
Hic Sunt Proxies: Unveiling Proxy Phenomena in
Mobile Networks

Raffaele Zullo†, Antonio Pescapé† Korian Edeline‡, Benoit Donnet‡,
†Università di Napoli Federico II, Italy - r.zullo@studenti.unina.it, pescape@unina.it

‡Montefiore Institute, Université de Liège, Belgium - firstname.name@ulg.ac.be

Abstract—Over the years middleboxes have established them-
selves as a solution to a wide range of networking issues,
progressively changing network landscape and turning the end-
to-end principle into a reminder of an Arcadian age of the
Internet. Among them, proxies have found breeding ground
especially in mobile networks that, moreover, have become the
most popular way to access the Internet.

In this paper, we present Mobile Tracebox, an Android
measurement tool, and describe how its methodology, coping
with the lack of privileges of mobile devices, can not only detect
proxies but also characterize different facets, from their transport
layer behavior to their location inside the network. Data collected
from a crowdsourced deployment over more than 90 carriers
and 350 Wi-Fi networks contributes to describe the potential
of the tool and to draw a panorama of proxies across mobile
networks. Our study confirms their prevalence and reveals that
their scope is not limited to HTTP but can include several TCP
services and even non standard ports. We detail the different
implementations observed and delve into specific aspects of their
configuration, like the initial Receive Window, the Window Scale
factor or the set of Options supported, to understand how proxies
can affect performance or obstruct extensions. Finally, we focus
on fingerprinting and attempt to draw a dividing line between
packet modifications performed by proxies and those performed
by other classes of middleboxes.

I. INTRODUCTION AND RELATED WORK

Internet landscape has gradually changed over the years

with middleboxes relentlessly gaining ground and embracing

a broadening range of functions. The end-to-end principle, a

pillar of Internet’s early days [1], has increasingly come into

question from various directions [2], [3]. Not only network

infrastructure has changed but also the way we access the

Internet has mutated with the rise of mobile devices at

the expense of desk-based and notebook computers. Mobile

networks, indeed, with their limited resources (in terms of

spectrum, IP address space, etc.) and their innate complications

due to user mobility have revealed themselves as the perfect

environment for middleboxes proliferation.

Proxies are one of the most popular middleboxes [4], acting

as an intermediary between a client and a server. They can

be deployed for a wide range of reasons: from enhancing

performance on network paths where native performance suf-

fers due to characteristics of the link (Performance Enhancing

Proxies) [5] to serving specific tasks at application layer, e.g.,

HTTP caching, transcoding, even malicious code filtering.

Unfortunately, they may also serve less benevolent purposes

like content blocking or censorship and sometimes can expose

user’s security and privacy to unexpected vulnerabilities; even

tasks implemented to improve performance, e.g., lowering

images quality to reduce fetch time, can on the other hand

lead to user’s QoE (Quality of Experience) degradation.

Recent works have shed the light on the prevalence of mid-

dleboxes and their impact. Sherry et al. [4] demonstrated that

networks may contain as many middleboxes as routers, while

McQuistin et al. [6] showed how middleboxes are crippling

the deployment of transport layer alternatives. In the last few

years, the measurement paradigm has also evolved [7] with the

rise of crowdsourcing: a novel approach in which users can

cooperate to collect measurement data drawing a panorama of

Internet that cannot be achieved from fixed observation points

[8]. With this approach Wang et al. [9] surveyed more than

100 carriers revealing NAT and firewall policies. Weaver et

al. [10], leveraging a wide crowdsourced dataset and multiple

detectors at the transport and application level, drew a detailed

taxonomy of web proxies based on the purposes for which

they are deployed. Vallina-Rodriguez et al. [11] analyzed 71

mobile providers in 6 countries showing, along with network

configurations, business models and relationships between

operators, how pervasive HTTP and DNS proxies are. Xu et

al. [12] used an experimental testbed to investigate transparent

web proxies in the four major US mobile providers and

how they behave in presence of real web workloads. Recent

works has also shown how proxies can degrade performance

instead of improving it compared to the old fashion end-

to-end communication [13]. Furthermore, Honda et al. [14]

focused on how proxy can interfere with TCP options. While

it’s acknowledged that proxies are part of today’s Internet, it

is not well known if they are limited to a few services (HTTP,

DNS) and what is their detailed behavior at transport level.

In this paper we present Mobile Tracebox, a network mea-

surement app for Android that embodies different techniques

to cope with the multifaceted nature of proxies as well as with

the innate limitations of mobile devices as measurement tools,

and provide an overview of proxies in mobile Internet resulting

from its crowdsourced deployment. Unlike other works that

rely on application-level interference to discover proxies, we

investigate TCP-terminating proxies by analyzing TTL alter-

ations. This broadens the range of detectable proxies to all

TCP ports, even non-standard. To complete the picture we

also investigate the presence of packet-rewriting proxies that

modify traffic as it flows through them without splitting the

connection. Furthermore we detail the different configurations

observed and discuss their impact on several performance

978-3-903176-17-1 / © 2019 IFIP

227



Version IHL DSCP ECN Total Length

ID D
F

M
F Frag Offset

TTL Protocol Checksum

Source Address

Destination Address

Source Port Destination Port

Sequence Number

Ack Number

Offset NC E UA P R S F Window

Checksum Urg Pointer

Read / write

Read only

Available in

rooted mode only

Fig. 1: Mobile Tracebox: IP and TCP header of TCP probe

packets forged in non rooted mode.

aspects, including the initial and the maximum TCP Receive

Window, the handshake latency, the set of TCP extensions

supported. Finally we propose a new detection methodology

based on packet modifications performed by proxies and not

by other middleboxes.

II. MOBILE TRACEBOX

Methodologies to detect proxies, and more generally mid-

dleboxes, are diverse and can rely on active measurements

as well as passive measurements [15]. Mobile Tracebox [16],

belongs to the first school of thought: it sends specially crafted

packets to highlight intermediate boxes that modify those

packets or alter the path between source and destination. The

way the app forges probe packets is dual: when root privileges

are available it relies on raw sockets to set every single bit of

the packet, when root privileges are not granted it uses system

calls on regular sockets to manipulate IP and transport headers

of the packet sent (other than the payload). In rooted mode,

that has been presented in our previous work [17], the poten-

tially altered copy of the probe packet is retrieved either from

a controlled server or from the quoted packet inside ICMP

Time Exceeded messages generated during traceroute[18]. To

cope with the lack of privileges of Android devices available

to the vast majority of users and thus achieve a wider audience

for a crowdsourced measurement campaign, Mobile Tracebox

also resorts to non raw sockets to send probe packets: using

bind(), setsockopt(), etc, the value of a number of

IP and TCP header fields can be explicitly set or at least

manipulated; for a few other fields, that cannot be altered,

it is still possible to retrieve the value set by default. Probe

packets forged in non rooted mode are sent to a controlled

server that returns them to the app in the exact shape they

have been received: the app in turn partially reconstructs the

packet sent and then compares the fields eligible to be tested.

Fig. 1 summarizes IP and TCP header fields that can be tested

in non rooted mode. In addition the following TCP Options

can be tested on SYN probe packets: Maximum Segment Size

(MSS), Sack Permitted (SP), Timestamp (TS) and Window

Scale (WS). The app can detect if each Option is removed

by a middlebox and for MSS and WS if the Option value

is altered along the path (for TS the value cannot be tested,

while SP has no explicit Option value). It is also possible

to detect if those Options are present in the received SYN

TABLE I: Mobile Tracebox: TCP Options on SYN probe

packets forged in non rooted mode.

Option Kind Value Note

MSS 2 Read / write
WS 3 Read / write
SP 4 -
TS 8 No access
TFO (Exp.) 254 - Android 6.0 or later

ACK allowing to test both directions of the path. Starting

from version 6, TCP Fast Open is available on Android

(using the experimental kind, 254, and the magic number

0xF989): a specific probe to test it is included in the suite.

Table I summarizes TCP Options supported in non rooted

mode. Since direct access to ICMP messages requires root

privileges, the standard tracebox probe cannot be ported to

non rooted devices. In order to test path length it is replaced

by a pseudo-traceroute probe in which a regular TCP socket

is used and connect() is iteratively called with incremental

TTL: this allows to identify the number of hops necessary to

reach the responding host, whether the intended destination

or a TCP-terminating proxy. The range of non rooted probes

is completed by a non-responding test in which a SYN is

sent to a non-responding server to discover a spoofed SYN
ACK. Mobile Tracebox makes use of payload packets other

than SYN packets for probing: for instance it can send well

crafted HTTP requests allowing to detect interference also

at application layer. Although it is the main service tested,

probes are not limited to HTTP (port 80): available probes

also test FTP (21), SMTP (25), HTTPS (443), SIP (5060) and

a non standard port (10000). Destination port as well as other

parameters can be widely customized by users.

Measurement campaign. We deployed Mobile Tracebox

by the means of crowdsourcing, recording more than 800

downloads. In this work we analyze data collected in the first

30 months after the release of the non rooted version of the

app, from July 2016 till December 2018. Due to the nature

of our analyses we had to exclude networks tested only in

rooted mode and also tested in non rooted mode but without

preserving the default settings on the analyzed fields. In light

of this the dataset studied in this work covers 96 carriers and

385 Wi-Fi networks in 69 countries. We will resort to rooted

probes collected from a subset of these (17 cellular and 32

Wi-Fi networks) only to delve into a few specific aspects that

could not be discerned otherwise. Although the app supports

IPv6 in both modes, IPv6 probes collection was quite limited,

especially from carriers, and, thus, this work will focus on

IPv4 measurements only.

III. UNVEILING PROXIES

Unlike other works that rely on application-level interfer-

ence [11] [19] [20] [21] to reveal the presence of a proxy

along a path, we primarily rely on the concept that a proxy

splits a TCP connection in two parts and analyze path length

anomalies ascribable to TTL rewriting that emerged from

different kinds of probes; for the sake of completeness, we also

228



TTLReceived

P
ro

b
es

(L
o
g
)

0 32 64 96 128 160 192 224 255
100

101

102

103 No Proxy TTL set to 128

TTL set to 64 TTL set to 255

Fig. 2: Proxy detection through TTL rewriting: TTL distribu-

tion of received probe packets sent with an initial TTL of 32.

explore the possibility of proxies modifying HTTP content or

more generally TCP payload without actually splitting TCP

connection.

When a SYN sent by the client reaches the proxy it responds

with a SYN ACK either immediately or upon SYN ACK recep-

tion from the intended destination (to which it has forwarded

its own SYN). SYN generated by the proxy is expected to carry

a default TTL value (e.g., 64) potentially causing an inconsis-

tency in the path length, measured as the number of hops

necessary to reach the responding node (pseudo-traceroute

probes) or as the difference between sent packet and received

packet TTL (server-based probes). Analyzing path length of

pseudo-traceroute probes a considerable amount of anomalous

values, especially ranging from 1 to 5 hops, emerged: although

the invariance of the path length when targeting different

destinations can further confirm the presence a proxy, it’s not

easy to rigorously draw a dividing line between paths with and

without a proxy solely based on the path length. Server-based

probes classification can instead be more accurate. Default

TTL values used by Mobile Tracebox are 32 and 64: since

64 is a typical TTL value also used by proxies, only probes

using TTL of 32 are suitable for proxy detection. In Sec. IV,

we will discover how we can extend proxy revelation also

to probes using a TTL of 64 (i.e., without relying on TTL

alterations). Fig. 2 displays the TTL distribution of received

SYN probe packets sent with an initial TTL of 32. The bell

curve of the values compatible with the initial value is clearly

visible in the region on the left of the dashed line, ranging

from 3 to 25, but there are also three replicas above 32 that are

instead compatible with a proxy along the path rewriting TTL

respectively to 64, 128 and 255. The only TTL values outside

of these 4 areas (158-160) were recorded from devices with a

US sim card roaming in Europe: since roaming can indeed add

further variability to measurements, roaming probes have been

isolated in the data cleansing phase, and, thus, those values

are not reported in the figure. The plot also shows that 64

is the most common default TTL among proxies analyzed in

our dataset, confirming why probes with initial TTL of 64 are

not eligible for this classification. The other probes collected

can help to further validate our methodology: (i) path length

distribution of pseudo-traceroute probes targeting our server

suggests that portion of paths with a length >32 is negligible;

(ii) probe packets sent with initial TTL of 64 were received

with a minimum TTL of 34, sign that no proxy using a default

TTL of 30-32 was observed.

Proxy scenarios. The previous classifications can be easily

extended to probes using payload packets instead of SYN:

this is crucial to check if payload modifications (especially

HTTP) are always performed by TCP-terminating proxies or,

in absence of a TTL alteration, are ascribable to packet-

rewriting proxies [10]. It is also necessary to highlight a class

of proxies that don’t alter TTL on SYN but rewrite it on

following payload packets: TCP handshake takes place as the

proxy was not present, while subsequent packets are actually

reforged by the proxy with its default TTL (Fig. 3b). Results of

the non-responding server test instead can be used to further

discriminate whether a proxy altering SYN responds with a

SYN ACK immediately (Fig. 3d) or after SYN ACK reception

from the destination server (Fig. 3c). We will further delve in

the early SYN ACK scenario in the following section.

IV. RESULTS

Proxy prevalence. We now use the classification described

in the previous section to assess the prevalence of proxies

across mobile networks. Fig. 4 displays the percentage of

networks exhibiting a proxy on HTTP port as well as on the

other ports tested by Mobile Tracebox. Our results confirm

how HTTP proxies are widely deployed in mobile Internet and

also how their detection is not necessarily constant throughout

all the measurements recorded from a single network, espe-

cially if cellular. This phenomenon is not limited to proxies:

data collected shows that also the presence and properties of

other middleboxes (Carrier-Grade NATs, middleboxes adding

or bleaching TCP Options, remarking IP DSCP, etc) can vary

within the same carrier. We also tried to understand if the

cellular technology used by the device played a role with

regard to proxy presence: only 6 networks actually showed

a significant difference in percentages (>20%) when probed

with distinct technologies. Our findings also show that proxies

are not limited to HTTP but can involve several TCP services

and sometimes all TCP traffic. Although the presence of only

an HTTP proxy is still the most common scenario, we also

found networks in which only another specific service (e.g.

SIP or SMTP) is proxied, or HTTP is proxied along with

other services (e.g. HTTP, HTTPs and FTP). We also observed

networks where all ports tested, including non-standard port

(10000), exhibited a proxy. With regard to the last case we

further tested 3 networks on up to 100 non-standard ports and

all of them revealed a proxy, leading us to infer that all TCP

traffic was actually routed through a proxy.

Packet-rewriting proxies. Our dataset also reveals a num-

ber of HTTP request manipulations operated by proxies

(HTTP Header injections and modifications): almost all these

alterations are accompanied by TTL anomalies, sign that they

are performed by TCP-terminating proxies and not by packet-

rewriting proxies. We identified one carrier and two Wi-Fi in

which HTTP alterations occurred without showing an anoma-

lous TTL. For the carrier we collected also a rooted tracebox

probe [18], that confirmed the Header injection performed by

a node along the path: that middlebox was not reforging the

packet (neither TTL nor other fields were altered) but just

229



Client No Proxy Server

(a) No proxy

Client ServerProxy

(b) Proxy not altering
SYN

Client Proxy Server

(c) Proxy altering SYN
(without early SYN ACK)

Client Proxy Server

(d-1) SYN not deferred

Client Proxy Server

(d-2) SYN deferred till ACK

Client Proxy Server

(d-3) SYN deferred till Payload

(d) Proxy with early SYN ACK

Fig. 3: Observed scenarios.

HTTP FTP SMTP HTTPS SIP 10000
0

20

40

Port

N
et

w
o
rk

s
(%

)

Cellular

Wi-Fi

Variable presence

Fig. 4: Proxy detection on different TCP Ports.

TABLE II: Proxy implementations statistics.

Scenario Fig. Cellular Wi-Fi

SYN not altered 3b 14% 15%
SYN altered, no early SYN ACK 3c 4% 8%
SYN altered, early SYN ACK 3d 82% 77%

modifying the payload of the packet as it traversed it, without

splitting the connection.

TCP-terminating proxies. We now evaluate the extent of

the different proxy scenarios depicted in Fig. 3. Table II shows

the proportion of the implementations observed, with the proxy

with early SYN ACK being the most common typology in both

categories of mobile networks.

Deferred Handshake. Early SYN ACK decouples the hand-

shake between client and proxy from the handshake between

proxy and server: Fig. 3d-1 shows a proxy that concomitantly

responds with a SYN ACK to the client and forwards its SYN
to the original destination but it is also possible that the proxy

delays the transmission of its SYN. To discern this aspect we

set up a specific test that operates in 3 phases: (i) the client

sends a SYN to the server; (ii) the client sends a SYN and the

following ACK; (iii) the client performs handshake and sends a

payload packet. At the end of each phase the client interrogates

the server to check if a SYN has been received from the

previously verified server-reflexive address of the client. This

test reveals if the proxy retains SYN waiting for client’s ACK
or payload packet prior to contacting the destination. Although

it is required to gain root privileges to expose this subtle

dynamic, this probe does not rely on synchronization between

client and server [12], that is a requisite harder to be achieved

in a crowdsourced measurement. Xu et al. already exposed

with their experimental testbed HTTP proxies in US carriers

that defer handshake till reception of the actual HTTP request

(Fig. 3d-3) [12]. With this test we also unveiled an additional

deferred connection scenario in which proxy’s handshake with

the server is deferred till the completion of the handshake with

the client (Fig. 3d-2). Although implications on latency must

be taken into account in both cases, scenario in Fig. 3d-2 is

less harmful when a client establishes a connection in advance

and not immediately before payload is ready to be transmitted.

Initial Receive Window. We now delve into specific as-

pects of proxies configuration, to understand their impact on

performance. We start from the Receive Window advertised on

the first payload packet sent by the client after the handshake:

Fig. 5 displays the CDF of the initial Receive Window as

set by Android devices and by proxies. A preliminary survey

on several Android devices revealed that this parameter, as

well as the Window Scale factor, can vary depending on the

network interface used (cellular or Wi-Fi) and therefore those

values are plotted separately. We can easily acknowledge how

the most recurring values for proxies are in range between

14K and 30K while for devices are around 64K and above:

and in fact in 55% of the probes the Window Size advertised

by the proxy is lower than the one originally advertised by

the device: this can slow down initial data transmission by

the server compared to the non-split connection. The Initial

Receive Window limits the number of bytes that can be sent

by the counterpart after the first request without waiting for

an ACK. RFC6928 [22] recommended in 2013 to increase the

initial Congestion Window (IW) to 10 segments. In 2017 Ruth

et al. [23] observed how 85% of HTTP servers and 80% of

TLS servers from Alexa top 1M list already supported this

recommendation. In order to realize the full benefit of the

large IW on server side, implementations on client side need

to advertise an initial Receive Window of at least 10 segments.

To understand this aspect we scaled the values in Fig. 5 by

the MSS advertised on the SYN preceding the payload packet

and compared devices and proxies settings to the current

specification of 10 segments in Table III: the percentage of

proxies that cannot benefit from servers supporting IW10 is

higher than the the percentage of devices.

TCP Options. Mobile Tracebox can detect if TCP Options

tested (see Table I) are actually carried by the SYN that reaches

the controlled server but also if they are carried by the SYN
ACK received from the responding host, and thus, in presence

of a proxy, can test if the proxy supports those Options on both

connections. Fig. 6 reports the percentage of proxies adopting

the tested Options. Although the overall support of SP, TS

and WS options is always above 80%, from our analysis it

emerged that some cellular proxies support an Option only

230



Initial TCP Received Window (KB)

C
D

F

0 8 16 24 32 40 48 56 ≥64
0

0.2

0.4

0.6

0.8

1
Android (Cellular IF)

Android (Wi-Fi IF)

Cellular Proxies

Wi-Fi Proxies

Fig. 5: Initial TCP Window as set by Android devices (using

cellular and Wi-Fi interfaces) and by proxies.

TABLE III: Initial TCP Receive Window (in number of

segments) as set by Android devices and by proxies.

Window Cellular Wi-Fi
(# of segments) Device Proxy Device Proxy

<10 7% 15% 0% 20%
=10 30% 31% 29% 18%
>10 63% 54% 71% 62%

MSS SP TS WS TFO
0

20

40

60

80

100

Options

P
ro

x
ie

s
(%

)

Cellular

Wi-Fi

Proxy to Client only

Proxy to Server only

Fig. 6: TCP Options adoption by proxies.

on the connection between proxy and client and not on the

connection between proxy and server; the symmetric behavior

has been observed for Wi-Fi proxies. Since those options are

designed for large Bandwidth-Delay Product (BDP) networks,

a possible explanation of these settings is that in cellular net-

works the portion of the path with higher delay is presumably

from the client to the proxy while in Wi-Fi is from the proxy to

server. No proxy was traversed by the TFO Option: this shows

that analyzed proxies don’t support the TFO implementation

tested (i.e., using experimental kind, 254) but also suggests that

the set of Options on proxy’s SYN is fixed and do not depend

on client’s SYN: where available, rooted probes using SYN
with MPTCP Option, an unassigned Option kind or without

any Options corroborate this hypothesis.

Window Scale factor. The Window Scale factor determines

the maximum Receive Window that can be advertised, which

is crucial, especially on paths with a high round-trip time,

since the throughput is limited by the ratio RWIN/RTT. Fig. 7

displays the CDF of the values set by Android devices and by

proxies (proxies that don’t support WS on the connection with

the server are excluded). In this case the distributions are very

close and in fact only in 40% of the recorded probes the proxy

sets a WS value lower than the original. The plot reports the

WS advertised by proxy’s SYN: we also observed that 22% of

proxies advertised different WS factors on the connection to

the client and to the server.

TCP ECN. TCP ECN is not enabled by default on Android

TCP Window Scale

C
D

F

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Android (Cellular IF)

Android (Wi-Fi IF)

Cellular Proxies

Wi-Fi Proxies

Fig. 7: TCP Window Scale as set by Android devices (using

cellular and Wi-Fi interfaces) and by proxies.

and, thus, it could not be tested on client-to-proxy connection.

However to investigate ECN deployment across proxies we

inspected SYN packets sent by all the proxies tested, checking

if the flags used to negotiate ECN (CWR and ECE) were set:

we identified only one UK carrier proxy supporting ECN by

default on outgoing connections.

Proxy location. We now investigate proxy location inside

the network. As detailed in Sec. III a single traceroute probe

is not enough to assert the presence of a proxy: for this reason

we consider only probes in pseudo-traceroute mode preceded

by a server-based probe that has highlighted the presence of

a proxy altering SYN. Fig. 8 shows how cellular proxies are

located at up to six hops away from the source while Wi-Fi

proxies are generally closer, with the majority of them located

at the first node.

Fingerprinting. Finally, we attempt to fingerprint proxies

in terms of packet modifications drawing a dividing line with

other classes of middleboxes. Fig. 9 compares modifications

detected on paths with a proxy and without. We can easily

acknowledge that modifications on IP Don’t Fragment, TCP

Window, Window Scale, and to a lesser extent on TCP Offset

(and consequently on IP Total Length) are almost exclusively

ascribable to proxies. These findings help us to discriminate

what happens in the proxy scenario depicted in Fig. 3b, in

which SYN did not exhibit TTL rewriting while following

payload packets did. For a subset of these proxies, SYN packet

had neither TTL alteration nor other fingerprinting modifica-

tions leading us to infer that the original SYN flowed till the

destination host. For another subset of proxies, modifications

on IP Don’t Fragment and TCP Window were detected on SYN
(even in absence of a TTL alteration) other than on payload

packets, so it is more likely that the proxy actually forged its

own SYN although keeping the original TTL. The previous

considerations can also be of help to infer proxy presence

in server-based probes where TTL of 64 was used and more

generally when we cannot rely on TTL alterations (e.g., TTL

cannot be manipulated).

Measurement caveats. A few caveats emerged from the

this section and Sec. III: (i) detection methodologies based on

a non-responding test and more generally on a SYN only test

are not capable to detect all TCP-terminating proxies, due to

the presence of proxies not employing early SYN ACK and

also not altering SYN; (ii) detection methodologies based on

fingerprinting packets received on a specific port (e.g. HTTP)

231



Number of hops

P
ro

x
ie

s
(%

)

1 2 3 4 5 6

10

20

30

40

50

60 Cellular

Wi-Fi

Fig. 8: Proxy location in mobile networks.

IP
DSCP

IP
DF

IP
Source

Addr

IP
Total

Len
gth

IP
TTL

TCP
Offs

et

TCP
Source

Port

TCP
UrgPointer

TCP
W

indow

M
SS

modifi
ed

SP
str

ipped

TS
str

ipped

W
S

str
ipped

W
S

modifi
ed

0

20

40

60

80

100

Fields

P
ro

b
es

(%
)

No Proxy

Proxy

Fig. 9: Fingerprinting proxies: comparison of packet modifi-

cations detected on paths with a proxy and without.

and on a non-standard port do not succeed in networks where

all TCP traffic is routed through a proxy; (iii) a measured

path length up to 6 hops does not rule out the presence of

a proxy; (iv) testing if a certain feature (e.g. TCP Options,

ECN) is supported by a proxy on client-to-proxy or proxy-to-

server connection does not imply that is supported or not on

the symmetric connection.

V. CONCLUSIONS AND FUTURE WORK

Detection and characterization of proxies in mobile net-

works can be complex due to two factors: their multifaceted

interference and the innate limitations of mobile devices as

network measurement tools. We addressed these issues with

Mobile Tracebox that embodies diverse methodologies to

detect proxies as well as other classes of middleboxes. Instead

of relying only on application layer modifications as several

previous works, we mainly, but not exclusively, grounded on

TTL alterations ascribable to proxies to reveal their presence.

Analyzing data collected by means of crowdsourcing we

showed their prevalence and how their range is not limited

to HTTP but can include other services and even all TCP

traffic. We described the transport layer behavior of the proxies

observed and detailed several aspects of their configuration

(from the initial Receive Window to the range of TCP exten-

sions supported) to understand their impact on performance.

We plan to implement a new probing scheme to test further

aspects and continue our crowdsourced study to understand

the trend of proxies in mobile Internet.

ACKNOWLEDGMENTS

The research described in this paper has been partially funded by the
European Union’s Horizon 2020 research and innovation program under grant
agreement No 688421. The opinions expressed and arguments employed
reflect only the authors’ views. The European Commission is not responsible
for any use that may be made of that information. The work of Antonio

Pescapé has been partially supported by the art. 11 DM 593/2000 for NM2
srl.

REFERENCES

[1] B. E. Carpenter, “Architectural principles of the Internet,” Internet
Engineering Task Force, RFC 1958, June 1996.

[2] J. Kempf and R. Austein, “The rise of the middle and the future of
end-to-end: Reflections on the evolution of the Internet architecture,”
Internet Engineering Task Force, RFC 3724, March 2004.

[3] A. Botta and A. Pescapé, “Monitoring and measuring wireless net-
work performance in the presence of middleboxes,” in 2011 Eighth
International Conference on Wireless On-Demand Network Systems and
Services, Jan 2011, pp. 146–149.

[4] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM, August 2012.

[5] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance enhancing proxies intended to mitigate link-related degradation,”
Internet Engineering Task Force, RFC 3135, June 2001.

[6] S. McQuistin and C. Perkins, “Reinterpreting the transport protocol stack
to embrace ossification,” in Proc. IAB Workshop on Stack Evolution in
a Middlebox Internet (SEMI), January 2015.

[7] Y. Shavitt and E. Shir, “DIMES: Let the internet measure itself,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 5, pp. 71–74,
October 2005, see http://www.netdimes.org.

[8] F. Fuchs-Kittowski and D. Faust, “Architecture of mobile crowdsourc-
ing systems,” in Proc. International Conference on Collaboration and
Technology (CRIWG), September 2014.

[9] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story of
middleboxes in cellular networks,” in Proc. ACM SIGCOMM, August
2011.

[10] N. Weaver, C. Kreibich, M. Dam, and V. Paxson, “Here be web proxies,”
in Proc. Passive and Active Measurement Conference (PAM), March
2014.

[11] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver, and
V. Paxson, “Beyond the radio: Illuminating the higher layers of mo-
bile networks,” in Proc. International Conference on Mobile Systems,
Applications, and Services, May 2015.

[12] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govin-
dan, “Investigating transparent web proxies in cellular networks,” in
Proc. Passive and Active Measurement Conference (PAM), March 2015.

[13] J. Hui, K. Lau, A. Jain, A. Terzis, and J. Smith, “How youtube
performance is improved in t-mobile network,” in Proc. Velocity, June
2014.

[14] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP,” in Proc. ACM Internet
Measurement Conference (IMC), November 2011.

[15] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin, “Detecting
cellular middleboxes using passive measurement techniques,” in Proc.
Passive and Active Measurement Conference (PAM), March 2016.

[16] R. Zullo, “Mobile tracebox,” 2016. [Online]. Available: http://play.
google.com/store/apps/details?id=be.ac.ulg.mobiletracebox

[17] R. Zullo, A. Pescapé, K. Edeline, and B. Donnet, “Hic sunt NATs: Un-
covering address translation with a smart traceroute,” in Proc. IEEE/IFIP
Workshop on Mobile Network Measurement (MNM), June 2017.

[18] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proc. ACM Inter-
net Measurement Conference (IMC), October 2013.

[19] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Il-
luminating the edge network,” in Proc. ACM Internet Measurement
Conference (IMC), November 2010.

[20] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, and V. Paxson,
“Header enrichment or isp enrichment?: Emerging privacy threats in
mobile networks,” in Proceedings of the 2015 ACM SIGCOMM Work-
shop on Hot Topics in Middleboxes and Network Function Virtualization.
ACM, 2015, pp. 25–30.

[21] S. Huang, F. Cuadrado, and S. Uhlig, “Middleboxes in the Internet: a
HTTP perspective,” in Proc. Network Traffic Measurement and Analysis
Conference (TMA), June 2017.

[22] H. J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Rfc6928-increasing
tcp’s initial window,” 2013.

[23] J. Rüth, C. Bormann, and O. Hohlfeld, “Large-scale scanning of tcp’s
initial window,” in Proceedings of the 2017 Internet Measurement
Conference. ACM, 2017, pp. 304–310.

232


