths from all

BGP viewpoints towards only one origin AS. In this case,

high values stand for ASes that are commonly used to reach

the given origin AS. For instance, computing the local AS

hegemony for UCSD (AS7377) reveals that the highest score

is attributed to the Californian academic network, CENIC

(AS2152), which is UCSD’s main upstream provider. We

obtain AS hegemony scores every 15 minutes for every AS

using Internet Health Report (IHR) API [32].

B. Features

We now overview features we use to classify the different

BGP events.

Number of valleys (Global hegemony) With the global AS

hegemony, we identify BGP hijacking by path manipulation

and the violation of BGP policy. Usually the global AS

hegemony values corresponding to an AS path have only

one local maximum around the middle of the path, which

means large transit ASes are located in the middle of the AS

path. However, if we find any valleys in global AS hegemony

values, as illustrated in Figure 4, we define them as anomalies.

In other words, if a rare transit AS with a low global AS
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Fig. 4. A VALLEY ON AN HIJACKED AS PATH OF GLOBAL AS HEGEMONY.
THIS EXAMPLE DRAWN FROM A DEMONSTRATION OF BGP INTERCEPTION

AT DEFCON [38].
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Fig. 5. EXAMPLE OF A SMALL VALLEY ON AN AS PATH.

hegemony score is located between two common transit ASes

with higher scores, we define the dip between the two transit

ASes as a valley. We consider the uncommon AS that causes

the valley as the potential hijacker. For example, as illustrated

in Figure 4, a hijacker, AS26627, is located between two tiers

1 ASes, CenturyLink(AS3561) and GTT(AS4436), and that is

obviously suspicious [38].

In practice, due to approximation and measurement errors

we observe many small valleys which may affect our classifi-

cation. As illustrated in Figure 5, Orange (AS5511) generates a

small valley on the AS path; however, Orange is not a hijacker,

and Orange, Cogent (AS174), and UFINET (AS52468) are

tier-1 or tier-2 networks. Thus, the small valleys should not

be considered as an anomaly. To address this problem, we

define how deep a minimum should be to be counted as a

valley. Then, we ignore the negligible small valleys that are

less than a certain threshold. We calculate the depth by taking

an average of the rate of change between two local maxima,

shown in Figure 4 for our ground truth data set. The calculated

depth for each category is shown in Figure 6. We use 0.95 as

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative change in depths
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Fig. 6. CDF OF RELATIVE CHANGE IN DEPTHS ON EACH AS PATH IN OUR

GROUND TRUTH DATA SET.

our threshold to count a dip as a valley. The threshold allows

us to keep 85% of valleys in forged AS path, but to get rid

of 99%, 99%, and 96% of valleys in origin change, typo, and

prepend mistakes, respectively.

Similarity (Local hegemony) An AS that is closer to the

origin AS on the AS path has a higher local AS hegemony

score in general, and a higher score means that the AS is more

important for the origin AS connectivity. If a hijacker creates

a false AS paths or violates BGP policies, these changes may

not be compliant with the previously computed local AS hege-

mony scores. As an example, all paths to AS14618 (Amazon)

go through AS16509 (Amazon)2 and thus a local hegemony of

AS16509 for AS14618 is 1.0. If a hijacker announces a fake

path between these two ASes, the announcement will cause a

significant change on the local AS hegemony scores; thus the

instances can be identified with this feature.

We use cosine similarity of the previous and current local

hegemony as our feature. To get cosine similarity, we first

recalculate local hegemony scores of origin AS during the po-

tential BGP hijacking event. Next, we retrieve local hegemony

scores of the same origin AS before the event through the

IHR API [32]. Finally, we select the top three ASes in terms

of local hegemony scores from each group and calculate the

cosine similarity between them. This feature isolates ASes that

rarely or never appeared on paths before but now become the

major transit ASes for the origin AS.

Edit distance: Prefixes and Origin ASN. We use Lev-

enshtein’s edit-distance to identify typos made by network

operators in route origin AS and prefixes. Our edit distance

feature allows all possible edit operations, which are insertion,

deletion, substitution, and transposition. For typos in origin

ASN, we calculate the edit distance between the potential

hijacker ASN and the victim ASN.

While detecting typos in origin AS is simple, identifying

prefix typos is relatively complicated. To detect prefix typos,

we first retrieve all prefixes of the potential hijacker’s AS

that are globally reported from BGP viewpoints before the

BGP hijacking event occurred. Then, we calculate the edit

distance between the hijacked prefix and each reported prefix;

and return the minimum edit distance among them. Intuitively,

operators are unlikely to make two mistakes in a single ASN

or IP prefix; therefore, in both typo cases of origin AS and

prefixes, if the edit distance is 1, it is highly likely to be a

human error, not a hijacking.

Prepending mistakes To identify human error in AS path

prepending (as shown in Figure 2), we use a simple method.

For this type of error, the new origin AS will appear to

be a small number (corresponding to the operator’s desired

amount of prepending) and the potential victim will appear

as a direct upstream to this AS. So, we check whether the

victim AS is a direct upstream of the new origin AS. Then,

we assign the scaled probability against the number of origin

ASN based on the prevalence of AS prepending observed on

2https://ihr.iijlab.net/ihr/14618/asn/?af=4&date=2015-03-26&last=7&
hegemonydate=2015-03-26+07\%3A15&hegemonyy=y
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Fig. 7. CDF OF NUMBER OF AS PATH PREPENDING DURING 3.5 DAYS

the Internet. Figure 7 shows the CDF of how many times ASes

are prepended over a period of 3.5 days based on all AS paths

to all IP prefixes, which are globally advertised on the Internet

from BGP viewpoints. We use these results to compute the

probability.

Multiple-origin AS (MOAS). We use a binary digit to

indicate a MOAS conflict, which is one of the standard rules

to determine BGP hijacking. These events may be potentially

malicious hijacking or likely typos or errors as discussed in the

prior sections, thus the presence of a MOAS violation cannot

be the only feature to classify the events.

V. RESULTS

A. Evaluation of features

We evaluate (1) whether our features are able to distinguish

the different types of events we have, and (2) the accuracy of

our classifier.

Identifying forged AS path. As discussed earlier, because

small valleys on AS paths add noise to our features, we set

a threshold to filter out negligible small valleys. In order to

understand whether the threshold removes the noise effec-

tively, we analyze the number of valleys for each AS path

with different thresholds. As illustrated in Figure 8, our results

show that, with a threshold 0.95, most valleys on AS paths in

human error are eliminated while the valleys of forged AS

path remain.

From Figure 9, we get concern on the utilization of the

feature because less than 20% of AS paths are identified with

significant valleys. We compute the average number of valleys

across all paths of each forged AS path event. As a result,

we find that 53% of the events have an average number of

valleys higher than 0.05. This indicates that the majority of

these events contain at least a path with a valley. Thus, we

can still utilize this feature to identify forged AS path events.

We now investigate forged AS path events that have a small

average number of valleys to understand the reason. In our

analysis, we observe a few hijackers placing themselves on

a direct upstream position of a route origin AS. Because

a hijacker is too close to the route origin AS, the hijacker

does not create any valleys even when the hijacker has a

low global hegemony score. We discuss this problem in

details in Section VI. To mitigate this problem, we utilize

local hegemony feature. Even if some hijackers yield small

valleys, they can be detected with local similarity, illustrated in
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Fig. 9. COMPARISON BETWEEN AVERAGE NUMBER OF VALLEYS AND

LOCAL SIMILARITY.

Figure 9. We find that 88% of samples in forged AS path cases

have less than 0.002 in local similarity. Our manual inspection

of the 12% events, where local similarity is larger than 0.002,

reveals that in all these cases a hijacker announces an assigned

but unused prefix using a forged AS path, which means no

MOAS conflict is reported. Besides, the hijacker places its

downstream customer as origin AS, so that local similarity is

relatively larger than other cases.

Identifying human error. We now evaluate our features

that are designed to identify human error. As illustrated in

Figure 10, the prepending feature allows us to distinguish

between forged AS path cases and prepending cases, although

the local similarity values of these two types of events are

similarly distributed. This observation also supports the com-

plementarity of our features and the use of machine learning to

combine all features and improve their discrimination power.

Our results of the edit distance feature are illustrated in

Figure 11. The edit distance is derived from the minimum

value of edit distances between a hijacked prefix and a set

of prefix owned by a potential hijacker in our dataset. In
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Fig. 12. EVENT OF FORGED AS PATH IN BGPMON.

Figure 11, we see that nearly 98% of the returned edit distance

is larger than four.

B. The accuracy of our classifier

We use a random forest (RF) classifier with all our features

to classify BGP hijacking events. To evaluate the accuracy

of our classifier, we run the RF classifier on our ground

truth dataset. First, we remove one event from the dataset.

Then, we train our RF classifier with all other events and

make the classifier predict the label for the removed event.

We repeat this process for all events and count how many

times the classifier has correctly classified the removed event.

Using this experiment, we evaluate the accuracy of our RF

classifier to 95.71%. We also tried other classifiers, k-means

and DBSCAN, and obtained the best results with RF. The

accuracy of these classifiers is 54.5% and 61.9%, respectively.

As some of our features are discrete, thus random forest (the

use of decision tree) is the most appropriate.

C. Classification of BGPMon dataset

We train the RF classifier with our ground truth dataset,

then predict classes of BGP hijacking events reported by

BGPMon [33]. Figure 13 shows the result of our classifier

for a total of 2418 hijacking alarms over ten months. We find

5%, 4%, 2% of forged AS path, typo, and prepend mistakes,

respectively.

We further investigate and verify whether each event is clas-

sified correctly. As an example, in one of the forged AS path

events, AS101 is pointed out as a hijacker by BGPMon against

a prefix 103.100.12.0/24 owned by AS136650. However, we

find that there is a forged AS path between a hijacker AS101

and AS134269, illustrated in 12. In this case, the valley created

by the hijacker is clearly visible; furthermore the two networks

are registered in two distance countries. AS101 stands for the

University of Washington in USA and AS134269 is registered

in India.

While investigating human error in AS path prepending

in the BGPMon dataset, we find some unexpected cases. In

these cases, both a potential hijacker and an original ASN

are smaller than 10. We further investigate these cases with

BGP measurements data over a period of two hours. We find

that there are not only one but also more potential hijackers

of which ASNs are all smaller than 10. Besides, the direct

upstream AS of all the origin ASes is the same for all. For

example, all route origins, ASN2 and ASN6, have only one

direct upstream AS48420. We can infer that AS48420 tried

to do AS path prepending with several numbers at that time,

and BGPStream was confused with this and considered the

repeated error as a change of an origin AS.

D. Classification of CAIDA’s BGPStream dataset

Our approach carries over to another measurement dataset,

CAIDA’s BGPStream. BGPStream allows us to observe all

anomalous BGP messages, and we focus on two events: multi-

ple origin-AS prefixes and newly appeared pair of neighboring

ASes. We perform our filtering on each event to avoid the

cases that are likely traffic engineering (e.g., by avoiding

incidents involving sibling ASes.) and to focus only on pos-

sible hijacking events. After running our trained classifier

on events of multiple origin-AS prefixes, we find 1%, 1%,

14% of forged AS path, prepending mistakes, and typos,

respectively from MOAS. For the events of newly appeared

pair of neighboring ASes, we find 20%, 30% of forged AS

path and typo, respectively.

VI. DISCUSSION

Limitation of features using AS hegemony. Our AS

hegemony based features cannot classify forged AS paths if

a hijacker is either tier-1 or tier-2 transit AS. These ASes

already have a relatively high global hegemony, so they are less

prone to create valleys on AS paths. Also, as many stub ASes

generally depend on tier-1 or tier-2 transit ASes to transmit

their traffic, a route origin AS of an AS path is likely to have a

high dependency on those ASes. It means that we also might

not find any anomalies on the AS path with local hegemony

if the tier-1 or -2 networks are the upstream provider of the

origin AS. However, in our ground truth, the real hijackers

had relatively small hegemony, 0.00125 global hegemony on

average. This is relatively smaller than 0.134 (Level 3) and

0.006 (UCSD).

Trial to fool edit distance. A hijacker may tailor an attack to

make it similar to an operators mistake and fool our classifier.

Due to the limited availability of IP address space, however, a

hijacker has a limited number of choices to bypass and fool our

detector. To explain this, we note that our edit distance features

allow all possible edit operations, which are insertion, deletion,

substitution, and transposition. A hijacker has to use only one

operation among the set to avoid our detection. Computing

the exact number of such possible edits is difficult. Thus, we

check the number of the maximum possibilities of hijacking

attacks where the number of edits is equal to 1. In other words,
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we look at the number of possibilities where the hijack can

pretend to be a case of human error in the worst case scenario.

Assume that we have an IP address, 1.1.1.1/32. For inser-

tion, a hijacker can insert any one digit from 0-9 before and

after ”1” in the first octet. The possibilities for each octet

are 20 so that the total possibilities of insertion is 80. For

deletion, because there are three numbers for each octet, the

total possibilities of deletion are 12. For substitution, a hijacker

can insert [1,2], [0-9], [0-5], respectively to each octet. Thus,

the total possibility of substitution is 60. Transposition has

the smallest number of possibilities, 8, because each octet is

available for only two transposition operations.

Note that the total number of IP addresses is equal to

232. We consider the total number of possible edits and the

number of possible cases with edit distance equal to 1. We

find from the previous case that in the worst case scenario,

the probability of fooling edit distance is negligibly small,

which is equal to 3.73× 10−8.

VII. RELATED WORK

Detection of BGP Hijacking. To mitigate BGP hijacking, a

number of detection techniques have been proposed [13]–[26].

Existing works detect BGP hijacking by searching for a MOAS

violation or a BGP policy violation, or by tracking whether any

new pairs of neighboring ASes suddenly appear. Argus [13]

and Hu et al. [21] measure the number of hijacking attacks

by correlating multiple sources of information from the data

and control planes of the network and finding inconsistencies

among them or checking reachability. Tahara et al. [22] use

ping tests to detect similar attacks. Our work builds on these

studies to detect BGP hijacks, but also take into account the

possibility of human error.

A number of other studies also attempt to detect in real-time

to protect the system from such attacks. PGBGP [17] designs

heuristics to detect BGP hijacking and propose slowing down

the propagation of such routes to allow human operators to

respond to such attacks. Deshpande et al. [15] and Theodoridis

et al. [16] use statistical analysis to identify anomalies and

instabilities and thus detect BGP hijacks in real-time. Our

work uses similar statistical techniques to detect BGP hijacks.

However, unlike our work, these studies do not take into

account the possibility of operator errors.

Classification of Internet Anomalies. Some works try to

classify the different types of BGP anomalies observed in

routing. The work [23] surveys the types of possible BGP

anomalies (e.g. direct and indirect anomalies, link failure)

and enumerates detection techniques with different approaches

(e.g. machine learning, statistical pattern recognition). Mari-

jana et al. [39] use standard statistical classification techniques

to identify the types of BGP attacks, but do not consider

human error. Some works [27]–[29] use machine learning

techniques (e.g. SVM, HMMs) to classify BGP anomalies.

However, these studies all focus on the classification between

work attacks, link failure, and misconfiguration, and do not

consider BGP hijacking. The study closest to our work is

I-Seismograph [40]. It finds major changes in the Internet

routing patterns and tries to identify the root cause behind

it. However, unlike our work, it does not check if an error is

by a hijacker AS or an operators mistake.

VIII. CONCLUSION

In this work, we leveraged AS hegemony and heuristic ap-

proaches to classify BGP hijack events into typos, prepending

mistakes, origin changes, and forged AS paths. We improved

the accuracy of our features by removing noise (e.g., small

valleys) and using empirical measurements. In addition, our

results show that even though each feature seems to be

independent with each other, they can be leveraged together

to enhance the accuracy of classification. Moreover, we use

a random forest (RF) classifier with our five features and

show that our classifier has 95.71% accuracy. We trained our

classifier with our ground truth, and then used it to characterize

candidate BGP hijacking events generated by BGPMon and

BGPstream. With BGPMon, the results show that we classify

4%, 1%, and 2% of alarms as typos, prepend mistakes, and

BGP hijacking with a forged AS path, respectively. With

BGPStream, for multiple origin-AS prefixes events, we find

that 1%, 1%, 14% of events are forged AS path, prepending

mistakes, and typos, respectively. For events of newly appeared

pair of neighboring ASes, we find that 20%, 30% of events

have forged AS path and typo, respectively. Our results show

that typos and prepending mistakes account for more number

of events than origin changes and forged AS path.

For future work, we plan to utilize AS hegemony to localize

a hijacker on an AS path. Localizing is possible by returning

AS that is responsible for the valley on a path. In addition,
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we are aware of the cases where we cannot detect a forged

AS path with the number of valleys so we plan to look at

different statistical techniques to mitigate such cases. Finally,

in this paper, we focus on only BGP hijack attacks, but we

plan to extend our datasets to include the data of all anomalies

and utilize our features to characterize the anomalies. Also,

we plan to increase the scope of human mistakes to cover

configuration errors in routing policies.
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