
ReMon: A Resilient Flow Monitoring Framework

Fangye Tang
Faculty of Computer Science

Dalhousie University
Halifax, Canada

fangye.tang@dal.ca

Israat Haque
Faculty of Computer Science

Dalhousie University
Halifax, Canada

israat@dal.ca

Abstract—Network measurement and monitoring are essential
for learning the current network state and act accordingly.
Recent trends in network programmability and the Software-
Defined Networking (SDN) architecture make measurement and
monitoring more flexible and dynamic. However, monitoring tools
may suffer from reduced accuracy when collecting measurement
data in the presence of link failures. Therefore, in this paper,
we propose a resilient monitoring framework, called ReMon,
that can efficiently recover from link failures. ReMon combines
active measurement along with state aggregation at the data
plane switches to furthermore improve the measurement cost.
We evaluate its performance in Mininet considering two real-
world network topologies. The results confirm that ReMon can
provide timely and accurate measurements even in the presence
of link failures. It furthermore reduces 50% link failure recovery
time compared to its counterparts.

Index Terms—SDN, traffic measurement and monitoring, mea-
surement cost, Fast Failover Group.

I. INTRODUCTION

Network measurement and monitoring are essential for

efficient traffic engineering and Quality of Service (QoS).

Network measurement must obtain an accurate network state

in a timely fashion without hindering the data traffic. Traffic

measurement schemes can be active or passive [1]. The

active approach injects probe packets in the network to learn

the necessary network state, whereas in the passive scheme

statistics directly come from a monitoring device. The pas-

sive measurement does not insert any probe packets in the

network but requires full access and control on the devices.

On the other hand, active measurement enables demand-based

statistics gathering, where the accuracy depends on the probing

frequency. The higher the rate, the better the accuracy at the

price of measurement cost.

In software-defined networking (SDN) [2], [3] design, net-

work control task is decoupled from forwarding devices and

placed in a logically centralized controller. This separation

brings hardware abstraction, network programmability, and

global network view to realizing efficient network monitor-

ing, management, and operations. SDN furthermore enables

both active and passive measurements without incurring extra

deployment cost. However, It is essential to decide on which

switches to be monitored at what interval. For instance,

OpenTM [4] generates a query for each source-destination

pair to get per-route statistics, which may not scale with

the increasing number of switches. FlowSense [5] exploits

OpenFlow [6] control messages to learn the network state

to reduce the measurement cost at the price of accuracy.

FlowCover [7] also relies on the OpenFlow control messages

and proposes a flow statistics aggregation heuristic to minimize

the measurement cost. None of these solutions considered

link failures that can occur in any networks and impact mea-

surement performance. Accurate, high-performance and high-

coverage monitoring systems are essential for preventing and

recovering from failures in large scale networks. For example,

extensive investigations on Google’s data center and wide-area

networks revealed that 80% of their failures span between 10

to 100 mins, a majority of which lead to a significant packet

loss [8].

In this paper, we propose a flow monitoring framework,

called ReMon that exploits both the packet probing and statis-

tics aggregation to balance between the measurement accuracy

and cost. In particular, we first design a new algorithm, called

Weight Assisted Selecting (WAS), that uses OpenFlow control

messages to select a subset of switches to be monitored to

reduce the monitoring cost. Then, we deploy sFlow [9] to

poll flow statistics from those chosen switches that aggregate

flows from the entire network. We consider to use sFlow to

offer fine-granular measurement ability as OpenFlow control

messages (e.g., Packet In and Flow Removed) do not have

such granularity.

Furthermore, we consider the fact that link failure impacts

the measurement time and accuracy while gathering statistics

from a chosen set of switches. However, no measurement and

monitoring scheme addresses this issue, i.e., recovering from

link failures and updating the measurement. There are two

types of failure recovery approaches: protection and restora-
tion [10] while using SDN and OpenFlow. In restoration

scheme, a switch contacts the controller upon detecting a

link failure to get an alternative route setup. In the protection

scheme, backup routes are configured before a failure occurs,

where switches can locally detect a failure and redirect the

affected traffic to an alternative route without communicating

the controller to reduce failure recovery time.

We first integrate Fast Failure Group (FFG) [11] of the

OpenFlow protocol in the ReMon framework, so that the data

plane elements can locally recover from link failure. FFG

requires an alternative route from the affected switch to a

destination. In the absence of such an alternative route, we

can use Crankback approach [12]. In Crankback approach,

978-3-903176-17-1 / © 2019 IFIP

137

affected packets backtrack on a primary route up to a switch

that offers an alternative route. Our initial investigation reveals

that Crankback increases the failure recovery delay. Thus, we

propose and integrate a couple of algorithms, Anchor Assisted
Recovery (AAR), and Weight Assisted Recovery (WAR), in

the ReMon framework to offer measurement resiliency in the

presence of link failure. Finally, we update the measurement

algorithm, WAS, to accommodate the change in the routes of

flows due to the failure recovery.

We use real network topologies USNET [13] and Darkstrand

[14] to evaluate ReMon in Mininet [15] emulator. In USNET,

each source has one or more alternative routes to a destination;

thus, FFG can be used at the data plane. On the other hand,

Darkstrand does not have such alternative path properties; thus,

we need to use Crankback. In Mininet, we use Ryu controller

and Open Virtual Switch (OVS) [16]. The evaluation results

on the above two topologies reveal that ReMon offers accurate

measurement while reducing around 30% measurement cost

compared to a baseline measurement approach, where we

need to measure all switches. It furthermore improves the link

failure recovery time 50% compared to its counterparts.

The remaining of the paper is organized as follows. Sec-

tion II presents the necessary background to understand the

proposed work. In Section III, we compare and contrast work

related to ReMon. We present the design of ReMon and

proposed algorithms in Section IV. The experimental setup is

explained in Section V. Section VI presents and discusses the

evaluation results following a concluding remark in Section

VII.

II. BACKGROUND

In this section, we present the necessary background to

understand the design and operation of ReMon. A naive

monitoring approach in SDN measure each flow from every

switch, which generates a large number of control packets and

increases the overhead with the increasing number of flows and

switches. The number of control packet will reach O(nm),
where n is the number of switches and m is the number

of flow entries at a switch. Thus, we propose to aggregate

flow statistics at the data plane elements to reduce the control

overhead without degrading the measurement accuracy.

Once we decide on the set of switches, we use sFlow [9] to

monitor the chosen switches in fine-granularity. sFlow consists

of sFlow-controller and sFlow-agents to offer both the active

and passive measurements. The sFlow-controller actively polls

the selected set of switches at a regular interval, whereas

sFlow agents passively get back to the sFlow-controller after

observing a certain configurable number of packets. We argue

that these days switches come with sFlow support, where using

an appropriate fine-granular sampling and polling rate can

control the overall control traffic.

The main objectives of ReMon are to offer monitoring

resiliency, e.g., in the presence of link failure. In SDN archi-

tecture, the OpenFlow protocol supports Fast-Failover Group

(FFG) [6] to implement the failure recovery at the data plane.

In particular, in addition to flow-tables, a switch maintains

Fig. 1. Example Topology.

a group table with active buckets. Each bucket is associated

with a port from a route, and only a single bucket is active

at a time. The incoming packet flows through a port from an

active bucket. In the case of a link failure, the next active port

and bucket are chosen to redirect the affected traffic.

Nonetheless, if there is no such backup route, we need

alternative redirecting approach. For example, in Figure 1, if

the link between switch Source and A fails, Source can locally

redirect the affected traffic to link four. However, if the link

between switch E and Destination fails, E cannot use FFG

due to the unavailable backup routes, but rather needs to use

Crankback approach.

Crankback is a restoration approach that reacts to failure

after it occurs. The affected packet traverses backward towards

the source until finds a switch having a backup route towards

a destination. The packet carries a unique tag to inform

switches along with the backward route about the failure. All

the subsequent packets for the same source-destination pair

follow the alternative route. Thus, the affected packet from

switch E in the previous example will backtrack to switch

C and follow link eight towards the destination. However,

Crankback introduces additional delay and communication

cost due to packet-by-packet backtracking. Thus, we propose

two algorithms Anchor Assisted Recovery (AAR) and Weight

Assisted Recovery (WAR) that are used in ReMon to reduce

the delay.

III. RELATED WORK

The network measurement work in SDN can be classified

as active and passive schemes. In this section, we compare

and contrast the existing solutions that are related to ReMon.

OpenTM [4] polls OpenFlow switches at a regular interval

to measure traffic matrix from each source-destination pair.

The author proposed different polling algorithms to reduce

monitoring overhead. OpenTM is an offline approach; thus,

OpenNetMon [17] proposed an online flow monitoring ap-

proach for throughput, packet loss, and delay. However, both

of these solutions monitor all flows over all source-destination

pairs, which may not scale with the increasing number of flows

and switches.

RFlow [18] is an active measurement scheme for WLAN,

which deploys a set of collectors managed by the controller

to gather the flow statistics. The hierarchical structure of

RFlow may reduce the bottleneck at the controller, but the

solution needs to access every switch. Payless [19] reduces

138

the measurement cost by dynamically polling switches while

a flow expires within a collection timeout. In contrast, ReMon

can dynamically change monitoring switches according to the

network state. This subset of switches can adaptively be polled

as in Payless. SDN-Mon [20] is a monitoring framework

similar to sFlow, which monitors a single flow from a switch.

Thus, SDN-Mon needs to check every new flow entry to decide

on the monitoring flow, which is not the case in ReMon.

FlowCover [7] reduces measurement traffic by accessing

only a subset of switches. It assigns a weight to each switch

proportional to the number of flows passing through it. The

switches are then monitored according to their weight until

all flow across the network is covered. CeMon [21] is a

multi-controller variant of FlowCover, i.e., the measurement

task is distributed among a set of controllers to improve the

measurement cost and scalability. Partial Flow Statistics Col-

lection (PFSC) [22] also collects flow statistics from a subset

of switches such that the flow recall ratio on every switch

reaches a predefined value while minimizing the number of

queried switches.

None of the above measurement schemes considers link

failures while performing the measurement. ReMon performs

extensive experiments in real network topologies to evaluate

the measurement performance in the presence of link failures.

Also, ReMon proposes a new flow aggregation scheme and

two link failure recovery algorithms to offer resilient mea-

surement and monitoring.

IV. DESIGN

In this section, we first provide an architectural overview of

ReMon, which is presented in Figure 2. The software enabled

switches are configured to initiate OpenFlow ofp packet in
and ofp flow removed messages. In the ReMon controller,

we have a statistics gathering module to collect these control

packets to learn the current network state. We use Weight
Assisted Selecting (WAS) algorithm to determine a set of

switches to be queried to retrieve the aggregated flow statistics.

Then, we deploy sFlow to query those chosen switches. Note

that sFlow has two components; namely, sFlow-controller

and sFlow-agent. The former one is deployed in the ReMon

controller, and the latter one is in the switches. A switch after

receiving a sFlow query generates corresponding statistics for

the sFlow controller. We will first describe our flow aggrega-

tion algorithm WAS, which is implemented in the controller.

Weight Assisted Selecting (WAS): Suppose we have a

network G = (V,E), where V = {v1, v2, ..., vn} is the set of

switches and E represents the set of links. Therefore, n = |V |
is the total number of switches in this network each of which

carries m flows. We set a dictionary S which contains the

shortest path for each source-destination pair. This process can

be configured during the network setup period. At the same

time controller can maintain this route information. The WAS

algorithm is presented in Algorithm 1.

In WAS, we first sort all flows according to their end-

points. We start with the largest group of flows sharing the

same source-destination pair. Usually, it is enough to monitor

Fig. 2. ReMon Architecture.

Algorithm 1 Weight Assisted Selecting (WAS)

Input:
Aggregated Flows: S = {(src, dst) : (src, ..., dst), ...}

Output:
Monitored Switches: P

1: P = []
2: for each (pair, path) ∈ S do
3: (src, dst) = pair
4: if path ∩ P = null then
5: P .append(dst)
6: end if
7: end for

a single switch along the path (shortest) of a flow. Thus, it

is possible to consider only the destination to check all flows

that share that end-point. Then, we move to the next group

of flows to pick a monitoring switch. We continue until all

flows are covered. If the corresponding monitoring switch is

already chosen for a group of flows, we move forward to the

next group. For example, in Figure 1, suppose we have six

flows installed in the order: Source−A−B−Destination,

Source − C − D − E − Destination, A − B, C − D,

Source− C −D − E, and Source−A−B − C.

In FlowCover, the sorted list of switches is

{Source, C,A,B,D,E,Destination} according to the

number of flows passing through a switch. FlowCover first

picks switch Source with the highest number of flows and

keeps choosing the sorted switches until all flows are covered.

As a result, the final set of switches in FlowCover includes

{Source, C,A}. On the other hand, WAS does not assign

any weight to switches, but rather to the incoming flows.

It picks the destination switch if a newly installed flow is

139

not monitored by any other switches. Thus, WAS first picks

Destination for the flow Source − A − B −Destination,

which also covers the flow Source−C−D−E−Destination.

Then, it selects B and D for the next two flows, which

furthermore cover the last two flows. The set of monitored

switches for WAS is {Destination,B,D}.

The main difference between WAS and FlowCover is that

the former considers the number of flows through a source-

destination pair as a weight to choose a switch; whereas the

latter starts with a switch carrying the highest number of flows.

Thus, the computation complexity of WAS and FlowCover is

O(nm) and O(n2m), respectively.

Next, we present two algorithms AAR and WAR, whose

purpose is two-fold; 1) recovering from link failures in the

cases where a switch does not have an alternative route towards

a destination and 2) updating WAS, i.e., the list of monitoring

switches based on the updated routes of the affected flows.

Anchor Assisted Recovery (AAR): In AAR (Algo-

rithm 2), an anchor node is a switch that has at least one

alternative routes towards the destination for a given route.

For example, in Figure 1, the anchor node is C along the

route Source−C−D−E−Destination. The anchor nodes

can be configured during the FFG creation. At the same time

controller can maintain a list of anchor nodes from current

topology.

Algorithm 2 Anchor Assisted Recovery (AAR)

Input:
Failure path: P = (src, ..., s1, s2, ..., dst)
Anchor list of (src, dst): anchor list

Output:
Alternative path: P
Affected switch: switch

1: for each switch ∈ P [src : s1] do
2: if switch ∈ anchor list then
3: if There is a new path pathnew to dst then
4: pathold ← P [src : switch]
5: P ← pathold + pathnew

6: return P, switch
7: end if
8: end if
9: end for

In AAR algorithm, a switch will inform the controller if

it cannot recover from a failure using FFG upon detecting

link failure. In that case, the controller will recompute all

alternative routes in advance irrespective of current active

one that is using the failed link. For example, if link seven

between E and Destination fails, the affected packets will

take an alternative route from the anchor node C. Thus, the

new route will be Source−C −B−Destination instead of

Source−C−D−E−D−C−B−Destination in the case of

Crankback. Thus, in contrast to Crankback, AAR reduces the

recovery time without recomputing alternative routes packet-

by-packet. Furthermore, using AAR a controller can insert new

flow entries right after receiving a link failure event instead of

waiting for the affected packets to be backtracked to an anchor

node. The ongoing packets between the anchor and failed link

can use Crankback.

The computation complexity of AAR is O(n) for one route.

Since a link failure may cause more than one path failure, the

total complexity is O(n3) because in the worst case, there can

be O(n2) source-destination pairs. The computation complex-

ity of AAR, WAR, and Crankback is the same, except that the

former two reduces the recovery time by exploiting the global

network view and proactive alternative path computation.

Algorithm 3 Weight Assisted Recovery (WAR)

Input:
Failure path: P = (src, ..., s1, s2, ..., dst)
Weight list: Weight = (w1, w2, ..., wn)

Output:
Alternative path: P
Affected switch:switch

1: Update Weight
2: Label all switch ∈ P as unchecked
3: while ∃ unchecked switch ∈ P [src : s1] do
4: find a switch such that Weight[switch] is maximum

and unchecked
5: if There is a new path pathnew to dst then
6: pathold ← P [src : switch]
7: P ← pathold + pathnew

8: return P, switch
9: end if

10: Label switch as checked
11: end while

Weight Assisted Recovery (WAR): In WAR (Algo-

rithm 3), we assign a weight to a switch proportional to

its degree (number of neighbors). For example, in Figure 1,

switch C and B have weight three, whereas others have weight

two. Thus, in the case of a link failure, say link seven again,

the affected packet will take the alternative route from C.

Thus, AAR and WAR differ in terms of their switch selection

approach.

The controller can assign weight during the network setup

phase. Thus, after detecting a link failure, the controller can

choose a set of switches with the highest weight to redirect

the affected traffic through these chosen switches. In AAR

and WAR, the idea is to take the help of the controller to find

alternative routes for all possible flows affected by a single

link failure instead of recovering from a failure in packet-by-

packet fashion.

Updating WAS over link failure: We compute new

alternative routes using AAR or WAR upon detecting link

failure. This route change may need a new switch to monitor.

Some switches, on the other hand, may no longer need to

be monitored because of removing the failed route. As a

consequence, a link failure impacts the monitoring lists of

WAS. Thus, we define Algorithm 4 to update WAS after

detecting link failure.

140

Algorithm 4 Updating WAS

Input:
Failure link: Linkfail = (fw1, fw2)
Monitoring List: M = (s1, s2, ..., sn)

Output:
Updating Monitoring List: M

1: while ∃ pathfail contains Linkfail do
2: pathnew = AAR/WAR(pathfail)

3: if ∃ switch ∈ pathnew is monitored then
4: pass

5: else
6: M .append(pathnew[destination])
7: end if
8: end while
9: if ∃ flow ∈ fw1 or fw2 and monitored only by fw1 or

fw2 then
10: pass

11: else
12: remove fw1 or fw2 from M
13: end if

Let us consider Figure 1 and the six flows we used to

illustrate the operation of WAS. Suppose link five between

C and D fails, which will impact three flows: Source −
C − D − E − Destination, Source − C − D − E, and

C − D. We first compute new routes for the affected flows

using AAR or WAR. The new routes will be Source − A −
B−Destination, Source−C−B−Destination−E, and

C−B−Destination−D. Thus, we need to update the list of

switches to be monitored. Note that all three flows are covered

by the switch Destination. Therefore, the current monitoring

list, {Destination,B,D}, remains unchanged. However, we

furthermore need to check the endpoints of the failed link. If

an endpoint is in the current monitoring list, we need to check

whether we need to update it. For instance, D is in the list,

which is not used by any flows; thus, can be removed from

the existing monitoring list.

V. EXPERIMENTAL SETUP

We first evaluate the performance of WAS and compare the

outcome with FlowCover in real topologies. Next, we evaluate

the performance of ReMon in the presence of data plane link

failures. In particular, we first test the performance of ReMon

with and without link failures in two real topologies to learn

their impact. Then, we show how the proposed algorithms

AAR and WAR can improve the recovery time and delay.

Recovery time is the time between a link failure detection

to rerouting the affected packets to an alternative route. We

furthermore compare the performance of AAR and WAR with

Crankback and the restoration approaches.

We deploy the Mininet 2.2.2 emulator in an Oracle Virtu-

alBox (VM) having an Intel Core i5 2.90 GHz (4 cores) CPU

processor and 4GB RAM. The server runs Ubuntu (64-bit)

operating system. We use a Ryu 4.30 controller to manage a

set of Open vSwitch 2.11.90. The data and control planes use

OpenFlow 1.3 protocol to communicate.

(a) USNET

(b) Darkstrand

Fig. 3. The USNET and Darkstrand Topologies.

We use two real topologies; namely, USNET and Dark-

strand. The USNET topology consists of 24 switches and

42 links as shown in Figure 3(a) [13]. The second topology

(Darkstrand) is shown in Figure 3(b) [14], which consists of

28 switches and 31 links. Each switch from both topologies

supports a connected host. If we consider that each source-

destination pair has at least one flow, then USNET and

Darkstrand will have 276 and 325 possible pairs, respectively.

USNET offers at least a pair of routes between any source-

destination pairs, which is not the case in Darkstrand. Thus,

we can evaluate the performance of ReMon in topologies with

different properties.

We first evaluate the performance of the proposed switch

selection algorithm, WAS, in terms of monitoring accuracy.

We randomly choose a set of five source-destination pairs,

where sources use iperf to generate UDP traffic at a rate of 1

Mbps. We double this rate at every ten seconds and monitor

the link utilization. We set the sFlow sampling rate at switches

as one every 200 packets and switch polling interval at the

controller as 20 seconds.

Then, we compare the performance of ReMon with Flow-

Cover in terms of the measurement cost and computation

cost. The measurement cost for monitoring a single switch is

expected to be consistent as the sampling and polling rates are

fixed. Thus, the number of monitoring switches can represent

the measurement cost. We consider the USNET topology in

the case of accuracy and cost evaluations. We measure the

computation time as the computation cost.

Next, we evaluate the resiliency of ReMon both in USNET

141

and Darkstrand in the presence of data plane link failure. We

use iperf to generate UDP traffic at a rate of 1Mbps between

ten source-destination pairs. In Fig. 3, the green and red nodes

are sources and destinations, respectively. We randomly choose

one from each set as a source-destination pair and repeat

the process ten times. We randomly fail five links from both

the primary and backup routes between each chosen source-

destination pair to get the average recovery time and end-to-

end delay, where we use timestamps and ”ping”. In the final

set of evaluation, we implement our proposed algorithms AAR

and WAR, which are then compared against Crankback and

restoration based link failure recovery schemes. In addition,

we measure the number of computation that Crankback, AAR,

and WAR need to reconstruct new routes after facing a link

failure.

VI. DISCUSSION ON THE EVALUATION RESULTS

In this section, we present the evaluation results of Re-

Mon and related works. At first, we compare and contrast

ReMon with FlowCover and baseline (monitor all switches)

measurement approaches in real topologies. Then, we show

the performance of ReMon in the presence of link failures.

Finally, we show that the proposed algorithms AAR and WAR

can significantly improve the failure recovery time and end-

to-end delay.

Fig. 4. The measurement accuracy of ReMon.

The measurement performance of ReMon: Figure 4

shows the network utilization over time in USNET topology.

We generate a total of five Mbps UDP traffic in the first ten

seconds, then double the traffic volume. The results show

that ReMon can measure link utilization accurately. sFlow

collects some additional control traffic including ARP and

LLDP packets, which we record at the controller at every

second and subtract it from actual measurement traffic. This

computation will not create any overhead on our measurement

framework. However, we observe slight discrepancy of sFlow

at measurements points where utilization changes.

In Figure 5 and 6, we present the measurement cost of

ReMon in terms of the number of monitoring switches and

the computation cost in time, respectively. We consider both

the USNET and Darkstrand topologies. ReMon needs to

monitor one additional switch compared to FlowCover, where

both the approaches reduce around 30% communication cost

compared to the baseline approach. However, the computation

cost of FlowCover is significantly higher than that of ReMon

Fig. 5. The measurement cost of different schemes.

Fig. 6. The average computation cost of ReMon and FlowCover.

(Figure 6). It reaches over 25 ms in both topologies while

ReMon only spends 1 to 2 ms. However, 25 ms computation

time is still acceptable. Thus, we evaluated the computation

time in another topology called, DFN, with 58 switches and

87 links, where ReMon takes 37 ms while FlowCover takes

over 1100 ms. Thus, ReMon reduces the similar amount of

measurement cost with significantly less computation cost

compared to FlowCover. Both ReMon and FlowCover perform

better compared to the baseline approach, where we need to

monitor all switches from the data plane.

The impact of link failure:

Fig. 7. The link failure impact on measurement accuracy in USNET.

First, we compare the measurement accuracy of ReMon

with and without link failures, which is shown in Figure 7.

The results indicate that with a small number of link failures,

we can still have good accuracy as the traffic may always find

alternative routes to reach a destination within a reasonable

time. However, the accuracy degrades with the increasing num-

ber of link failures. Thus, we integrate FFG and Crankback in

ReMon to recover from link failures and update the monitoring

list.

The number of monitoring switches changes with link

failures and corresponding pattern depends on the structure

142

Fig. 8. The link failure impact on measurement cost in USNET.

of network topology. Figure 8 shows the change in the total

number of monitoring switches in USNET in the presence of

link failures while using ReMon. We first randomly fail a set of

links from around the perimeter of the USNET topology. Thus,

the affected flows are likely redirected towards the center,

and multiple flows shared common routes. As a consequence,

we see a decrease in the number of monitoring switches

as the affected traffic finds an alternative route through a

smaller number of switches that aggregates the measurement

traffic. Then, we start failing link also from the center of

the topology, which leads to an increase in the number of

monitoring switches as flows are spreading out.

Fig. 9. The link failure impact on measurement cost in Darkstrand.

Next, we evaluate the performance of ReMon in Darkstrand,

which is shown in Figure 9. We fail less number of links

in Darkstrand compared to the USNET topology to maintain

network connectivity while performing the measurement. The

number of monitoring switches decreases with the increasing

number of link failures. The reason is, again, the structure

of the Darkstrand topology, which has a less number of links

compared to the number of switches. Thus, the flows are more

likely to pass through a small number of switches, especially

with an increasing number of link failures.

Recall that in USNET topology switches have alternative

routes to any destination; thus, we can use FFG in the case

of a link failure. However, in Darkstrand due to the lack of

alternative routes packets follow Crankback approach, which

may lead to using a small set of measurement switches, es-

pecially with increasing link failures. Therefore, we conclude

that the number of switches to be monitored will depend on

the structure of a topology.

The performance analysis of AAR and WAR: We first

focus on measuring the total link failure recovery time of

Fig. 10. The total link failure recovery time in USNET and Darkstrand.

four methods: AAR, WAR, restoration, and Crankback both in

USNET and Darkstrand, which is shown in Figure 10. A single

link failure may impact multiple routes; thus, we define the

total link failure recovery time as the time to update all affected

routes. In USNET, the recovery time of AAR and WAR is

around 34 milliseconds. The restoration approach takes about

62 milliseconds, and the Crankback takes the longest time.

We observe similar performance trend in Darkstrand topology.

Thus, AAR and WAR reduce more than 50% and 40% of

the recovery time compared to the restoration and Crankback

approaches, respectively.

Fig. 11. The total number of flow entries used in USNET and Darkstrand.

We present the memory usage of ReMon and Crankback

approach in Figure 11. We measure the memory usage as the

total number of flow entries used at the switches in a given

topology. Crankback needs to install flow entries for primary

and backup routes along with the backtracking rule, which is

not the case in ReMon. Thus, the memory usage of Crankback

is significantly higher than that of ReMon.

Fig. 12. The performance comparison of AAR and WAR in Darkstrand.

Next, we compare the performance of AAR and WAR.

We use the number of computation as the failure recovery

overhead, which is the total number of switches checked in

143

each algorithm. The result is shown in Figure 12, where we

show the results for Darkstrand topology as the performance

is similar in USNET. The number of computation for WAR

is significantly lower than AAR in Darkstrand. The reason is

the structure of the topology. WAR only checks switches with

higher weights, i.e., those switches more likely have alternative

routes towards a destination. However, an anchor node in AAR

is a switch having more than two neighbors. Thus, AAR will

need more time to find the set of anchor nodes. Therefore, we

conclude that in the case of a moderate size topology with a

large number of links AAR and WAR will perform similarly.

However, if the topology is a less-links and more-switches

one, like Darkstrand, WAR will be useful.

The network performance enhancement using AAR and
WAR: AAR and WAR not only improve the resiliency of

ReMon but also improves the average network throughput and

delay.

(a) USNET (b) Darkstrand

Fig. 13. The average delay of different failure recovery schemes.

Figure 13 presents the delay that ReMon experiences with

AAR, WAR, and Crankback in USNET and Darkstrand

topologies. Crankback has the highest delay in both topologies

because it needs to backtrack to a switch along the primary

route with an alternative route to a destination. All the affected

switches will use this packet-by-packet backtracking, which

is not the case in AAR and WAR. The latter approaches

rather proactively reconstruct all possible affected routes for

a given link failure. We observe similar results in the case of

throughput, which is not included due to space constraints.

VII. CONCLUSIONS

In this paper, we have proposed a resilient monitoring

framework, called ReMon. It reduced the measurement cost

while offered high accuracy compared to its counterparts.

We have evaluated the measurement performance of ReMon

in real network topologies, where it reduced 30% measure-

ment cost compared to the baseline approach, and significant

computation cost compared to FlowCover. We furthermore

extended ReMon to operate in the presence of link failure. The

performance evaluation under link failures revealed that the

monitoring cost is correlated to the structure of the underlying

topology. Thus, we proposed two new link failure recovery

algorithms for topologies that cannot use FFG due to the

lack of available alternative routes. The evaluation results

conceded that ReMon reduced 50% of link failure recovery

time compared to its counterparts. It furthermore improves the

overall network throughput and delay. As part of our future

work, we plan to investigate the impact of other types of

failures like node, sFlow agent, and controller.

REFERENCES

[1] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network monitoring
in software-defined networking: A review,” IEEE Systems Journal,
vol. 12, no. 4, pp. 3958–3969, Dec 2018.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, Aug. 2007.

[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM
Transactions on Networking (TON), vol. 17, no. 4, pp. 1270–1283,
August 2009.

[4] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: traffic matrix
estimator for openflow networks,” in the 11th international conference
on Passive and active measurement, April 2010, pp. 201–210.

[5] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “FlowSense: Monitoring network utilization with zero
measurement cost,” in the 14th international conference on Passive and
Active Measurement, March 2013, pp. 31–41.

[6] Open Networking Foundation, “Openflow switch specification,” Septem-
ber 2012.

[7] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “FlowCover: Low-cost flow
monitoring scheme in software defined networks,” in 2014 IEEE Global
Communications Conference. IEEE, December 2014.

[8] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or Die: High-availability design principles drawn from googles network
infrastructure,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16, 2016, pp. 58–72.

[9] “sFlow-RT,” https://sflow-rt.com/index.php.
[10] P. C. da Rocha Fonseca and E. S. Mota, “A survey on fault manage-

ment in software-defined networks,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 4, pp. 2284–2321, June 2017.

[11] N. L. van Adrichem, B. J. van Asten, and F. A. Kuipers, “Fast recovery
in software-defined networks,” in 2014 Third European Workshop on
Software Defined Networks. IEEE, September 2014.

[12] N. L. M. van Adrichem, B. J. van Asten, and F. A. Kuipers, “Fast
recovery in software-defined networks,” in EWSDN ’14 Proceedings
of the 2014 Third European Workshop on Software Defined Networks,
September 2014.

[13] “USNET topology,” https://www.researchgate.net/figure/Network-
topologies-aNSFNET-bUSNET fig3 321952636.

[14] “Darkstrand Topology,” http://www.topology-
zoo.org/maps/Darkstrand.jpg.

[15] “Mininet,” http://mininet.org/.
[16] “Open vSwitch,” https://www.openvswitch.org/.
[17] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNet-

Mon: Network monitoring in openflow software-defined networks,” in
2014 IEEE Network Operations and Management Symposium (NOMS).
IEEE, May 2014.

[18] R. Jang, D. Cho, Y. Noh, and D. Nyang, “RFlow: An sdn-based wlan
monitoring and management framework,” in IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications. IEEE, May 2017.

[19] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess:
A low cost network monitoring framework for software defined net-
works,” in 2014 IEEE Network Operations and Management Symposium
(NOMS). IEEE, May 2014.

[20] X. T. Phan and K. Fukuda, “Toward a flexible and scalable monitoring
framework in software-defined networks,” in 2017 31st International
Conference on Advanced Information Networking and Applications
Workshops (WAINA). IEEE, March 2017.

[21] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “CeMon: A cost-effective flow
monitoring system in software defined networks,” Computer Networks:
The International Journal of Computer and Telecommunications Net-
working, vol. 92, no. 1, pp. 101–115, December 2015.

[22] H. Xu, X.-Y. Li, L. Huang, Y. Du, and Z. Liu, “Partial flow statistics
collection for load-balanced routing in software defined networks,”
Computer Networks, vol. 122, pp. 43–55, July 2017.

144

