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Abstract—Netflix is the largest video-streaming provider in the
world today, with over 148 million subscribers and accounting
for over 20% of broadband traffic in most developed countries.
Internet Service Providers (ISPs) are acutely aware of the need
to provide good video streaming experience to viewers, but are
poorly equipped to measure and monitor per-stream quality. In
this paper, we measure and analyze Netflix playback data from
multiple households, develop a practical and scalable method
to correlate network activity with client playback behavior, and
provide a means for ISPs to infer per-stream Netflix experience
from broadband traffic patterns. Our specific contributions are:
(1) We develop a measurement tool for collecting network flow
activity and client playback metrics, deploy it in 9 households and
our lab to gather data for about 8000 Netflix video streams under
various network conditions, and release the data to the public;
(2) We analyze our data to highlight correlation between active
flows and video playback phase, and between network chunk
transfers and playback buffer health, during both regular-play
and trick-play of video; (3) We develop a method for the ISP to
infer Netflix user experience in terms of buffer fill-time, video
bitrate and throughput, and detect playback buffer depletion and
quality degradation events. ISPs can use our methods to measure,
monitor, and manage Netflix user experience in real-time.

I. INTRODUCTION

Streaming video continues to grow, accounting for about

58% of downstream traffic on the Internet according to the

Sandvine 2018 report [1]. Further, Netflix is the top web

application used in the Americas, and in the top-10 in every

region of the world, generating 15% of global Internet traffic

to serve over 148 million subscribers world-wide. With this

kind of reach and scale, it is no wonder that ISPs are keen to

ensure that their subscribers experience good Netflix streaming

quality over their broadband networks, so they can better retain

existing customers and attract new ones.

However, ISPs are operating blind on Netflix user experi-

ence. Netflix publishes a per-country monthly ranking of ISPs

by prime-time Netflix speeds, but this is of limited value to

ISPs since: (a) it is averaged across (a potentially large) user-

base and does not give information on specific subscribers or

streams; (b) it is retrospective and therefore not rectifiable by

immediate action; and (c) it is at best an indicator of video

resolution (bit-rate), with no insights into variation of quality

during playback or video start-up delays that are central to user

experience. With such limited knowledge, ISPs may attempt to

install CDN servers, or as the last resort increase their network

capacity with the hope for a better user experience. However

these instrumentations can not only be prohibitively expensive,

but also do not quantify the improved user experience.

Existing methods for inferring streaming video experience

are not usable by ISPs for Netflix. These methods either

require to extract statistics from the packet traces and/or HTTP

logs, or visibility into encrypted traffic (that carry URLs and

manifest files), neither of which are easy for an ISP to achieve

for Netflix. While some prior works have studied video stream-

ing in the mobile context, the behavior in broadband networks

is different, and moreover mechanisms employed by Netflix

in terms of using HTTPS, non-discretized bitrates, encrypted

manifest files and urls, render earlier studies obsolete. Our

aim in this work is to develop a method that an ISP can easily

deploy into their existing network infrastructure to gain real-

time visibility into per-stream Netflix user experience at scale.

In this paper, we collect Netflix data from multiple house-

holds, build models that deduce client playback behavior

using just network flow activity, and evaluate the ability

of our models to determine user experience from network

measurements obtained by ISPs. Our specific contributions are

as follows: (a) We build a tool that collects client playback

metrics (like buffer health and bitrate) and flow-level network

activity (byte counts and packet counts), deploy it in real

households, and make public our dataset comprising over

750 hours of video playback with 8000 streaming sessions;

(b) We analyze our dataset to understand different phases of

video streaming, audio and video content transfer mechanisms,

correlation between network activity (chunks transfers, number

of active flows) and corresponding client behavior (buffer state,

bitrate switches, trickplay), and the challenges posed by the

sophisticated Netflix video client; and (c) We develop machine

learning and statistical methods to infer user experience in

terms of video quality, buffer fill time, and available band-

width, and additionally deduce per-stream events like max-

bitrate playback, buffer depletion, and quality degradation

during both regular play and trickplay of the video.

II. RELATED WORK

Prior works on measurement of Netflix video streaming

studied bitrate adaptation models [2], [3], content distribu-

tion strategies and methods [4], bandwidth consumption and

congestion control mechanisms [5], and prediction of the

movie/title using fine-grained traffic patterns [6]. To our best

knowledge, we are the first to analyze the behavior of Neflix

video streaming to infer the user experience from network

measurements for broadband ISPs who cater to home net-

works. Existing approaches for estimating streaming video
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Fig. 1: Architecture of FlixMon.

experience are either statistical modeling-based or machine

learning-based. Recent attempts such as eMIMIC [7] and

BUFFEST [8] employ statistical models, using packet traces

and HTTP requests respectively, to quantify users quality of

experience (QoE). Machine Learning (ML) approaches [9]–

[11] used recently, attempt at measuring QoE by predicting

categorical estimates of experience metrics like low, med, high
bitrates [10], [11] or low, high probabilty of bitrate switches

and rebuffering [10], [11]. To collect the ground-truth, both [9]

and [11] used client-side instrumentation on mobile devices

and, [10] used HTTP logs and metrics exported to content

provider. However, all of them used packet traces to derive

fine-grained attributes such as RTT, packet losses, ACKs,

retransmissions which are expensive to compute. Further,

study in [9] was limited to progressive video streaming and

did not consider HTTP-based Adaptive Streaming (HAS).

None of the these methods can be directly used for Netflix

because: first, it uses adaptive streaming over HTTPS to stream

video traffic which makes HTTP logging infeasible and it

encodes its URL requests and manifest files thus collection

of parameters such as bitrate and content type from request

logs becomes infeasible (even if MITM proxies were used).

Further, existing works perform a post-facto estimation of QoE

by deriving features from packet traces or logs. We account

these characteristics of Netflix and propose a methodology to

compute the metrics in real-time and being independent of

existing logging mechanisms or tools used by the ISP.

In a parallel work [12], authors attempt to classify buffer

states (i.e., filling, maintaining, depleting) for Youtube videos

using attributes derived from aggregate network profile. In

[13], authors use low-level packet features to detect startup

delay and re-buffering events in real-time for Youtube traffic

but do not report the quality of video playback or its variation.

We instead analyze network activity of a set of TCP flows,

compute per-flow attributes, correlate them with client behav-

ior of Netflix, and infer quality of video playback in addition

to classifying the phase of video playback. Further, most of the

works which measure metrics like stalls, initial delay consider

mobile network scenarios. We argue that these are not enough

to comment on the experience of broadband users as they fail

to quantitatively compare the experiences among users with

no stalls and minimal delay. We thus introduce new metrics

to infer experience of Netflix users on broadband network,

and offer a method to ISPs for measuring users experience of

Netflix on a per-stream basis in real-time.

III. FLIXMON: OUR TOOL FOR MEASURING

NETFLIX PLAYBACK PERFORMANCE

To construct an accurate profile of Netflix video streams,

we have developed a tool – FlixMon – which automatically

plays videos, measures their network activity profile along

with client playback metrics, and stores measured records into

a pair of CSV files.

A. FlixMon Architecture:

FlixMon has three main components, each packaged into

a separate docker container: a custom-built network measure-

ment app called FlowFetch, a selenium browser instance, and

a video orchestrator application which signals the browser to

play videos. There is also an optional network conditioner

which uses tc linux tool to shape traffic by synthetically

changing network conditions in software. Containerizing ap-

plications eases deployment of the FlixMon. A shared virtual

network interface among the containers ensures that packets

flowing through FlowFetch originate solely from the browser,

eliminating other traffic on the machine where FlixMon runs.

FlowFetch is a tool that we built in Golang to record flow-

level activity by capturing packets from a network interface.

By a flow, we mean a transport-level TCP connection or UDP

stream identified by a unique 5-tuple consisting of source
IP, source port, destination IP, destination port and protocol.
For a TCP/UDP flow, the tool records (at a configurable

granularity) cumulative byte and packet counts (more practical

and storage-friendly than packet traces) into a CSV. FlowFetch

is also able to filter flows of interest DNS queries specific

to certain providers (e.g., Netflix). In this work, the tool is

configured to log flow records every 100ms and a DNS-

based filter is employed to isolate network activity of flows

from nflxvideo.net – the primary domain responsible for

delivery of Netflix video content.

For the video orchestrator, we have used Selenium client

library in Python to interact with a remote Selenium browser

instance (i.e., server) for loading and playing Netflix videos.

At the beginning of each measurement session, a browser

instance (i.e., Firefox or Chrome) is spawned with no cache

or cookies saved which loads the Netflix web-page and logs

in to the user account by entering credentials (shown by

step 1 in Fig. 1). The tool can be configured in either of

two ways to generate a video list: (a) from a fixed set of

Netflix videos specified in a config file, or (b) by fetching the

URLs of recommended videos on the Netflix homepage that

are updated regularly. Given the list, FlixMon starts playing

videos sequentially. Prior to playback of each video, the player

module signals the FlowFetch to start measuring network

activity (shown by step 2 in Fig. 1). Then, the orchestrator

signals the browser to load the video and collects the playback

metrics (shown by step 3 and 4.1 respectively in Fig. 1) –

Netflix player offers a series of hidden menus that allow us to

view our streaming quality stats, and diagnose any potential

issues. The real-time metrics (refresh every second) for audio

and video media include the buffering/playing bitrates, buffer

health (in seconds and bytes), and the CDN from which the
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TABLE I: Summary of instances in our dataset.

List # streams # titles Stream dur. Data resol.

Households
Rec. 1720 787 5-min 100 ms

Fix. 919 11 5-min 100 ms

Lab
Rec. 5408 1842 2-min 500 ms

Fix. 30 10 5-min 100 ms

stream is sourced. Additionally, position and duration of the

playback, frame statistics (e.g., frame rate and frame drops),

and throughput are also provided. The orchestrator stores client

playback metrics (every second) into a CSV file (step 4.2 ) that

exists in storage – a shared volume among the orchestrator

and Flowfetch containers. Simultaneously, Flowfetch stores

the network activity (byte and packet count measured every

100ms) into another co-located CSV (step 4.3 ) when the total

volume of a TCP/UDP flow crosses an export threshold (e.g.,
2MB) since last export.

We deployed the FlixMon both in our university lab and

home networks (of 9 members of our research group). For

home networks, we deployed our tool without the network

conditioning module and played both fixed set and recom-

mended set of videos. In our lab, given the high bandwidth

available in our university campus network we enabled the

network conditioner to synthetically impose bandwidth caps

ranging from 500Kbps to 100Mbps. We would like to empha-

size that the tool is needed to collect data for training models

in the lab (as described in §5). Subsequently in the field, ISPs

will deploy just the Flowfetch component to obtain real-time

in-network flow-level measurements, and derive QoE metrics

using trained models.

B. Dataset:

We collected a total of 8077 data instances for Netflix

video streams. Each instance consists of a pair of CSV files

(i.e., one for network activity and one for client playback

behavior). A summary of our dataset is shown in Table I.

For households, our data includes profiles for 1720 streams of

787 unique recommend titles and 919 streams of 11 unique

titles from a fixed list. Each video stream in the households

dataset played for a duration of 5 minutes and corresponding

network activity was recorded at every 100 ms. For lab, our

data is relatively larger with 5408 streams of recommended

titles along with 30 streams from the fixed list. Note that the

lab data of recommended titles were collected for a duration

of 2 minutes with the resolution of 500 ms – this was our

first set of data collected prior to households measurements

for which we increased both duration and resolution.

We release our datasets (spanning more

than 750 hours of Netflix video playback) via

https://telescope-data.sdn.unsw.edu.au/netflix.

The data is organized in two main branches namely

households and lab, each containing several zip files. Each

zip file, corresponding to a household (or lab), has a

folder denoting browser type (i.e., Firefox and/or Chrome),

in which are sub-folders of unique movie titles which

contain instances of playback in a timestamped directory.

There are two files corresponding to each instance of a

Fig. 2: Network profile of flows in a typical Netflix video

stream.

video stream: (a) “flows.csv” (i.e., network activity), and

(b) “netflixstats.csv” (i.e., client playback metrics).

Each record of flows.csv represents the measurements

(at the resolution of 100ms or 500ms) of individual TCP

flows associated with a Netflix video stream comprising

timestampExport, timestampFlowMeasure, flowID, 5-tuple,

threshold of flow volume at which the FlowFetch exports

fine-grained flow profile measurements: cumulative volume
(Bytes), cumulative packetCount, and duration (ms). Also,

each record of netflixstats.csv represents the real-time

measurements (i.e., one row per second) of all client playback

metrics provided by the Netflix player comprising timestamp,

movieID, CDNaudio, CDNvideo, playback position (seconds),

movie duration (seconds), playing-bitrate-audio/video
(kbps), buffering-bitrate-audio/video (kbps), buffer-size-bytes-
audio/video, buffer-size-seconds-audio/video, throughput
(Kbps), etc.

IV. NETFLIX STREAMING: ANALYSIS AND INSIGHTS

In this section, we analyze our data to highlight behavior

of Netflix video streaming at client and on network .

A. Profile of a Typical Netflix Stream

Fig. 2 illustrates a time-trace of network activity measured

for a representative Netflix video stream played for 5 minutes

with no interruption. The top subplot shows in black lines the

total downstream traffic profile for this stream, and the four

subplots below in blue lines show downstream traffic profile of

each TCP flow associated with this stream. We observe that the

Netflix client established four parallel TCP flows to start the

video, three of them come from Netflix server 203.219.57.106

and one from 203.219.57.110. All four TCP flows actively

transferred content for first 60 seconds. Thereafter, two flows

(A,C) became inactive (i.e., idle) for a minute before being

terminated by the client (i.e., TCP FIN). It is seen that the

remaining two active flows (B,D) changed their pattern of
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(a) Audio buffer health. (b) Video buffer health . (c) Throughput and buffering-bitrate of video.

Fig. 3: Client metrics of a Netflix stream.

activity – FlowB has small spikes occurring every 16 seconds

and flowD has large spikes occurring every 4 seconds.

Let us correlate this with metrics offered by the Netflix

client application for the same video stream shown in Fig. 3.

We show in Fig. 3(a) and 3(b) the buffer health of audio

and video respectively which is measured in terms of: (a)

volume in bytes (shown by solid blue lines and left y-axis)

and (b) duration in seconds (shown by dashed red lines and

right y-axis). We observe that the buffer health in seconds for

both audio and video ramps up during the first 60 seconds of

playback, till it reaches to a saturation level at 240 seconds

of buffered content – thereafter, this level is consistently

maintained by periodic filling. Note that the audio and video

buffers are replenished every 16 and 4 seconds respectively,

suggesting a direct contribution from the periodic spikes in

network activity (observed in FlowB and FlowD).

Netflix client interface reports a metric called “throughput”

which is an estimate of bandwidth available for the video

stream. Fig. 3(c) shows the throughput (in Mbps, solid blue

lines, on the left y-axis) and the buffering-bitrate of video

(in Kbps, dashed red lines, on the right y-axis). We observe

that the video starts at a low-quality bitrate 950Kbps, switches

to higher bitrate 1330Kbps after 2 seconds, and jumps to its

highest bitrate 2050Kbps after a second. Note that it stays

at this highest bitrate for the rest of video playback even

though far more bandwidth is available. Additionally, we note

in Fig. 3(b) that the video buffer health in volume is variable

while the buffer in seconds and the buffering bitrate are both

consistent. This is because of variable bitrate encoding used

by Netflix to process the videos where each video chunk is

different in size depending on scene complexity. In contrast,

buffer health volume for audio in Fig. 3(a) stays at 3MB with

periodic bumps to 3.2MB – this indicates a constant bitrate

encoding used for audio content and bumps occur when a new

audio chunk is downloaded and an old one is discarded from

the buffer. For audio, we observed (not shown in the Fig. 3(c))

a constant bitrate of 96Kbps throughout the playback.

Having analyzed streaming behavior on network and client

individually, we now attempt to correlate them. We observed

two distinct phases of video streaming: (a) the first 60 seconds

of buffering, (b) followed by stable buffer maintenance. In the

buffering phase, the client aggressively transferred contents at

a maximum rate possible using four concurrent flows and then

in the stable phase it transferred chunks of data periodically

to replenish the buffer using only two flows.

(a) Audio buffer (on client) versus cor-
responding flow (on network).

(b) Video buffer (on client) and corre-
sponding flow (on network).

Fig. 4: Correlation of network activity and client behavior.

Of the two flows active in stable phase, FlowB (with a

spike periodicity of 16 seconds) displays a strong correlation

between the spikes of its network activity and the replenishing

audio buffer levels on the client, as shown in Fig. 4(a). This

suggests that the TCP flow was used to transfer audio content

right from the beginning of the stream. Isolating content

chunks of this flow , we found that the average chunk size was

213KB with a standard deviation of 3KB (1.4%). Every chunk

transfer corresponds to an increase of 16 seconds in the client

buffer level. Considering the fact that each chunk transferred

16 seconds (indicated by both periodicity and increase in

buffer level) of audio and the buffering bitrate of audio was

96Kbps, the size of audio chunk is expected to be 192KB

which is very close to our computed chunk size of 213KB

which includes the packet headers. Additionally, we note that

for this specific flow, the server IP address differs from other

flows (as shown in Fig. 2) and the Netflix client statistics also

indicate that audio comes from a different CDN endpoint.

Further, FlowD (with a spike periodicity of 4 seconds)

during the stable phase, displays a similar correlation between

its network activity and the client buffer health of video, as

shown in Fig. 4(b). The chunks of this flow have an average

size of 1.15MB and a standard deviation of 312KB (27%).

With each chunk constituting 4 seconds of video content and

the video bitrate on client measured as 2050Kbps, the actual

chunk size is expected to be 1.00MB which is close to the

computed average chunk size while accounting for packet

headers. Additionally, a high deviation in video chunks size

also suggests that video is encoded using variable bitrate (in

contrast, audio has a constant bitrate).

Trickplay: Having understood the streaming behavior dur-

ing a normal playback (with no interruption), let us now

analyze the behavior of Netflix streams during trickplay events.

Trickplay occurs when the user watching the video decides

to play another segment far from current seek position by
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(a) Histogram of bitrate across all
videos in our datset.

(b) Scatter plot of flow count versus
average throughput.

Fig. 5: (a) Distribution of quality, and (b) correlation of

network activity with available bandwidth.

performing actions such as fast-forward, or rewind. A trickplay

is performed either within the buffered content (e.g., forward

10 seconds to skip a scene) or outside the buffered content

(e.g., random seek to unbuffered point). In the former case

(within buffer), our observations show that the Netflix client

uses existing TCP flows to fetch the additional content filling

up the buffer up to 240 seconds. However, in the latter case,

the client discards the current buffer and existing flows, and

starts a new set of flows to fetch content from the point of

trickplay. This means that trickplay outside the buffer is very

similar to the start of a new video stream, making it difficult

to determine whether the client has started a new video (say

next episode in a series) or has performed a trickplay. For

this reason, we consider a trickplay event equivalent to start

of a new video stream and compute our experience metrics

accordingly. Additionally, we note that for a stream in the

stable phase, trickplay results in transitioning back to the

buffering phase until the buffer is replenished. In §V, we will

distinguish trickplay from network congestion that can cause

a stream to transition into the buffering phase.

B. Analysis of Netflix Streams Across Our Dataset

Having looked at a representative video stream, we now

analyze properties of Netflix streams in the dataset. Starting

with the quality of streams across all instances in our dataset,

we plot in Fig. 5(a) the histogram (with 20 bins) of the number

of unique titles for a given video bitrate – the x-axis is capped

at 5000 Kbps for readability of the plot. Note that each title is

played at multiple bitrate values during a stream, as explained

earlier. We make two observations: (a) Netflix videos are

available in a fine granularity of bitrates in the range (i.e., [80,

6100] Kbps) of bitrate – this is in contrast with [7], in which

video providers employed a small discrete set of 7 bitrates. The

availability of Netflix videos in many bitrates across the range,

combined with variable bitrate encoding, makes it nontrivial

to map a chunk size observed on the network to a particular

quality bitrate, and (b) all movie titles are available at lower

bitrates (i.e., less than 1500Kbps), while only 517 titles in our

dataset were available (or played) at a high-quality bitrate (i.e.,
more than 3000Kbps).

Moving to correlation of active flows and network condition,

we show in Fig. 5(b) the scatter plot of the total number of

TCP flows (those with volume more than 1 MB) per each

stream versus the average throughput (measured by Netflix

client). Note that for each stream, we counted all TCP flows

Fig. 6: Multiplexing audio and video over two TCP flows.

during both initial buffering and midstream (due to CDN

switch or network congestion events). It is seen that Netflix

often uses 3 to 5 TCP flows for the entire range of measured

throughput – upon commencement of the stable phase only

a couple of flows remain generally. We also observe that the

flows count can go up to more than 12 when the available

bandwidth is relatively lower (i.e., less than 8 Mbps) – this is

not surprising as Netflix attempts to spawn multiple flows to

quickly fetch required contents for a smooth playback.

Lastly, we would like to point out certain challenges in

analyzing Netflix behavior. We found that some TCP flows

carry both audio and video contents (audio content is identified

by chunk sizes of about 220KB and periodicity of 16 seconds

in the stable phase) – both in an interleaved and alternating

fashion. Also, each content type may switch TCP flows

midstream – e.g., we observe in Fig. 6 in the stable phase of

a sample stream that Flow1 carries audio and Flow2 carries

video at the beginning, but after about 20 seconds video is

carried in Flow1 and audio is carried in Flow2.

Therefore, the mapping of a flow to the content it carries

is nontrivial to determine. The complex and sophisticated

orchestration of flows and their content type/quality makes

it challenging to accurately predict all the client playback

metrics purely based on network activity. In the next section,

we use machine learning and statistical methods to compute

a set of metrics (buffer-fill-time, average bitrate, and available

throughput) per stream to infer user experience from network

measurements.

V. INFERRING NETFLIX QOE FROM NETWORK

Having understood the behavior of video streaming, we now

develop a method which uses just the network measurements

to infer Netflix user experience (since ISPs do not have access

to end clients). We first detect presence of Netflix video

streams per host by using DNS, detect the phase of video

playback and finally compute our metrics relevant to user

experience.

A. Isolating Netflix Video Streams

Prior to video playback, the client sends a DNS query

to fetch the IP address of Netflix streaming servers. To

isolate flows corresponding to Netflix, we capture the A-

type DNS response packets and inspect them for the suffix

nflxvideo.net – if present, we mark the IP address as a

Netflix streaming server. In parallel, we track five tuple flows
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established to these streaming servers on a per-host basis. For

example, given a user with IP address of 1.1.1.1, we track

the connections from Netflix servers to this IP address in a

separate data structure, and thus group all flows established by

this user to the Netflix streaming server. For now, we assume

that one host plays at most one video at any time – later

we will describe a method to detect households with multiple

parallel Netflix sessions. We note that an ISP can equivalently

use any other method to isolate Netflix traffic, e.g., SNI field

present in server hello message sent during SSL connection

establishment. We used DNS as it is simpler to capture and

avoids the use of sophisticated deep packet inspection tech-

niques required otherwise. However, we acknowledge that the

DNS information may be cached in the browsers, thus every

video stream may not have a corresponding query observed

on the network. Nonetheless, maintaining a set of IP addresses

(from previous DNS queries) will ensure that the video streams

are captured.

B. Streaming Phase Classification

Having isolated the TCP flows of a stream, we now build

machine learning-based model to classify the phase (i.e.,
buffering or stable) of a video streaming playback by using

several waveform attributes (explained next).

Data Labeling: Each video streaming instance in our

Netflix dataset is broken into separate windows of each 1-

minute duration. We label a window of individual TCP flows

associated with a stream using the client buffer health (in

seconds) of that stream. For each window, we consider three

measures namely the average, the first, and the last value of

buffer health in that window. If both the average and last

buffer values are greater than 220 seconds, then we label it as

“stable”. If both the average and the last buffer values are less

than 220 seconds but greater than the first buffer value, then

we label the window as “buffering”. Otherwise (e.g., transition

between phases), we discard the window and do not use for

training of our model.

Attributes: For each flow active during a window, we com-

pute two sets of attributes. Our first set of attributes include:

(a) totalVolume – relatively high during buffering phase; (b)

burstiness (i.e., μ/σ) of flow rate – captures the spike patterns

(high during stable phase); (c) zeroFrac, fraction of time the

flow is idle (i.e., transferred zero bytes) – this attribute is

expected to be smaller in the buffering phase; (d) zeroCross,

count of zero crossing in the zero-mean flow profile (i.e., [x-

μ]) – this attribute is expected to be high in the buffering

phase due to high activity of flows; and (e) maxZeroRun,

maximum duration of being continuously idle – this attribute

is relatively higher for certain flows (e.g., aging out or waiting

for next transfer) in the buffering phase.

Our next set of attributes are computed by isolating chunks

of transfers from the flow profile. Each chunk in a flow is

isolated by three successive data points of zero (i.e., 300

ms idle after a transfer). Our five attributes computed from

chunks are: (f) chunksCount; (g,h) average and standard-
deviation of chunk sizes; (i,j) average and mode of chunks

(a) Confusion matrix. (b) CCDF of confidence-level.

Fig. 7: Performance of phase classification: (a) confusion

matrix, and (b) CCDF of confidence-level.

inter-arrival time. In the buffering phase, the flow would have

less chunks, lower inter-chunk time, and higher volume in each

chunk compared to the stable phase. In total, for each flow in

a window, we have 10 attributes computed (considering just

the waveform profile, independent of available bandwidth) for

each training instance (i.e., 1-min window of a TCP flow).

Classification Results: We used the RandomForest ML

algorithm available in Python scikit-learn library. We con-

figured our model to use 100 estimators which are used to

predict the output along with a confidence-level of the model.

We split our labeled data of 12,340 instances into training

(80%) and testing (20%) sets. We evalued the performance

of our classifier using the testing set and obtained a total

accuracy of 93.15%, precision of 94.5% and recall of 92.5%.

We show in Fig. 7(a) the confusion matrix of our classifier. It

is seen that 93.9% of buffering and 92.4% of stable instances

are correctly classified. Fig. 7(b) illustrates the CCDF of the

model confidence for both correctly and incorrectly classified

instances. The average confidence of our model is greater 94%

for correct classification while it is less than 75% for incorrect

classification – setting a threshold of 80% on the confidence-

level would improve the performance of our classification.

Use of Classification: For each TCP flow associated with

a streaming session, we call our trained model to predict

its phase of video playback. As explained earlier in §IV,

multiple flows are expected especially at the beginning of a

stream. We perform majority voting on outputs of the classifier

for individual flows to determine phase of the video stream.

In case we have a tie, we pick the phase with maximum

sum confidence of the model. In addition to the classification

output, the count of flows in the stable phase (i.e., two flows)

can be used to check (validate) the phase detection. This cross-

check method also helps detect the presence of concurrent

video streams for a household to discount them out of the

analysis – having more than two Netflix flows for a household

IP address, while the model indicates the stable phase (with a

high confidence), likely suggests parallel playback streams.

C. Computing User Experience Metrics

We now identify three key metrics that together help us

infer Netflix user experience. The first two are metrics directly

related to experience, and the third one is used to deduce

events affecting experience.
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1) Buffer Fill-Time: As explained in §IV (by Fig. 3(a)

and 3(b)), Netflix streams tend to fill up to 240 seconds

worth of audio and video to enter into the stable phase – a

shorter buffer fill-time implies a better network condition and

hence a good user experience. Once the stream starts its stable

phase, we begin by measuring bufferingStartTime when the

first TCP flow of the stream was established. We then identify

bufferingOnly flows – those that were active only during the

buffering phase, go inactive upon the completion of buffering,

and are terminated after one minute of inactivity (FlowA and

FlowC shown in Fig. 2). We, next, compute bufferingEndTime
as the latest time when any bufferingOnly flow was last

seen active (ignoring activity during connection termination

(e.g., TCP FIN)). Lastly, the buffer fill-time is obtained by

subtracting bufferingEndTime and bufferingStartTime.

Fill-Time Results: To quantify the accuracy of computing

buffer fill-time, we use our client data of video buffer health

(in seconds) as ground-truth. Results show that our method

achieved 10% relative error for 75% of streams in our dataset

– the average error for all streams was 20%. We observe that

in some cases a TCP flow starts in the buffering phase and

(unexpectedly) continues carrying traffic in the stable phase for

some time after which it goes idle and terminates. This will

result is our predictions of buffer fill-time to be larger than its

true value thereby underestimating the user experience.

2) Bitrate: A video playing at a higher bitrate brings a

better experience to the user. We estimate the average bitrate

of Netflix streams using the following heuristics. During the

stable phase, Netflix replaces the playback buffer by period-

ically fetching the video and audio chunks. This means that

over a sufficiently large window (say, 30 seconds), the total

volume transferred on the network would be equal to the

playback buffer of the window size (i.e., 30 seconds) since

the client tends to maintain the buffer at a constant value

(i.e., 240 seconds). Therefore, the average bitrate of the stable

stream is computed by divinding the volume transferred over

the window by the window length. During the buffering phase,

Netflix client downloads data for the buffer-fill-time and an

additional 240 seconds (i.e., the level maintained during the

stable phase). Thus, the average bitrate of the buffering stream

is computed by dividing total volume downloaded by sum of

buffer fill-time and 240 seconds.

By tracking the average bitrate, we are able to determine

the bitrate switches (i.e., rising or falling bitrate) in the stable

phase. As discussed earlier, there are a range of bitrates

available for each video. For example, title “Eternal Love”

was sequentially played at 490, 750, 1100, 1620, 2370, and

3480Kbps during a session in our dataset. We note that Netflix

makes bitrates available in a non-linear fashion – bitrate values

step up/down by a factor of ∼1.5 to their next/previous level

(e.g., 490×1.5 approximately indicates the next bitrate level

750). We use this pattern to detect a bitrate switch if the

measured average bitrate changes by a factor of 1.5 or more.

Bitrate Results: We evaluated the accuracy of our bitrate

estimation using the client data as ground-truth. For the

average bitrate in buffering phase, our estimation resulted a

(a) Good expeirence (bitrate saturates
while more bandwidth available).

(b) Bad expeirence (bitrate follows
stream throughput closely).

Fig. 8: Inferring user experience considering throughput.

mean absolute error of 158Kbps and an average relative error

of 10%. The estimation errors for average bitrate in stable

phase, were 297Kbps and 18% respectively. These errors arise

mainly due to the fact that Netflix client seems to report

an average bitrate of the movie but due to variable bitrate

encoding, each scene is transfered in different sizes of chunks,

hence a slightly different bitrate is measured on the network.

Nonetheless, we note that detection of bitrate switch events

will be accurate since the average bitrate would change by

more than a factor of 1.5 in case of bitrate upgrade/downgrade.

3) Throughput: We use the aggregate throughput measure-

ments of the stream (obtained by summing up the throughput

of all TCP flows involved) to detect experience events listed

below. To do so, we derive two signals over a sliding win-

dow (say, 5 seconds) of the aggregate throughput: (a) max

throughput, and (b) average throughput – note that the flow

throughput is measured every 100ms.

Max bitrate playback. For a video stream, if the gap between

the max throughput and the computed average bitrate is

significantly high (say, twice the bitrate being played), then

it implies that the client is not using the available bandwidth

as it is currently playing at its maximum possible bitrate, as

shown in Fig. 8(a), indicating a good experience.

Bitrate variations during buffering. If the max throughput

measured is relatively close to the bitrate ranges of Netflix

(up to 5000 kbps) and is highly varying, it indicates possible

bitrate switching events. In this case, the actual bitrate strongly

correlates with the average throughput signal, as shown in

Fig. 8(b). The fluctuating average throughput with high stan-

dard deviation (i.e., ≥ 20%) causes the stream to switch

bitrates and becomes unstable, indicating a bad experience.

D. Detecting Buffer Depletion and Quality Degradation

We now detect bad experiences in terms of buffer health and

video quality using the metrics described above. To illustrate

our method, we conducted an experiment in our lab whereby

the available network bandwidth was capped at 10 Mbps. We

first played a Netflix video on a machine, and one minute

after the video went into the stable phase (i.e., 240 seconds of

buffer filled on client) we introduced UDP downstream traffic

(i.e., CBR at 8Mbps using iperf tool) to congest the link.

For videos, we chose two Netflix movies – Season 3 Episode

2 of “Deadly 60” with high quality bitrate available up to

4672Kbps (Video1), and Season 1 Episode 1 of “How I Met

Your Mother” with a maximum bitrate of 478Kbps (Video2).
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(a) Quality dropped due to congestion
(client behavior of Video1).

(b) Quality maintained even with con-
gestion (client behavior of Video2).

(c) Quality dropped due to congestion
(network activity of Video1).

(d) Quality maintained even with con-
gestion (network activity of Video2).

Fig. 9: Detecting quality degradation for users.

Fig. 9 shows client behavior (top plots) and network activity

(bottom plots) for the two videos.

Considering Fig. 9(a) for Video1, it is seen that the stream

started at 679Kbps bitrate (dashed red lines), quickly switched

up, and reached to the highest possible value 4672Kbps in 30

seconds. It continued to play at this bitrate and entered into the

stable phase (at second 270) where only two flows remained

active, as shown in Fig. 9(c), and the buffer health (solid

blue lines) reached to its peak value of 240 seconds. Upon

commencement of congestion (at second 340), we observe

that the buffer started depleting followed by a bitrate drop

to 1523Kbps. Moving to the network activity in Fig. 9(c), we

observe that two new flows spawned, the stream went to the

buffering phase, and the network throughput fell below 2Mbps.

The change of phase, combined with a drop in throughput,

indicates that the client experiences a buffer depletion – a bad

experience. Using our method, we detected a phase transition

(into buffering) at second 360 and deduced bitrate from the

average throughput (as explained earlier in Fig. 8(b)), ranging

from 900Kbps to 2160Kbps. This estimate shows a significant

drop (i.e., more than a factor of 1.5) from the previously

measured average stable bitrate (i.e., 3955Kbps). Additionally

during the second buffering phase, we observe a varying

average throughput with the mean 1.48Mbps and the standard-

deviation 512Kbps (i.e., 35% of mean) indicating a fluctuating

bitrate on the client. We note that although a transition from

stable to buffering can result from a trickplay (discussed in

§IV) we do not detect a bad experience since no change in

max throughput is observed.

Moving to Fig. 9(b) and 9(d) for Video2, the stream played

consistently at the bitrate 478Kbps and quickly transitioned

into the stable phase within about 20 seconds. It started

with 4 active flows with aggregate throughput of 10 Mbps,

but only one flow remained active after entering into the

stable phase – this flow was responsible for both audio

and video contents. Upon arrival of UDP traffic (at second

80), no change is observed in the playback. Employing our

method for experience metrics, we estimated a buffer fill time

of 17.5 seconds, average buffering bitrate of 652Kbps, and

correctly predicted the stream to be in the stable phase with

bitrate reported every minute as 661, 697, 658, 588Kbps.

Additionally, the max throughput was accurately predicted

to drop from 10Mbps to 4Mbps. We note that even though

the bitrate and throughput are relative low during the stable

phase, the playback is smooth and the experience is not bad.

We believe that our stream phase detection, combined with

estimation of bitrate and throughput, enables us to distinguish

a good experience from a bad experience which could arise

due to quality bitrate degradation and buffer depletion events.

VI. CONCLUSION

Netflix is a widely-used video streaming application and

network operators are seeking visibility into its user expe-

rience. In this paper, we presented a practical method to

infer Netflix user experience from broadband network mea-

surements in real-time. We developed a measurement tool

and collected network activity and client behavior data for

8000 Netflix streams. We made our dataset publicly available.

We then highlighted the correlation between network flows

activity and client buffer health. Finally, we developed a

model to predict the streaming phase and inferred Netflix user

experience in terms of buffer-fill time, average video bitrate,

and available bandwidth to the stream.
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