
Clairvoyant Networks

Cheng Jin∗,Cristian Lumezanu†,Zhi-Li Zhang∗,Haifeng Chen†
∗ University of Minnesota, †NEC Laboratories America

{cheng,zhzhang}@cs.umn.edu, {lume,haifeng}@nec-labs.com

Abstract—We use the term clairvoyant to refer to networks
which provide on-demand visibility for any flow at any time.
Traditionally, network visibility is achieved by instrumenting and
passively monitoring all flows in a network. SDN networks, by
design endowed with full visibility, offer another alternative to
network-wide flow monitoring. Both approaches incur significant
capital and operational costs to make networks clairvoyant.

In this paper, we argue that we can make any existing network
clairvoyant by installing one or more SDN-enabled switches
and a specialized controller to support on-demand visibility. We
analyze the benefits and costs of such clairvoyant networks and
provide a basic design by integrating two existing mechanisms
for updating paths through legacy switches with SDN, telekinesis
and magnet MACs. Our evaluation on a lab testbed and through
extensive simulations show that, even with a single SDN-enabled
switch, operators can make any flow visible for monitoring within
milliseconds, albeit at 38% average increase in path length. With
as many as 2% strategically chosen legacy switches replaced
with SDN switches, clairvoyant networks achieve on-demand flow
visibility with negligible overhead.

I. INTRODUCTION

We use the term clairvoyant to refer to networks which

provide on-demand visibility1 for any flow at any time, i.e.,
the ability to monitor any flow at any time on-demand.

Traditional monitoring techniques, which deploy monitoring

tools or devices [1], [2], [3] on the data plane, provide only

static visibility; the placement of these tools and devices

determines the flow visibility coverage. SDN networks are

by design endowed with full visibility. Both approaches incur

significant capital and operational costs to make (existing)

networks clairvoyant.

In this paper, we present an alternative and cost-effective

approach to make any existing network “clairvoyant” with

on-demand flow visibility. A clairvoyant network consists of

at least one SDN-enabled2 switch and a specialized network

controller. We adopt a routing-and-monitoring approach—by

modifying the path of flows on demand to route them through

monitoring devices and make them visible.

Clairvoyant networks aim to make flow monitoring more

flexible by diffusing part of the cost required to set up and

run a monitoring infrastructure to the myriad of flows being

monitored. To keep the cost low, we require a handful (at least

one) strategically placed SDN switches (e.g., by replacing one

or a few legacy switches with SDN-enabled switches or simply

1In this paper visibility focuses on “who is talking to whom and on
what ports,” namely, host-level communication patterns. We do not consider
performance visibility issues here.

2We interchangeably use the terms SDN(-enabled), OpenFlow(-enabled), or
programmable to refer to devices whose forwarding tables can be configured
remotely from a centralized controller.

installing new ones) within an existing network. SDN switches

allow operators to program the data plane remotely to meet

both routing and measurement goals [4], [5] and double as

monitoring devices by supporting counting [6] and inspect-

ing [7] packets or through custom monitoring scripts [8].

Our specialized controller can redirect flows through SDN

switches, by incorporating two mechanisms, telekinesis and

magnet MACs introduced in our previous work [9].

To show that clairvoyant networks can provide significant

advantages to monitoring, we perform a measurement study

on their benefits and costs. We first study the visibility that

clairvoyant networks offer (Section III). Using real-world and

synthetic topologies, we show that even one OpenFlow switch

enables monitoring of any flow with many possible paths to

choose from. Second, we study the cost of enabling network-

wide visibility (Section IV) by answering the question of how

much the flow and network performance degrades in exchange

for visibility. Clairvoyant networks give operators a trade-off

between the upfront cost to enable SDN-based monitoring and

the performance penalty incurred by enabling such monitoring.

In the second part of the paper, inspired by our measurement

results, we present a design for clairvoyant networks. We

show how to integrate the existing mechanisms of telekinesis

and magnet MACs [9] with the visibility tasks to design

the clairvoyant controller (Section V). For the purpose of

informing network architects and operators of the trade-offs in

making their networks clairvoyant, we identify several key per-

formance and cost indicators. We then provide a customized

design, including a balanced SDN deployment strategy and

a flow scheduling mechanism, that reduces both the upfront

deployment cost and the flow and network overheads to offer

a practical solution for deploying multiple visibility tasks at

the same time (Section VI).

Clearly, modifying the path of a flow to make it visible is an

intrusive mechanism which may change the properties (e.g.,

flow completion time) of the flow being monitored. While

we show (Section IV) that the overhead required to enable

visibility is small, it is ultimately at the latitude of network

operators and users to decide if the cost is worth paying. For

example, enterprise networks, where a few extra milliseconds

of latency may be acceptable, are a better candidate for clair-

voyant networks than data centers where application traffic

must be delivered on time to maintain user satisfaction. In

addition, privacy concerns may arise when flows are routed

through forbidden parts of the network. As we describe in our

design (Section V), operators can specify constraints on the

path of flows.

978-3-903176-17-1 / © 2019 IFIP

89



Clairvoyant networks provide a low-cost flexible monitoring

substrate for enterprises where changing a flow’s path is

acceptable. They open up new directions in flow monitoring by

allowing hybrid monitoring applications that take advantage

of the monitoring capabilities of both SDN and legacy devices

to build accurate, flexible and efficient monitoring.

II. CLAIRVOYANT NETWORKS

SDN-based monitoring. A network flow is visible when its

path traverses a monitoring device, such as an NetFlow/sFlow-

enabled switch, a polling-enabled SDN switch, or any dedi-

cated monitoring or packet capture appliance. Network-wide

visibility of all flows is critical for network management ap-

plications such as traffic engineering, access control, anomaly

detection, or heavy hitter detection [10], [11], [8], [12].

Traditional flow monitoring achieves visibility by defining

static monitoring tasks that require switch support [1], [13]

or dedicated monitoring appliances [14], [3]. For example,

to identify large flows, NetFlow/sFlow-enabled switches sam-

ple packets and build flow-level packet counters. Monitoring

tools must be strategically deployed across the data plane to

enable network-wide visibility, and carefully tuned to avoid

overloading the data plane [15]. Offloading the monitoring

tasks to specialized off-path appliances by mirroring packets,

e.g., using SPAN [2] or TAP [14], may relieve the load on

the data plane, but requires careful coordination to avoid

oversubscribing the mirroring ports or paths and may not be

amenable to real-time traffic analysis.

SDN disrupts traditional monitoring practices by providing

better control and visibility over the network. First, SDN

allows operators to remotely update switch forwarding entries

on demand, enabling more flexible and dynamic monitoring

tasks [8], [16], [17]. Second, SDN-enabled switches double

as monitoring devices. They support flow-based counters to

monitor utilization [18], [19], [20] or help inspect traffic to

detect unauthorized access [4], [5] or security threats [7].

An important impediment to SDN-based monitoring has

been the significant upfront investment cost it requires. Up-

grading the network to SDN is prohibitive for most enterprises

as it requires replacing most, if not all, legacy switches with

SDN-enabled switches [21]. Recent work proposes hybrid

SDN and legacy (or partially programmable) networks to

lower the deployment cost of SDN while providing most of

its benefits. However, with hybrid networks, operators have

visibility only over the flows that traverse the SDN switches

and cannot monitor the traffic in the legacy part [22], [21].

Proposed idea. In line with previous research [18], [19],

[20], [7], we consider a flow to be visible3 when it traverses

an SDN switch. We propose to make all flows visible on-
demand in a hybrid network by redirecting them (temporarily

or permanently) through an SDN switch. In this way, operators

could apply existing SDN-based monitoring mechanisms to

monitor all flows, including those whose default path does

3Throughout the paper, a flow is “visible” when it traverses an SDN switch
and “invisible” otherwise. In Section III, we discuss how to make a flow visible
to legacy monitoring devices rather than SDN switches.

not traverse an SDN switch. When monitoring is finished,

the flows could be reverted to their original path. This would

dramatically decrease the cost of deploying and using SDN-

based monitoring, as a wholesale upgrade to SDN is not

necessary to enable network-wide visibility.

Towards this goal, we introduce clairvoyant networks: par-

tially programmable networks that offer operators the ability to

monitor any flow any time on demand. Any enterprise network

can become clairvoyant by deploying as few as one SDN-

enabled switch and a specialized network controller, which

we call the clairvoyant controller.

Clairvoyant networks are made possible by a path update

mechanism initiated by SDN switches to control routing

through legacy devices [9]. As described in Section V, we

can change the path of any flow traversing the legacy network

using OpenFlow-based mechanisms. The granularity of visible

flows ranges from per source-destination to a specified tuple of

packet header fields. While the path update mechanism works

at the source-destination granularity, SDN switches can slice

and monitor flows at a finer granularity (e.g., port numbers)

once flows’ paths have been updated.

Clairvoyant networks raise several questions about the fea-

sibility and cost of flow monitoring by changing the paths

of flows. First, how many flows can we make visible by

updating their paths compared to a simple hybrid network?

While clairvoyant networks focus on SDN-based monitoring

(i.e., a flow is visible when it traverses an SDN-enabled

switch), is it possible to redirect flows through traditional

monitoring devices (e.g., NetFlow/sFlow-enabled switches).

Finally, what are the cost and performance trade-offs involved

in changing the path of a flow to make it visible? We explore

these questions through data-driven simulations and real-world

deployments in Sections III and IV. We then present a basic

design for clairvoyant networks in Section V.

III. FLOW VISIBILITY

Do clairvoyant networks make more flows visible than

simple hybrid SDN networks that have no flexibility to update

legacy paths? In this section, we investigate the extent to

which clairvoyant networks provide visibility both through

SDN switches and using legacy monitoring devices.

A. Methodology

Network topologies. We evaluate the feasibility of clair-

voyant networks on three network topologies, described in

Table I. The “Large” and “Small” are the real topologies of

a large-scale campus network [23] and of a smaller campus

backbone network [24]. We generate the “Medium” topology

Name Source # Switches/Edge/Core Max/Avg/Min Degree
Large [23] 1577 / 1160 / 417 65 / 2.15 / 1
Medium this paper 493 / 355 / 138 19 / 3.11 / 1
Small [24] 16 / 14 / 2 15 / 4.5 / 3

Table I: We use two real-world (“Large” and “Small”) and one

synthetic (“Medium”) network topologies to demonstrate the

feasibility of clairvoyant networks.

90



(a) “Large” topology (b) “Medium” topology (c) “Small” topology

Figure 1: Default visibility, as we vary the number and placement of OpenFlow switches.

to model a medium-size enterprise network. In doing so,

we try to preserve the features observed in the real “Large”

topology: more edge switches than core switches, and multiple

components connected through high-degree core switches.

Deployment. We consider four placement strategies for

SDN-enabled switches: random anywhere, random edge, ran-

dom core, and highest-degree. Random strategies replace a

legacy switch with an OpenFlow switch at random. Random

anywhere and random core provide base cases for comparison,

while random edge is intended to model a scenario where

operators deploy software switches on edge hypervisors or

servers. The highest-degree strategy replaces legacy switches

in decreasing order of their degree and reflects a best case

scenario where upgrading the most “influential” switches first.

Network flows. We consider all flows that could be installed

in the network, i.e., between all pairs of edge switches. We

do not take into account the popularity of a pair of switches

(e.g., some edge switches connect to more hosts) because it

does not affect the visibility of a flow. We assume a flow

is between two different IP addresses, without taking into

account port numbers, to match the granularity provided by

the path update mechanism [9]. Unless otherwise noted, every

experiment provides aggregated values over 100 runs, resetting

the switch placement after each run.

Visibility. The (flow) visibility of a network is the probabil-

ity that a random flow is visible, i.e., traverses a monitoring

device. Visibility takes values between 0 and 1. All flows in

a network with visibility 1 can be monitored. For example,

a network where all switches and routers support NetFlow

or where all switches are SDN-enabled has visibility 1. We

further classify visibility according to the type of device that

provides it. Natural visibility represents the visibility achieved

from monitoring flows at SDN-enabled switches, while super-
visibility characterizes a network where flows are monitored

at legacy monitoring devices such as NetFlow-enabled routers

or IDSes. We measure both the natural and supervisibility that

a clairvoyant network provides while varying both the number

of OpenFlow switches and their placement strategy.

B. Natural visibility

Natural visibility describes the ability of a clairvoyant

network to make any flow visible by routing it through an

SDN-enabled switch. As the controller can set up any path

through an OpenFlow switch, the natural visibility of any
clairvoyant network is 1.

However, part of the natural visibility may not even require

setup from the controller: if the flow’s default path traverses

an OpenFlow switch, then it is not necessary to use the clair-

voyant controller to make it visible. To understand the benefit

that clairvoyant networks provide, we must evaluate how much

of their natural visibility is achieved using the clairvoyant

controller. For this, we compute the default visibility: the

probability that any flow is visible initially on its default path.

Figure 1 and Table II show the default visibility of each

network, as we vary the number and placement of OpenFlow

switches. When replacing more switches, more flows are likely

to be visible initially. The highest-degree placement performs

best, since high-degree nodes partition the network in many

separate connected components. Most flows are likely to be

between components, so they must traverse a high-degree

node. This result implies most flows are visible by default

when upgrading the top highest degree legacy switches to

SDN. However, upgrading those switches is also costlier as

they would support more flows and higher throughput.

Although the ability to set up a flow’s path through an

OpenFlow switch is important, the number of possible paths is

equally critical. Path diversity offers operators more flexibility

in reaching both monitoring and routing goals in path setup.

Figure 2a shows the average number of paths that enable

visibility for the flows whose default paths are not visible,

i.e., do not traverse an SDN-enabled switch, in the “Large”

topology (Table II shows results for all topologies). Replacing

the high-degree switches increases path diversity and enables

more flexible monitoring. Path diversity is significant, regard-

less of the switch placement strategy.

C. Supervisibility

Although OpenFlow switches provide monitoring capabili-

ties, being able to use traditional monitoring devices in a clair-

voyant network, such as NetFlow-enabled legacy switches,

may alleviate some of the monitoring load on OpenFlow

switches. While all flows can be set up through a specific

OpenFlow switch, not all flows can be set up through a

particular legacy device. In fact, flow paths can be set up

through a legacy device only if the device is on a path between

an OpenFlow switch and the source or destination of a flow.

The supervisibility reflects the ability of a clairvoyant network

to set up paths through legacy devices.

We compute the minimum number of legacy monitoring

switches necessary to achieve network-wide supervisibility,

91



(a) (b) (c)

Figure 2: In the “Large” topology, (a) the average number of possible visible paths for flows whose default paths are not

naturally visible, (b) the minimum number of legacy monitoring devices needed to achieve full supervisibility, and (c) the

average flow stretch increase for the top five shortest visible paths when we have one OpenFlow switch.

i.e., any flow’s path would traverse at least one of these

legacy switches. Figure 2b presents the results for the “Large”

topology. Interestingly, the highest-degree strategy performs

poorly compared to the other strategies: more monitoring-

enabled legacy switches are needed to cover all flows and

achieve a supervisibility of 1. This is because there are more

paths through highest degree switches and we need more

legacy monitoring devices to cover all of them.

One interesting finding is that when we place OpenFlow

switches at edge, the minimum number of legacy switches

needed to cover all flows is lowest and the same as the number

of OpenFlow switches. The reason is any SDN switch can redi-

rect all the flows to go through itself and then through one of

its adjacent legacy switches. Of course, placing few switches

at the edge may increase the path length unnecessarily.

To maximize the number of visible flows it sees, a mo-

nitoring-enabled legacy switch should be located as close

to an OpenFlow switch as possible. We confirm that all

legacy switches in the experiments from Figures 2b are indeed

adjacent to OpenFlow switches. This observation also defines

an upper bound on how many monitoring-enabled legacy

switches we need to cover all flows: the total number of active

interfaces on all OpenFlow switches.

IV. THE COST OF VISIBILITY

Setting up flow paths through monitoring devices may

introduce performance penalties to flows and overhead in the

network. While monitoring applications may have their own

overhead, here we focus on several key cost indicators related

the effect of updating the path of a flow and whose value

depends little, or not at all, on how flows are monitored.

A. Overhead on flows

How does visibility affect the performance of a flow?
We evaluate two flow performance metrics. The flow stretch
represents the relative increase of the new flow path’s length

compared to the default path. It reflects the penalty in end-to-

end latency that a flow would pay for becoming visible. The

flow stress captures the maximum number of other distinct

flows with which a flow shares any link. Flow stress models

the change in throughput that a flow may see when it becomes

visible, and captures the ability of clairvoyant networks to offer

monitoring paths that are lightly loaded.

We compute the average flow stretch of the top five shortest

visible paths for each flow for all runs. Figure 2c shows the

detailed results for when we have a single OpenFlow switch;

Table II shows statistics for more switches. As expected, plac-

ing OpenFlow switches at the edge has the largest performance

penalty, since a visible path may need to stretch to the other

side of the network. The results show that with only 2% of

switches upgraded to OpenFlow, the average visible path is

only 1.3 times greater than the default path. This means that,

even given the choice between several paths, a monitoring

application would still likely select a fairly short visible path

for a flow that is not visible by default.

B. Overhead on the network

How does visibility affect the network links? We define

the network stress as the maximum number of flows that

traverse any link in the network. Table II shows the relative

increase in network stress across various placement strategies.

High-degree strategies do not add much to the network stress

when making flows visible, while the other strategies require

more OpenFlow switches to keep the network stress low.

How does visibility affect the network switches? The

OpenFlow switches may see overhead increase in clairvoyant

networks, when compared to simple SDN networks, as they are

queried more frequently or mirror traffic for further analysis.

We consider three metrics for the cost imposed on switches

in clairvoyant networks—memory usage, CPU utilization, and

the number of forwarding entries—and study each metric as

we increase the number of flows made visible.

First, we measure the CPU utilization and memory usage

on an iwNetworks OpenFlow switch in two scenarios: when

the clairvoyant controller polls the flow statistics every second

and when the switch mirrors traffic (e.g., to the clairvoyant

controller or a dedicate server). Previous research [25] shows

that the performance of OpenFlow switches decreases as

the controller polls for statistics. Mirroring packets to the

controller, on the other hand, packs the captured packets as

the payload of PacketIn messages [26], which is done by the

switch’s CPU. Table III shows the results as we increase the

number of concurrent flows. Clairvoyant networks add little

overhead to the SDN switches even with many flows being

monitored at the same time.

92



Random anywhere Random edge Random core High-degree Every-edge

Large

# OF switches 1 5 20 1 5 20 1 5 20 1 25
Default visibility 0.0 0.02 0.08 0.0 0.01 0.03 0.01 0.06 0.18 0.48 0
Possible paths 1.4 10.9 44.4 1.0 5.0 20.0 2.9 29.6 110.4 16.6 2320+
Min switches (for supervisibility) 2.24 9.47 33.77 1.0 5.0 20.0 4.86 17.72 66.33 48.0 25
Flow stretch 1.9 1.4 1.3 1.8 1.5 1.4 1.7 1.4 1.2 1.4 1.2
Flow stress increase 21.2 7.6 3.7 21.3 7.5 3.2 20.9 7.7 3.2 7.7 1.0
Network stress increase 4.4 2.3 1.5 4.4 2.1 1.5 4.3 2.2 1.3 2.1 1.0

Medium

# OF switches 1 5 20 1 5 20 1 5 20 1 8
Default visibility 0.01 0.06 0.25 0.01 0.03 0.11 0.05 0.17 0.55 0.71 0
Possible paths 3.2 16.3 60.6 1.0 5.0 20.0 8.2 42.6 173.2 19.7 710+
Min switches (for supervisibility) 2.54 8.18 29.37 2.0 6.0 21.0 3.72 13.62 56.19 6.0 8
Flow stretch 1.9 1.4 1.2 2.0 1.5 1.3 1.7 1.3 1.1 1.5 1.2
Flow stress increase 10.1 3.6 1.6 10.5 4.0 1.6 9.3 2.7 1.4 2.7 1.0
Network stress increase 3.6 1.8 1.2 3.7 1.9 1.1 3.3 1.5 1.0 1.1 1.0

Small

# OF switches 1 5 10 1 5 10 1 - - 1 1
Default visibility 0.13 0.59 0.93 0.14 0.6 0.93 0.0 - - 0.0 0
Possible paths 6.7 31.8 41.7 3.3 15.9 30.5 34.1 - - 34.1 28+
Min switches (for supervisibility) 1.89 5.9 11.2 2.0 6.0 11.0 1.0 - - 1.0 1
Flow stretch 1.5 1.1 1.0 1.9 1.3 1.3 1.2 - - 1.2 1.5
Flow stress increase 5.8 1.5 2.2 6.7 2.0 1.5 0.9 - - 0.9 1.1
Network stress increase 3.2 1.0 1.0 3.5 1.4 1.2 0.5 - - 0.5 1.0

Table II: Results for visibility and cost metrics for the three topologies.

Figure 3: Clairvoyant networks require as few as one SDN-

enabled switch. The clairvoyant controller can make the flow

(S,D) and the flow (S, Y ) visible to switch OF2 by setting

up the paths. (X,Y ) is an invisible flow.

V. DESIGN

Any enterprise network can become clairvoyant by de-

ploying at least one SDN-enabled switch and a specialized

controller—which we call the clairvoyant controller.

The controller consists of two layers: path update and

visibility enabler. It receives visibility tasks from operators

specifying what flows to monitor and, if necessary, updates the

paths of the flows to make them visible. The visibility enabling

layer reads and schedules visibility tasks. How to monitor a

flow, i.e., polling specific counters, sampling packets, checking

header field values is a separate process, at the latitude of the

operator, and outside the design of the clairvoyant controller.

Changing paths. The clairvoyant controller can change the

path of any flow (i.e., per source-destination pair), even when

the flow does not traverse any SDN switches. This allows us

Number of CPU CPU Mem Mem
flows (Query) (Mirror) (Query) (Mirror)

1 0.05 % 2.26 % 0.22 KB 0.33 KB
10 0.15 % 2.37 % 0.22 KB 0.51 KB
100 1.05 % 5.31 % 0.22 KB 2.12 KB

Table III: CPU and memory load increase on an OpenFlow

switch: (i) when the controller polls the switch for statistics per

second; (ii) when the switch mirrors packets to the controller.

to gain visibility over any flow without the need to modify

existing legacy hardware devices or software components.

As shown in Figure 3, our clairvoyant controller can make

the flow (S,D) visible to the SDN-enabled switch OF2.

We summarize the design and properties of the path update

framework below.

Updating the path of any flow incorporates two mechanisms,

telekinesis and magnet addresses, originally described by

Jin et al. [9] and summarized in this section. With telekinesis,

OpenFlow switches send special seed packets to the legacy

switches on the new path to be installed. This relies on

the ability of an SDN controller to use PacketOut control

messages to instruct OpenFlow switches to send custom-made

packets into the network. The seed packets take advantage of

MAC learning to manipulate legacy switches into updating a

single forwarding entry in their routing tables.

The path update framework routes using fictitious MACs

(called magnet MACs) associated with hosts. Magnet MACs

are fictitious MACs that do not correspond to any real host on

the network, but are created by the controller for the purpose

of controlling routing & forwarding behaviors of hosts and

legacy switches. When sending seed packets, the source MAC

is set as a magnet MAC associated with the path destination.

The seed packet triggers the installation of a forwarding entry

for the magnet MAC. The seed packets are also required to

be ARP packets and can reach the source host of the path.

Thus, the source learns to associate the destination with its

new magnet MAC. The path update framework uses different

magnet MACs to set up different paths for delivering traffic

from other source hosts to the same destination. The last

OpenFlow switch on each path rewrites the magnet MAC to

the native MAC based on the destination IP address.

To make the flow between S and D visible to the SDN-

enabled switch OF2, we update its path from S − LE1−D
to S − LE1 − OF2 − LE1 − D. To install this new path,

the controller crafts a seed packet with source MAC as a

magnet MAC (e.g., MAGNET) and destination MAC as S’s

93



Figure 4: In a clairvoyant network, we can place SDN-enabled

switches in every-edge—connecting each edge legacy switch

(LE1, LE3, or LE4) to one SDN switch (OF5, OF6, or OF7).

MAC (in the Ethernet header), source hardware address as

MAGNET and source protocol address as D’s IP address (in

the ARP header). Our controller uses PacketOut to send this

seed packet from OF2 to S. This packet triggers the addition

of a new forwarding entry in LE1 for the MAGNET MAC

with corresponding incoming port and the update of the ARP

table on S. Another seed packet with MAGNET MAC and S’s

IP address is sent from OF2 to D, and the ARP table on D
is updated in a similar manner.

Enabling visibility. To make flows visible, we provide

a simple language for network operators to create visibility
tasks for the clairvoyant controller. With a visibility task,

the operator simply sets up a flow to be monitored at a

specific location in the network. A visibility task consists

of an action, a monitoring target, a monitoring location, and

optionally, a monitoring mirror. The action specifies whether

the controller should add or delete the task. The monitoring

target is a tuple of (source IP, destination IP) and represents

the source and destination of the flow to be monitored. The

monitoring location represents the SDN switch where the flow

will be monitored. If operators do not have a preference for

the location, the field is null. For example, the visibility task

“(S,D) OF2” indicates that the flow (S,D) will be monitored

at OF2, “(∗, Y ) NULL” indicates any flow to Y can be

monitored anywhere. Optionally, the operator can specify a

monitoring mirror to have the flow mirrored to another device.

The clairvoyant controller takes visibility tasks as input and

translates them into seed packets with magnet MACs that, in

turn, generate forwarding rules that change the path of the

flows. Setting up a path using the magnet MACs follows

the description in Section V. Disabling a visibility task is

similar and it requires the controller to send seed packets that

route the flow back to the default path. In Section VI, we

describe a more complex task scheduling mechanism, inspired

by experimental results, and designed to reduce the cost of

achieving visibility for multiple flows at the same time.

VI. CASE STUDY: EDGE VISIBILITY

Here, we consider a specific deployment scenario and

associated design decisions that enable visibility for flows with

negligible performance degradation.

SDN switch deployment. To reduce the path stretch of

monitored flows, we propose to introduce a few (hardware or

software) SDN switches to connect to all edge legacy switches

Figure 5: Visibility delay (the time to make a flow visible)

remains low as we vary the data rate. We measure the visibility

delay from both the host (left) and the controller (right).

(i.e., all legacy switches that connect to end hosts) such that

each edge switch connects to at least one SDN switch. In this

way, changing the path of any flow adds at most two hops

(from the edge legacy switch next to the source or destination

to the connected SDN switch and backward). Figure 4 shows

an example with three edge legacy switches connected to SDN

switches. To make the flow (H1, H5) visible, the controller

redirects it through OF5 or OF6.

By pushing visibility to the edge of the network, we guar-

antee that any flow has negligible performance degradation

when made visible. In addition, non-target flows that traversing

different edge switches do not get affected at all, since we

scope the path change to only between an edge legacy switch

and its adjacent SDN switch. However, when multiple flows

are monitored by the same SDN switch on the same link, they

may compete for the bandwidth. We discuss how to alleviate

this problem later in this section.

The last column in Table II shows the cost of this de-

ployment strategy. With 48-port hardware OpenFlow switches

and each port connected to one edge legacy switch, we need

only 2% more OpenFlow switches to cover every edge switch.

An alternative, cost-effective deployment is to do away with

hardware switches and deploy software switches on additional

servers connected to the edge legacy switches. As expected,

the average flow stretch and stress are smaller than other

deployment strategies with the same number of SDN switches.

Flow paths can extend on the average 1.5 times when made

visible, while the competition for the same monitoring device

is slightly higher than on the default path.

Visibility scheduling. When multiple flows are made visible

through the same SDN switch, they will compete for the

capacity of the link(s) connecting the SDN switch to its

adjacent legacy switches. We propose time-based scheduling:

one or more flows become visible in separate time slots such

that the throughput of all flows in the same slot is lower than

the capacity of the shared link.

First, the controller measures the throughput of each com-

peting flow in a round-robin manner: it makes each flow visible

for a small period (e.g., 1s) and polls the counters associated

with flow at the end of the visibility period. In Section VII,

we show that making a flow visible and reverting it back to

its original path is fast and consumes negligible resources.

Second, the controller combines all visibility tasks with the

same monitoring locations in such a way that the sum of the

throughputs of all flows from the same group of tasks does

94



not exceed the capacity of the shared network link. We use a

greedy heuristic to assign groups of tasks to each monitoring

link at each monitoring interval. The visibility tasks in each

group are enabled for each interval then disabled then enabled

again until a task is deleted.

VII. EVALUATION

In this section, we first show the clairvoyant controller can

enable a flow’s visibility fast while introducing negligible

performance degradation. Second, we demonstrate the clair-

voyant controller is scalable—can handle tens of thousands

of simultaneous visibility tasks on one OpenFlow switch. We

perform experiments on a real-world testbed in our lab. The

testbed consists of six Dell servers (each with four 1 Gbps Eth-

ernet interfaces), five Cisco Catalyst legacy switches [27], and

two iwNetworks OpenFlow switches [28]. Each experiment is

conducted for 100 times.

A. Visibility delay

We define the visibility delay as the time it takes to make a

flow visible, i.e., to update its path to traverse an SDN switch.

We measure the visibility delay from the controller and from

one of the endpoints of the flow. The controller visibility delay

is the time between when the controller sends the first seed

packet and when it receives the first mirrored packet. The

endpoint visibility delay is the time between when the host

receives the first seed packet and when it sends the first data

packet on the new path.

To measure the visibility delay, we connect two servers and

an SDN switch to a Cisco legacy switch. We start a flow

between the two servers and vary its data rate. Initially, the

flow traverses only the legacy switch, but goes through the

SDN switch once we submit a visibility task for it.

Figure 5 (left) shows the visibility delay measured from the

end host. It remains low when we increase the data rate. That

the visibility delay decreases as we increase the data rate is

an artifact of our measurement: when the data rate is low,

the time between two consecutive packets is higher therefore

our measurement error is higher. Figure 5 (right) shows the

visibility delay measured from our clairvoyant controller. It is

higher than the delay measured from the end host, because

it contains (1) the round-trip time from the controller to the

OpenFlow switch where the seed packet is injected, and (2)

the round-trip time from the OpenFlow switch to the host. The

first round-trip time is dominant due to the overhead involved

in forwarding a data packet on the control channel.

Next, we set the data rate at 100 Mbps and increase

the number of hops between the OpenFlow switch and the

edge legacy switch. We find that the providing visibility

does not significantly increase the flow completion time, even

when sending flows on a five-hop hairpin path. On the other

hand, we can keep a flow visible for as little as 0.1ms—

the minimum amount of time we achieved between sending

two consecutive seed packets. However, ARP implementations

often have protection against ARP trashing, which limits the

time between consecutive updates to the same ARP entry

to one second. As a result, in practice, the smallest amount

of time to maintain a flow’s visibility is one second. Even

with such a small visibility window, repeatedly enabling and

disabling the visibility of a flow does not reduce its completion

time. We observed only a 0.38% increase for a 10 GB flow

when we enable and disable its visibility every second for 89s.

B. Scalability

Switch load. We evaluate clairvoyant networks when the

OpenFlow switches are heavily-loaded using the same setup.

Saturating the control plane to 99% CPU usage increases the

visibility time measured on the controller by about 100 ms and

does not change that measured on the host. In terms of high

data plane (DP) load, we introduce 10 Gbps more background

traffic to the OpenFlow switch and observe that the visibility

time from both the controller and the host is not affected. The

flow completion time changes are negligible among the cases

where there is no additional load, high CPU load, and high

data plane load.

Many visibility tasks. How does the clairvoyant controller

perform when operators submit many simultaneous visibility

tasks? We vary the number of visibility tasks and measure the

time it takes the controller to enable them. A visibility task

triggers two seed packets, one to the source host(s) and the

other to the destination host(s). There are no flows running

for this experiments; we measure the time for the clairvoyant

controller to inject seed packets and insert the forwarding

rules. Our result shows that the clairvoyant controller is

capable of serving 15,000 individual visibility tasks on one

OpenFlow switch in one second.

Next, we want to understand what happens when each

visibility task updates an existing flow. In this experiment, we

generate 100 flows and submit a visibility task for each flow.

We are unable to generate more than 100 flows due to the

limited number of servers in our testbed. Results in Table III

show that making 100 flows visible simultaneously increases

CPU usage by 5.31% and memory usage by 2.12 KB.

VIII. DISCUSSION

Who can use clairvoyant networks? Primarily enterprises

that require on-demand monitoring of their applications while

accepting little performance degradation. As they may increase

the application latency by rerouting flows through monitoring

devices, clairvoyant networks are not suited for enterprises

that run latency-sensitive applications. For such specialized

networks, hardware-based solutions installed on the data plane

provide a better benefit/cost trade-off for flow monitoring [10].

Deployment of clairvoyant networks in any enterprise is

straightforward. Operators need to add at least one OpenFlow

switch and the clairvoyant controller. To enable monitoring,

one could proactively set up routes among all hosts through

monitoring devices (for network-wide monitoring) or set up

paths when flows start (for selective on-demand monitoring).

Interoperability with VLANs works by setting the inter-

faces of OpenFlow switches as trunk ports and crafting the

seed packets with specific VLAN IDs (e.g., the same VLAN

95



IDs as the access ports where the source and destination hosts

are connected). This ensures that OpenFlow switches send

seed packets and receive data packets on individual VLANs.

L3 routers restrict broadcast domains and connect sub-

nets in enterprise networks. To enable flow visibility in L3

networks, clairvoyant networks could apply the technique

proposed in Mille-Feuille [29] to collect traffic slices: con-

figure ERSPAN [30] and leverage Fibbing [31] to program

IGP. Combining clairvoyant networks and Mille-Feuille could

achieve on-demand fine-grained flow visibility across the

entire network (i.e., both L2 and L3).

Programmable monitoring platforms offer customizable

and dynamic monitoring by relying on the visibility and

control provided by SDN [8], [20]. Clairvoyant networks

open new directions for programmable monitoring by allowing

flexible monitoring tasks that capture and analyze data from

both OpenFlow and legacy devices.

IX. CONCLUSIONS

We introduced clairvoyant networks, which provide on-
demand visibility for any flow at any time. We studied the fea-

sibility of clairvoyant networks using real-world and emulated

network topologies and showed that, even with a single SDN-

enabled switch, operators can make any flow visible, albeit by

increasing the average path length by 38%. When clairvoyant

networks contain more SDN-enabled switches (as little as 2%

of all switches), most flows can also be monitored on the

legacy data plane with little impact on network performance.

We also provided a basic design for clairvoyant networks by

integrating an existing path update mechanism with a novel

approach to specify and compile visibility tasks. Inspired by

the feasibility study, we proposed a specific deployment sce-

nario for clairvoyant networks. By connecting all edge legacy

switches to at least one OpenFlow (hardware or software)

switch and implementing flow scheduling in the clairvoyant

controller, we are able to significantly reduce the cost of

making (simultaneous) flows visible.

X. ACKNOWLEDGMENTS

We are grateful to TMA anonymous reviewers for their in-

sightful comments. The research was supported in part by US

DoD DTRA grant HDTRA1-14-1-0040, and NSF grants CNS

1618339, CNS 1617729, CNS 1814322 and CNS183677.

REFERENCES

[1] “Introduction to cisco ios netflow - a technical overview.” [Online].
Available: https://goo.gl/55rYF9

[2] “Configuring span and rspan.” [Online]. Available: https://goo.gl/
TDCAm8

[3] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” in
LISA, 1999.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” in ACM SIG-
COMM Computer Communication Review, vol. 37, no. 4. ACM, 2007,
pp. 1–12.

[5] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Martin,
“Fresco: Modular composable security services for software-defined
networks,” in Network and Distributed Security Symposium, 2013.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM Sigcomm CCR, vol. 38, pp. 69–74, 2008.

[7] C. Liu, A. Raghuramu, C.-N. Chuah, and B. Krishnamurthy, “Piggy-
backing network functions on sdn reactive routing: A feasibility study,”
in SOSR, 2017.

[8] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch.” in NSDI, vol. 13, 2013, pp. 29–42.

[9] C. Jin, C. Lumezanu, Q. Xu, H. Mekky, Z.-L. Zhang, and G. Jiang,
“Magneto: Unified fine-grained path control in legacy and openflow
hybrid networks,” in Proceedings of the Symposium on SDN Research.
ACM, 2017, pp. 75–87.

[10] M. Lee, N. Duffield, and R. R. Kompella, “Not All Microseconds are
Equal: Fine-Grained Per-Flow Measurements with Reference Latency
Interpolation,” in ACM Sigcomm, 2010.

[11] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using
openflow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?),” in Network Protocols (ICNP), 2012
20th IEEE International Conference on. IEEE, 2012, pp. 1–6.

[12] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research. ACM, 2017, pp.
164–176.

[13] “sflow.” [Online]. Available: http://sflow.org/
[14] “Understanding network taps.” [Online]. Available: https://goo.gl/

KfQ46H
[15] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a Better

NetFlow,” in ACM Sigcomm, 2004.
[16] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Dream: dynamic

resource allocation for software-defined measurement,” in ACM SIG-
COMM Computer Communication Review, vol. 44, no. 4. ACM, 2014,
pp. 419–430.

[17] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and W. Lawrence J,
“In-band network telemetry via programmable dataplanes,” in SOSR
Demos, 2015.

[18] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic Matrix
Estimator for OpenFlow Networks,” in PAM, 2010.

[19] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches,” in USENIX Hot-ICE, 2011.

[20] C. Yu, C. Lumezanu, V. Singh, Y. Zhang, G. Jiang, and H. V. Mad-
hyastha, “Monitoring network utilization with zero measurement cost,”
in PAM, 2013.

[21] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,
“Panopticon: Reaping the Benefits of Incremental SDN Deployment in
Enterprise Networks,” in USENIX Annual Technical Conference, 2014.

[22] H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, and G. Jiang,
“HybNET: Network Manager for a Hybrid Network Infrastructure,” in
Middleware, 2013.

[23] Y.-W. E. Sung, S. G. Rao, G. G. Xie, and D. A. Maltz, “Towards
systematic design of enterprise networks,” in Proceedings of the 2008
ACM CoNEXT Conference. ACM, 2008, p. 22.

[24] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic
test packet generation,” in Proceedings of the 2012 ACM CoNEXT
Conference. ACM, 2012, pp. 241–252.

[25] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 254–265, 2011.

[26] “Openflow switch specification, 1.5.1,” https://goo.gl/fAFg9R.
[27] “Cisco switches.” [Online]. Available: https://goo.gl/9JDndy
[28] “iwnetworks switches.” [Online]. Available: https://goo.gl/k17WD5
[29] O. Tilmans, T. Bühler, S. Vissicchio, and L. Vanbever, “Mille-feuille:

Putting isp traffic under the scalpel,” in Proceedings of the 15th ACM
Workshop on Hot Topics in Networks. ACM, 2016, pp. 113–119.

[30] “Configuring erspan, 2016.” [Online]. Available: https://goo.gl/h3qaGL
[31] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control

over distributed routing,” in ACM SIGCOMM, 2015.

96


