
Effective Analysis of Secure Web Response Time

Carlos López1, Daniel Morato1,2, Eduardo Magaña1,2, Mikel Izal1,2
1 Public University of Navarre, Department of Electrical, Electronic Engineering and Communications, Pamplona, Spain

2 Institute of Smart Cities, Pamplona, Spain

email: {carlos.lopezromera, daniel.morato, eduardo.magana, mikel.izal}@unavarra.es

Abstract—The measurement of response time in web based
applications is a common task for the evaluation of service
responsiveness and the detection of network or server problems.
Traffic analysis is the most common strategy for obtaining
response time measurements. However, when the traffic is en-
crypted, the analysis tools cannot provide these measurement
results. In this paper we propose a methodology for measuring
the response time in HTTPS traffic based on the flow of data in
each direction. We have validated the tool with real traffic and
with a worst case scenario created in a testbed. When pipelining
is present in the encrypted HTTP 1.1 traffic, it results in a small
error in the measurement (between 5% and 15% of error for
the 99.9 percentile of the real response time). However, pipelining
support has almost disappeared from modern web browsers; this
makes the estimation provided by this methodology very accurate
in real traffic measurements, even for low probability response
times. More than 98.8% of the over 8.6 million request-response
times we measured in our campus Internet link were obtained
without any error.

Index Terms—HTTP, HTTPS, traffic analysis, APM, response
time

I. INTRODUCTION

HyperText Transfer Protocol (HTTP) is a widely used

internet protocol, employed not only on the public World Wide

Web. It is the underlying mechanism for fundamental corpo-

rate management applications like ERPs (Enterprise Resource

Planning) or CRMs (Customer Relationship Management).

The new offerings of these services are web-based, and even

cloud-based. High responsiveness from these applications is

critical for an effective company workforce.

Application Performance Monitoring (APM) is an important

task in network and service management. It offers tools for the

detection of performance problems, such as server memory

limitations, high CPU utilization or network congestion. They

can be measured directly on the servers, on the network

switches or links or they can be indirectly obtained by mon-

itoring parameters such as application response times, which

offer a quantitative measure of the client’s perceived quality of

service. Isolated high response times do not signify an actual

problem; however, repetitive high latency values might be

indicative of a pathology concerning a server or an application.

Performance problems can be detected from server logs

[1]. Nonetheless, this information is incomplete, and it can

be insufficient when dealing with an array of issues [2],

[3]. A more complete view of application behaviour can

be obtained by passively monitoring network traffic. This

This work was supported by Spanish MINECO through project PIT
(TEC2015-69417-C2-2-R).

allows the discovery of issues associated to the underlying

transport protocols, such as those related to reliable transport,

congestion control or flow control. Passive traffic monitoring

is common in business environments using port mirroring

techniques [4], [5].

Nowadays, with increasing HTTPS adoption [6], HTTP re-

quests and responses are concealed, which poses a problem to

application performance monitoring - request-response times

are no longer measurable. Some APM tools offer traffic de-

cryption [7], [8], [9], [10]. However, decryption (which already

introduces an additional layer of processing when analyzing

traffic) requires access to the server’s private key, which may

not be possible in all scenarios. For example, monitoring

office workers’ traffic towards external web applications (such

as cloud based ERPs) is not possible using this technique.

Moreover, with the arrival of version 1.3 of Transport Layer

Security (TLS), perfect forward secrecy becomes mandatory

[11], which means that decryption is not possible even in

possession of the server’s private key, due to the ephemeral

keys generated for each connection.

In this paper, we evaluate a technique for HTTPS re-

sponse time analysis, without traffic decryption, which allows

anomaly detection. We present the results obtained from

employing this method on a large dataset, as well as the

possible issues that arise when analyzing HTTP. The results

show high accuracy in obtaining an estimation of the frequency

of high response times for corporate access link traffic.

The rest of the paper is organized as follows. Section II

describes the measurement algorithm and the characteristics

from HTTP and TLS it depends on. Section III presents

the scenarios where network traffic was collected in order

to evaluate the accuracy in the measurement. Section IV

contains the results comparing the estimation to the ground

truth measurement and section V concludes the paper.

II. HTTPS ANALYSIS

HTTP is an application level protocol which has received

considerable attention from the research community since the

late 90s [12]. Its secure counterpart, HTTPS, has been com-

monly deployed since privacy in personal data or economic

transactions became frequent in the Web [13].

Response time analysis for HTTP or HTTPS requests can

be easily accomplished from server access logs [1], [3], [14].

However, server logs hide client perceived response times.

Client side results can be obtained based on active response

time measurements [15], however they are not extensible to

978-3-903176-17-1 / © 2019 IFIP

145

a large population of users. When server logs are not easily

accessible or they do not provide all the necessary information,

service analysis is accomplished based on passively-monitored

network traffic. The research literature on HTTP traffic anal-

ysis is abundant [2], [14], [16], [17], [18]; however, HTTPS

limits its effectiveness due to payload encryption.

HTTPS response time analysis from network traffic can be

based on TLS session data decryption [9], [10], [19]. However,

in most networking scenarios, decryption is not possible, and

a blind traffic analysis is the only option. There are only a

few previous works on blind HTTPS performance analysis.

Most papers restrict their scope to macroscopic measurements

or to some kind of user, browser, operating system or web

site fingerprinting [20], [21], [22]. In [23] the authors present

a tool which is able to measure response times for HTTPS

traffic based on the analysis of the distribution of packet sizes

and arrival times. However it requires a variable threshold

parameter to distinguish container object requests (such as

the main HTML document of a web page) and its embedded

objects. It also needs to record every client’s round-trip time

(RTT) and it is not perfectly robust to parallel download,

resulting in accuracy loss. With pipelining present, they work

on the assumption that non-pipelined requests will be within

a size range, which might not be true for every environment

in which HTTP is used. Overall, size-based analysis does not

seem to be flexible enough to work in settings where the nature

of requests and responses might be different than those of the

test context.

A. HTTPS fundamental mechanics

The TLS [11] protocol has an initial handshake phase, where

certificates are possibly exchanged, a common encryption suite

is negotiated, and encryption keys are generated. This stage

is performed in clear text, and it can be analyzed by any

packet inspection tool. The encryption keys cannot be obtained

from the traffic but these steps in session establishment can be

easily monitored. From there on, both parties send encrypted

Application Data messages to one another. These HTTPS

messages contain the original HTTP header and payload.

APM tools try to measure the response times to these HTTP

requests. The requested URL cannot be decrypted but an

anonymous response time could be extracted from network

traffic.

A client performs a single initial HTTPS handshake in a

TCP transport connection, which establishes the encryption

session (see Fig. 1). HTTP 1.1, transported over TLS, offers

persistent connections, i.e. a single connection can be used

for multiple HTTP requests. The TLS handshake is not part

of the HTTP request, and many requests can take place after

a single session establishment. These negotiated parameters

can even be shared with other TCP connections established

in the following minutes between the same peers. This initial

handshake time affects the response time experienced by the

user. However, it can be measured independently, and be taken

into account if it indicates an issue. In this paper, we focus

on measuring request-response times for encrypted data, since

analyzing the plaintext handshake phase is a trivial task.

B. Analysis methodology

HTTP analysis can be accomplished based on per-packet,

mostly stateless, techniques [24] or it can require the recon-

struction of both TCP streams in the connection. The analysis

techniques without reconstruction are faster but they are also

error prone in the presence of packet losses. TCP stream

reassembly is a very common task in APM traffic analysis

tools and stateful firewalls [25]. It is necessary before TLS

decryption can be applied. We relax the requirement of stream

decryption in the analysis process but we do keep the contin-

uous application data streams as an input to the algorithm.

Therefore, losses, disordered packets, and retransmissions do

not pose a handicap for the analysis. Previous papers have

shown that TCP stream reconstruction is feasible for traffic

rates of several gigabits per second using multi-core processing

architectures [25], [26].

Reconstructed stream data can be available for analysis as

soon as the TCP sequence is continuous. We are not assuming

stream reconstruction after a connection finishes but a live

reconstruction. The analysis module sees new data available

as an application using a TCP socket would see it. As soon

as the TCP stack in the host (or in the reconstruction module)

has new in-sequence bytes available they are offered to the

application (or to the analysis tool). We have implemented

and tested a TCP stream reconstruction module for passive

traffic analysis.

From the reconstructed TCP streams we can extract TLS

Application Data messages. These messages contain the HTTP

Protocol Data Units (PDUs). Several Application Data mes-

sages can be required in order to send a large HTTP request or

response. A simple HTTP GET request is usually contained in

a single Application Data message, however, an HTTP POST

message request, uploading a large file, could require several

messages. The responses to these messages also require one or

more TLS Application Data messages depending on content

length. These messages will be contained in one or more TCP

segments and therefore IP packets.

Our proposed method looks at Application Data message

bursts in each direction1. It assumes a burst is equivalent to an

HTTP request or response, depending on its direction (client

to server or vice versa). A request ends when the first byte

from an Application Data message from server to client is

available. The response ends when the connection is closed or

when the first byte of an Application Data message from client

to server is available. The beginning of a response marks the

end of the request and the beginning of a request marks the

end of the response to the previous one.

Fig. 1 shows an example of an HTTPS session. After the

TCP connection establishment and TLS session management,

a bidirectional full-duplex encrypted stream is available. A

request can be contained in several Application Data messages,

1The source code for this algorithm is available on request

146

which in turn can be contained in several TCP segments. TCP

segmentation is hidden to the APM tool by the TCP stream

reconstruction function. All the Application Data messages

from client to server are assigned to a single request, which

ends when new data from server to client is measured (the

response). The end of the response is marked by new data

from client to server.

������ ���	��

���
���
��

���
����������� ����

����������� ����

���
���
��

 !! "#
����������� ����

����������� ����

�$% &'()*&'+,

�-. /0((,/120(
,*1'342*&5,(1

6789:;<
=;:>7

?@�A�BC D@EF@��

Fig. 1. Timeline of events in an HTTPS session

C. Pipelining and HTTPS analysis

The proposed analysis methodology requires that only one

standing request exists per connection. This is the behaviour

present in HTTP 1.0, however, HTTP 1.1 explicitly allows

pipelining. This means that several HTTP requests can be sent

from client to server, previous to the response to any of them.

The protocol only requires that responses keep the same order

as the requests. This ordering results in Head-of-Line (HoL)

blocking in the HTTP 1.1 stream.

Pipelining breaks the request-response sequence, therefore

it can cause problems in the analysis. The HTTP pipelining

mechanism could lead the analysis tool to consider several

requests as a single one. A burst of several requests in a

row cannot be distinguished from a single request due to

encryption. Also, the responses to pipelined requests will be

considered a single response. This means that employing the

proposed method in the presence of pipelining could yield

higher response times overall, and that it will report a lower

number of requests, due to the grouping. Fig. 2 shows an

example where the second HTTP request is sent before the

response to the first request arrives. The APM tool will

consider both TLS messages as part of a single request and

the responses as part of a single response.

If the pipelined requests are sent back-to-back (without

waiting for any response), the response time given by the

analysis tool should be a good approximation of the highest

response time in the pipelined burst. The highest response time

������ ���	��

�����
����
�����
����

���
�������

����������

����������

����������

�
�
!"

�
$%&
�

'() *++,-./0-12 3/0/

'() *++,-./0-12 3/0/

*++,-./0-12 3/0/

456
7859:

*++,-./0-12 3/0/

*++,-./0-12 3/0/

*++,-./0-12 3/0/

*++,-./0-12 3/0/

;<< =>

;<< =>

Fig. 2. Pipelining in HTTP 1.1

is expected to take place for the last request in the pipelined

burst, due to HoL blocking (its response time will be increased

by all the previous responses in the pipeline).

In the following sections we show the results obtained from

measuring response times using the proposed methodology

and we compare them to the real response times that could

be measured by decrypting the streams.

III. MEASUREMENT AND ANALYSIS SCENARIOS

We ran the proposed APM tool for several traffic traces. We

used a large traffic trace from our university campus Internet

link, and several traffic traces obtained from a testbed scenario.

We created the testbed in order to control the amount of

pipelining present in the traffic. These traces provide a scenario

where the effect of pipelining on accuracy can be measured.

For evaluation purposes, HTTP traffic was used instead of

its encrypted counterpart. Although the main purpose of this

paper is proposing a method to analyze encrypted web traffic,

verification of its accuracy using HTTPS traffic requires the

decryption of the TLS streams, which is not always possible.

We adapted the algorithm to analyse HTTP traffic. Instead of

waiting for Application Data messages, it takes any TCP data

from client to server as part of a request and any traffic from

server to client as part of a response. The end of a request is

marked by data from the server (the beginning of the response)

and the end of the response is marked by the end of the

connection or by new application level traffic from client to

server (the beginning of a new request). Being HTTP traffic,

we can use an HTTP traffic analysis tool in order to provide the

ground truth response time measurement. We developed this

tool, based on the same TCP stream reconstruction module

used by the HTTPS APM tool.

A. Testbed scenario

As previously explained, traffic was captured from a testbed

scenario to control and see the effect of pipelining on the

proposed traffic analysis method. To do so, software scripts

147

were developed to recreate clients connecting to a server with

a controllable pipelining parameter. This parameter establishes

the largest pipelining burst possible in a connection. For each

new burst, a random number is drawn from a discrete uniform

distribution between 2 and the largest desired number of

requests in the burst. These requests are sent back-to-back

from client to server and the client waits for the responses

before initiating a new random burst.

For each request, following previous measurements on web

traffic [12], a random response time was determined from a

pareto distribution with α = 1.21 and decay after x ≈ 0.3
seconds2.

The testbed machine uses Apache 2.4.34 with the prefork

Multi-Processing Module (MPM) [27] as the HTTP server.

The client scripts create several concurrent TCP connections

to the server, each one representing a user or one of the parallel

connections between browser and server.

We want to control the amount of pipelining in order to

measure its effect on the accuracy of response time measure-

ments. We do not need to model parameters such as client

reading time, connection duration or response size, since they

have no effect on response times to individual requests.

Each experiment generated 2,000,000 HTTP requests. Table

I shows the number of bursts in each experiment, which is

approximately the total number of requests divided by the

average burst length. Using HTTP analysis, all the 2 million

response times were measured while the blind traffic analysis

provides only one measurement per pipelining burst.

TABLE I
PARAMETERS IN PIPELINING BURST GENERATION (NUMBER OF HTTP

REQUESTS PER BURST) AND NUMBER OF BURSTS IN THE TESTBED

EXPERIMENTS

Maximum Average Number of
burst size burst size pipelining bursts

2 2 1044808
3 2.5 832866
5 3 518387

10 6 314851
15 8.5 239172
20 11 177532
20 11 177532
25 13.5 150270
30 16 127078

B. Real world scenario

We verified the analysis method using also a large web

traffic trace from our university campus Internet access link.

The trace was collected during more than 4 days (from January

24th 2019 15:26 to January 29th 2019 13:26). It contains 5.3

million TCP connections with HTTP traffic from more than

78,000 users. These users include local campus users accessing

public web servers and remote users accessing campus servers.

The number of different users is obtained by the number of

different client IP addresses. The average number of requests

2These traffic traces are available on request

per connection was 1.6, with a total 8.6 million HTTP request-

response pairs. HTTPS traffic represents a larger percentage of

link usage. We can run the APM tool using the HTTPS traffic,

however we cannot validate the response times it provides,

therefore we proceeded to the validation using HTTP traffic.

IV. TOOL VALIDATION RESULTS

A. Testbed scenario

We measure response times from the beginning of a request

to the end of the response. Using HTTP dissection we decode

HTTP headers and obtain the ground truth measurement.

Using the developed APM tool we obtain estimated response

time values. We cannot compare the values on a one-on-

one basis, as the APM tool provides fewer results than the

real number of HTTP requests. However, we are interested

in detecting repetitive performance issues, which even in a

sampled measurement can be detected from the probability of

extreme response time values.

Fig. 3 shows the survival function for the cumulative

probability distribution of response time, obtained using HTTP

dissection or using the APM tool. It presents the results for

several degrees of pipelining, described by the average pipelin-

ing burst length. In a burst, each subsequent request to the first

one presents a response time which includes the response time

from the previous requests (see Fig. 2). Therefore, the higher

the average burst length the heavier the distribution tail is.

The results offered by the APM tool follow the distribution

shape from the ground truth, however, it offers a worst case

estimation (larger probability values P (Tresp > t)). The

reason is that it takes only one measurement from each burst,

which corresponds approximately to the response time for the

last request in the burst.

The results offered by the APM tool are closer to the

real response time values when the average burst length is

small. We checked the quality in the estimation for percentiles

99 and 99.5. Fig. 4 shows the percentage of error in the

estimation. For an average burst length larger than 3 requests

the estimation is within at least 80% of the desired value

(less than 20% error). For lower burst lengths it improves to

85%, but more important, it does not get worse as the average

pipelining burst size increases, even when using runs of 30

requests or more. For the 99.9 percentile the quality of the

estimation is even better, and less than 10% error is obtained

for bursts shorter than 8 requests.

We must highlight that this error in the estimation is due

to the presence of pipelining. It would not exist in case of no

pipelining. We are evaluating how the quality of the estimation

depends on the degree of pipelining assumming pipelining is
present. We show on the following section that pipelining is

not so common nowadays.

As previously discussed, in presence of pipelining, we

expect the response time value measured by the HTTPS APM

tool to be very similar to the worst response time in each

pipelined burst - typically the last request in it, due to HoL

blocking. To test this, the largest response time for each

burst was extracted. Fig. 5 shows the survival function for

148

0 25 50 75 100 125 150 175 200

Tresp (seconds)

10−5

10−4

10−3

10−2

10−1

100
P
(T

re
s
p
 >

 t
)

APM tool avg. pipelining=2.0

HTTP resp. time avg. pipelining=2.0

APM tool avg. pipelining=3.5

HTTP resp. time avg. pipelining=3.5

APM tool avg. pipelining=8.5

HTTP resp. time avg. pipelining=8.5

APM tool avg. pipelining=16.0

HTTP resp. time avg. pipelining=16.0

Fig. 3. Survival function for the cumulative probability function of response
time and APM results (only a few distributions are shown for better clarity)

0 2 4 6 8 10 12 14 16

Avg. pipelining burst

6

8

10

12

14

16

18

20

R
e
la

ti
v
e
 e

rr
o
r

(%
)

99th percentile

99.5th percentile

99.9th percentile

Fig. 4. Percentage of error in the estimation of percentiles in the cumulative
distribution function of response time

the cumulative probability distribution of the largest response

time per burst (HTTP dissection), compared to the results from

the APM tool. Both are nearly identical, which validates the

hypothesis.

B. Real world traffic analysis results

The testbed has revealed that the quality of the response

time estimation depends heavily on the presence and degree

of pipelining in the traffic. The real HTTP traffic trace we

described in section III-B contains 5.3 million connections,

0 25 50 75 100 125 150 175 200

Tresp (seconds)

10−5

10−4

10−3

10−2

10−1

100

P
(T

re
s
p
 >

 t
)

APM tool, avg. pipelining=2.0

HTTP worst resp. time, avg. pipelining=2.0

APM tool, avg. pipelining=3.5

HTTP worst resp. time, avg. pipelining=3.5

APM tool, avg. pipelining=8.5

HTTP worst resp. time, avg. pipelining=8.5

APM tool, avg. pipelining=16.0

HTTP worst resp. time, avg. pipelining=16.0

Fig. 5. APM tool results compared to the largest response time per burst

however, less than 3,000 of them present pipelining, i.e. less

than 0.06% of the connections. More than 8 million request-

response pairs take place in connections without pipelining,

therefore for more than 99.11% of the requests there should

be no error in the estimation. Those 3,000 connections present

an average burst length of 6.73 requests and a maximum of

10 requests in the pipeline.

Fig. 6 shows the survival function for the cumulative

probability distribution of response time, obtained using HTTP

dissection or using the APM tool with the real traffic trace.

Visually, the results match with high precision for probabilities

above 10−4.

In fact, automated analysis of each individual connection

shows that 98.855% of the over 8.6 million request-response

times match perfectly between the results from both the HTTP

and HTTPS APM tools.

Worse results were expected, but they were conditioned to

the presence of pipelining. However, for some time now, the

mechanism of pipelining has been abandoned in web browsers

due to bugs, poor retrocompatibility with older servers, incon-

sistent behaviour with proxies and HoL blocking [28]. While

pipelining presented a solution to high latency environments,

where sending several requests would save round trips, the

main browsers have discarded its use (or disabled it by

default) in favor of solving this issue with the coming of

HTTP/2.0 [29], [30]. The main User-Agents we found sending

pipelined requests were APT (a software package manager for

GNU/Linux), Android browsers with User-Agent Dalvik, and

149

10−5 10−3 10−1 101 103 105

Tresp (seconds)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

P
(T

re
s
p
 >

 t
)

APM tool

HTTP response time

Fig. 6. APM tool and ground truth comparison for the real traffic trace

Apple iPads.

However, we acknowledge that pipelining might be present

in specific environments dominated by proprietary software

that uses different HTTP libraries. Some common libraries

that support pipelining are Net::Async::HTTP [31] for Perl,

Twisted [32] for Python, Apache HttpCore [33], Microsoft

.NET Framework [34], and QNetworkRequest [35] and libcurl

[36] for C++.

C. Protocol features which affect the analysis

During the implementation and debugging of an HTTP

dissector for obtaining ground truth measurements we detected

several other protocol features which could deviate the results

obtained using the APM tool:

• Error response codes: Some HTTP error response codes

are sometimes sent from the server before the whole

request is received. This is the case for errors 400 (Bad

Request), 413 (Request Entity Too Large), 414 (Request-

URI Too Long) or 500 (Internal Server Error). A large

request, requiring several TCP segments, can result in the

server sending an error response before the whole request

has been sent. The APM tool cannot see the error code

as it is encrypted (blind analysis), therefore the response

breaks the request packet flow and the last segments of

the request are taken as a new request.

• 100 Continue: When a client has a large request body to

send, it has the option to send first an HTTP header with

the Expect: Continue option. The server may respond

with an HTTP 100 Continue code to signify that the

following request body will be accepted, based on the

received header. This allows the client to check whether

its request will be accepted before sending the actual

request, thus saving bandwidth if such request would be

denied. As the response code is encrypted, it cannot be

recognised and the request-response sequence is broken

into two.

• Keep-Alives: Some TCP implementations send TCP

Keep-Alive segments to prevent the connection from

being closed after an idle period. They send one garbage

byte at the end of the TCP stream sequence. Although

this byte should be considered a retransmission, it elects

an HTTP 1.1 400 Bad Request response in some servers.

• WebSockets: Using the WebSocket protocol an HTTP

session becomes a two-way communication channel

where each end-point can send data independently. Web-

Sockets break the request-response behaviour, therefore

the measured response times using the described APM

tool would be wrong. In our 5.3 Million HTTP connec-

tions only 766 of them offered the option to upgrade

to the WebSocket protocol. This is less than 0.02%

of the connections, hence we do not expect a large

deviation in the response time distribution due to errors

in measurement for this protocol.

Although the analysis was accomplished using HTTP traffic,

all the features described above are expected to be present

in HTTPS traffic. There are no HTTPS-specific mechanisms

that could result in an erroneous measurement. All the above

described situations are due to HTTP protocol features.

D. Other advantages over HTTP dissection

We implemented the dissector while expecting HTTP traffic

to be RFC-compliant. However, we found several situations

where the dissector required heuristics in order to decode some

server responses. Some of these situations come from HTTP

servers being non-conformant to HTTP 1.1 RFC [37], while

some others have their origin in bad programming techniques

at the server side. We detail the most significant situations we

found:

• HEAD attached to a body: HTTP HEAD requests result

in a response which must not [37] contain a body, even

if the response specifies a Content-length. The length

specified is for the body that would be sent in case for

example of a GET request. We have found some servers

that send the body of the response even for a HEAD

request. An RFC-conformant client will not expect any

body in the response, therefore it will not read from the

TCP stream after the HTTP header was complete (based

on a blank line). The body of the response stays in the

input TCP stream and it will be read by the client when it

expects the answer to another request, causing confusion

to the HTTP decoder.

• Excessive body: We have found some situations where the

HTTP response contains the Content-length field with a

number of bytes specified for the body which do not agree

with the real number of bytes sent after the HTTP header.

Usually, the body is larger than the size specified in the

header field. The reason is a server script which forces the

value in the Content-length field but afterwards it sends

more bytes than it announced. It can be for example a

PHP script that sends a file to the client but some error

in the script creates a text error message, which is sent

through the output stream to the HTTP response, adding

150

more bytes to the response, which were not accounted

for in the header. In other situations the server-side script

sends a footer, maybe because the developer didn’t notice

that the footer was included in all the scripts and this

footer adds more bytes to the body than the Content-
length size that was announced.

• Malformed headers: HTTP 1.1 RFC specifies that header

lines end with a pair or characters CRLF (Carriage-Return

Line-Feed), however, there are server implementations

which use only the line-feed character. The RFC also

provides the names for the header options, but we found

servers that use illegal option names, meaning that instead

of a Connection option they wrote “Coennction” or

maybe “nnCoection”, which makes recognising a header

option a difficult task. The source of these error are prob-

ably simple servers, used in embedded systems. These

servers can become quite common with the increase in

IP-based Internet of Things (IoT) devices.

In these situations, an RFC-compliant analysis will result in

errors due to illegal HTTP responses. However, the APM tool

we have described does not carry any deep header analysis,

therefore it cannot fail in these situations and it provides the

correct measurement without any additional heuristic.

A blind analysis can provide results where a deep analysis

would fail without adding some heuristics.

E. Applicability to HTTP/2 traffic

The algorithm presented in this paper can also be applied

to HTTP/2 traffic over TCP or over Quick UDP Internet

Connections (QUIC).

In HTTP/2, due to the protocol’s inherent stream multiplex-

ing [38], packet bursts can no longer be assumed to contain

a single request or response. TCP packets can contain frames

from several HTTP messages, which in an encrypted stream

are indistinguishable. In fact, using HTTP/2, servers can even

push resources to the clients before a request has been issued.

We expect a decreased accuracy of blind analysis due to these

features.

As for HTTP/2 over QUIC, which has been proposed as

HTTP/3 [39], the differences introduced by QUIC in the traf-

fic’s characteristics remain to be tested, yet they are expected

to have a lesser impact compared to those from HTTP/2.

These two scenarios have been left for future work.

V. CONCLUSIONS

In this paper we have proposed the analysis of response

time for encrypted HTTPS requests based on the data flow

between endpoints. The procedure overestimates the correct

value when HTTP pipelining is present, however, support of

pipelining has been eliminated from most major browsers,

making its presence insignificant in the traffic we collected

from our university campus access link (more than 5 million

connections). When considering the whole set of requests in

a network link, the proposed methodology provides a good

approximation of the distribution of response times, even for

probabilities as low as 10−4. It also simplifies the analysis

when the server does not follow the requirements in HTTP

protocol syntax.

REFERENCES

[1] Thiam Kian Chiew and Karen Renaud. Estimating web page response
time based on server access log. In 2015 9th Malaysian Software
Engineering Conference (MySEC), 2014.

[2] Anja Feldmann. BLT: Bi-layer tracing of HTTP and TCP/IP. Computer
Networks: The International Journal of Computer and Telecommunica-
tions Networking archive, 33(1-6):2476–2490, June 2000.

[3] J. Rexford B. Krishnamurthy. Software issues in characterizing web
server logs. In World Wide Web Consortium Workshop on Web Charac-
terization, Nov 1998.

[4] BIG-IP System: Implementing a passive monitoring config-
uration. https://support.f5.com/content/kb/en-us/products/big-
ip ltm/manuals/product/bigip-passive-monitoring-configuration-
13-0-0/ jcr content/pdfAttach/download/file.res/BIG-IP System
Implementing a Passive Monitoring Configuration.pdf, accessed on
April 8th, 2019.

[5] Network Visibility - Ixia. https://www.ixiacom.com/solutions/network-
visibility, accessed April 8th, 2019.

[6] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris
Bentzel, and Parisa Tabriz. Measuring https adoption on the web. In
26th USENIX Security Symposium, 2017.

[7] TLS/SSL decryption & encryption - Ixia. https://www.ixiacom.com/
products/tls-and-ssl-decryption-and-encryption, accessed April 8th,
2019.

[8] SSL monitoring - DC RUM 12.4. https://community.dynatrace.com/
community/display/DCRUM124/SSL+monitoring, accessed April 8th,
2019.

[9] Bernd Greifeneder, Bernhard Reichl, Helmut Spiegl, and Gunter
Schwarzbauer. Method of non-intrusive analysis of secure and non-
secure web application traffic in real-time, 2003. US Patent 7,543,051
B2.

[10] Doron Kolton, Adi Stav, Asaf Wexler, Ariel Ernesto Frydman, and
Yoram Zahavi. System to enable detecting attacks within encrypted
traffic, 2006. US Patent 7,895,652 B2.

[11] E. Rescorla. The Transport Layer Security (TLS) protocol version 1.3,
2018. RFC 8446.

[12] Azer Bestavros Mark E. Crovella, Murad S. Taqqu. A practical guide
to heavy tails, chapter 8, pages 3–25. Birkhauser Boston Inc., 1998.

[13] Prasant Mohapatra Udaykiran Vallamsetty, Krishna Kant. Characteriza-
tion of E-commerce traffic. Electronic Commerce Research, 3(1-2):167–
192, January-April 2003.

[14] Mehul Nalin Vora and Dhaval Shah. Estimating effective web server
response time. In 2017 Second International Conference on Information
Systems Engineering (ICISE). IEEE, April 2017.

[15] Ludmila Cherkasova, Yun Fu, Wenting Tang, and Amin Vahdat. Mea-
suring and characterizing end-to-end internet service performance. ACM
Transactions on Internet Technology, 3(4):347–391, November 2003.

[16] Paul Barford and Mark Crovella. Critical path analysis of TCP transac-
tions. In Proceedings of the conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication - SIGCOMM
'00. ACM Press, 2000.

[17] Chang-Gyu Jin and Mi-Jung Choi. Integrated analysis method on HTTP
traffic. In 2012 14th Asia-Pacific Network Operations and Management
Symposium (APNOMS). IEEE, September 2012.

[18] Xiuwen Sun, Kaiyu Hou, Hao Li, and Chengchen Hu. Towards a fast
packet inspection over compressed HTTP traffic. In 2017 IEEE/ACM
25th International Symposium on Quality of Service (IWQoS). IEEE,
June 2017.

[19] Dmytro Ageyev Maxim Tawalbeh Vitalii Bulakh Tamara Radivilova,
Lyudmyla Kirichenko. Decrypting SSL/TLS traffic for hidden threats
detection. In Proceedings of IEEE 9th International Conference on
Dependable Systems, Services and Technologies (DESSERT), 2018.

[20] Martin Husák, Milan Čermák, Tomáš Jirsı́k, and Pavel Čeleda. HTTPS
traffic analysis and client identification using passive SSL/TLS finger-
printing. EURASIP Journal on Information Security, 6:1–14, Feb 2016.

[21] Jonathan Muehlstein, Yehonatan Zion, Maor Bahumi, Itay Kirshenboim,
Ran Dubin, Amit Dvir, and Ofir Pele. Analyzing HTTPS encrypted
traffic to identify users operating system, browser and application. In
Proceedings of the 14th IEEE Annual Consumer Communications &
Networking Conference (CCNC), 2017.

151

[22] Alfonso Iacovazzi, Andrea Baiocchi, and Ludovico Bettini. What are
you Googling? - inferring search type information through a statistical
classifier. In Proceedings of IEEE Global Communications Conference
(GLOBECOM), 2013.

[23] Jianbin Wei and Cheng-Zhong Xu. Measuring client-perceived pageview
response time of internet services. IEEE Transactions on Parallel and
Distributed Systems, 22(5):773–785, 2011.

[24] Carlos Vega, Paula Roquero, and Javier Aracil. Multi-Gbps HTTP
traffic analysis in commodity hardware based on local knowledge of
tcp streams. Computer Networks, 113(11):258–268, Feb 2017.

[25] Kai Zhang, Junchang Wang, Bei Hua, and Xinan Tang. Building high-
performance application protocol parsers on multi-core architectures. In
Proceedings of IEEE 17th International Conference on Parallel and
Distributed Systems, Dec 2011.

[26] Jing Xu, Hanbo Wang, Wei Liu, and Xiaojun Hei. Towards high-speed
real-time HTTP traffic analysis on the Tilera many-core platform. In
Proceedings of IEEE 10th International Conference on High Perfor-
mance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing, June 2013.

[27] Apache MPM Prefork. https://httpd.apache.org/docs/2.4/mod/prefork.
html, accessed on May 15th, 2019.

[28] Mark Nottingham. Making HTTP pipelining usable on the open
web. Internet-Draft draft-nottingham-http-pipeline-01, IETF Secretariat,
March 2011. http://www.ietf.org/internet-drafts/draft-nottingham-http-
pipeline-01.txt.

[29] Firefox 54: Changes for web developers - MDN web docs. https:
//developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/54#HTTP,
accessed April 8th, 2019.

[30] The Chromium Projects: HTTP pipelining. https://www.chromium.org/
developers/design-documents/network-stack/http-pipelining, accessed
April 8th, 2019.

[31] Net::Async::HTTP documentation - metacpan.org. https://metacpan.org/
pod/Net::Async::HTTP#pipeline-=\%3E-BOOL, accessed April 8th,
2019.

[32] Twisted: HTTPChannel class documentation. https://twistedmatrix.com/
documents/8.2.0/api/twisted.web2.channel.http.HTTPChannel.html#
lingeringClose, accessed April 8th, 2019.

[33] Apache HttpCore Examples - Apache HttpComponents. https://hc.
apache.org/httpcomponents-core-ga/examples.html, accessed April 8th,
2019.

[34] HttpWebRequest.Pipelined Property (System.Net) - Microsoft Docs.
https://docs.microsoft.com/en-us/dotnet/api/system.net.httpwebrequest.
pipelined?view=netframework-4.7.2, accessed April 8th, 2019.

[35] QNetworkRequest class - Qt documentation. https://doc.qt.io/Qt-5/
qnetworkrequest.html, accessed April 8th, 2019.

[36] CURLMOPT PIPELINING explained - cURL documentation. https:
//curl.haxx.se/libcurl/c/CURLMOPT PIPELINING.html, accessed April
8th, 2019.

[37] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content, June 2014. RFC 7231.

[38] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2), May 2015. RFC 7540.

[39] Mike Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-
Draft draft-ietf-quic-http-17, IETF Secretariat, December 2018. http:
//www.ietf.org/internet-drafts/draft-ietf-quic-http-17.txt.

152

